
CLPS-B – A Constraint Solver for B

Fabrice Bouquet, Bruno Legeard, and Fabien Peureux

Laboratoire d’Informatique
Université de Franche-Comté

16, route de Gray - 25030 Besançon cedex, France
Tel.: (33) 381 666 664

{bouquet, legeard, peureux}@lifc.univ-fcomte.fr

Abstract. This paper proposes an approach to the evaluation of B
formal specifications using Constraint Logic Programming with sets.
This approach is used to animate and generate test sequences from B
formal specifications. The solver, called CLPS-B, is described in terms of
constraint domains, consistency verification and constraint propagation.
It is more powerful than most constraint systems, because it allows the
domain of variable to contain other variables, which increase the level of
abstraction. The constrained state propagates the non-determinism of
the B specifications and reduces the number of states in a reachability
graph. We illustrate this approach by comparing the constrained states
graph exploration with the concrete one in a simple example: Process
scheduler.

Keywords: B Method, CLP, CSP, Set constraints, Evaluation of speci-
fications, Animation.

1 Introduction

This article presents a constraint solver to evaluate B formal models. The B
method, developed by Jean–Raymond Abrial [Abr96] forms part of a formal
specification model based on first order logic extended to set constructors and
relations. The operations are described in the language of generalized substitu-
tions, which is an extension of the language of guarded commands.Fig. 1 sets
out the B specification of a simplified process scheduler. The B specification de-
scribes the system in terms of an abstract machine defined by a data model (sets
and constants, state variables), invariant properties expressed on the variables
and the operations described in terms of preconditions and substitutions. The
objective of the constrained evaluation of B specifications, as proposed in this
article, is to look into the graph of reachable states of the system described by
the specification. More precisely, it is a question of being able to initialize the
machine, evaluate substitutions and check properties of the new calculated state.
This mechanism is used as a basis for the animation of B specifications [BLP00]
and to generate functional tests from a B abstract model [LP01,LPU02].

This approach with constraints manipulates a store of constraints, called con-
strained states, instead of concrete states, classically handled in the animation

J.-P. Katoen and P. Stevens (Eds.): TACAS 2002, LNCS 2280, pp. 188–204, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

CLPS-B – A Constraint Solver for B 189

of specifications [Dic90,WE92]. The evaluator maintains the non-determinism
of the specifications and reduces the number of generated states. For example,
non-determinism expressed by the B expression:

ANY xx WHERE xx ∈ Y THEN substitution

is maintained by the set constraint xx ∈ Y . Substitution is no longer calculated
for a particular value, but for a variable xx whose domain is Y . The process
scheduler example shows that for n processes, the number of constrained states
in the entire reachability graph is at most (n2+3n +2)/2 against more than 3n

concrete states. This is a dramatic reduction, which makes it possible to model
check or animate much larger state spaces than would be possible otherwise.

MACHINE
SCHEDULER

SETS
PID = {p1, p2, p3, p4, p5, p6}

VARIABLES
active, ready,waiting

INVARIANT
active ⊆ PID ∧ ready ⊆ PID ∧
waiting ⊆ PID ∧ ready ∩ waiting = ∅ ∧
ready ∩ active = ∅ ∧ waiting ∩ active = ∅ ∧
active ∩ (ready ∪ waiting) = ∅ ∧
card(active) ≤ 1∧
(active = ∅)⇒ (ready = ∅)

INITIALIZATION
active := ∅‖
ready := ∅‖
waiting := ∅

OPERATIONS
NEW(pp)

PRE
pp ∈ PID ∧
pp
∈ (active cupready ∪ waiting)

THEN
waiting := (waiting ∪ {pp})

END;
DEL(pp)

PRE
pp ∈ waiting

THEN

waiting := waiting − {pp}
END;

READY(rr)
PRE

rr ∈ waiting
THEN

waiting := (waiting − {rr})‖
IF (active = ∅)THEN

active := {rr}
ELSE

ready := ready ∪ {rr}
END

END;
SWAP

PRE
active
= ∅

THEN
waiting := waiting ∪ active‖
IF (ready = ∅)
THEN

active := ∅
ELSE

ANY pp WHERE pp ∈ ready
THEN

active := {pp}‖
ready := ready − {pp}

END
END

END;

Fig. 1. B Specification of process scheduler

The constrained evaluation of B specifications requires a hypothesis of finite
domains. For example, we must limit given sets. The CLPS-B solver is more
general than traditional animation because one evaluation sequence captures
the properties of a set of concrete animation sequences. It is less powerful than
proof because it requires finiteness assumptions, but it is fully automatic. Thus,
each state managed by the evaluator is a store of constraints which represents a
set of concrete states of the B abstract machine.

We use the B abstract machine of process scheduler to illustrate the use of
CLPS-B. Fig. 1 gives the B specification with a set PID composed of six processes
{p1, p2, p3, p4, p5, p6}. The three state variables of the machine are waiting,

190 F. Bouquet, B. Legeard, and F. Peureux

ready, active which represent respectively the waiting, ready to be activated and
active processes. In the initial state, the three sets are empty.

The four operations of the specification (Fig. 1) are:

– NEW: to create a new process and add it to waiting .
– DEL: to kill a process and delete it from waiting .
– READY: to activate a process of waiting and put it in active if this set is
empty, add it to ready otherwise.

– SWAP: to disable the process of active and put it in waiting , and activate a
process from ready if there is one (using the non-deterministic approach).

The evaluation of B expressions and the construction of the reachable states
constitute a new problem area for set constraint resolution. The constrained
states are built incrementally by substitutions from the initial state. So, if we
consider the state of the process scheduler just after the creation of a process
xx : waiting = {xx}∧ ready = {}∧active = {}∧ xx ∈ {p1, . . . p6}, the evaluation
of the operation new(yy) is translated by:

1. the addition of the constraints resulting from the preconditions:
yy ∈ {p1, ..., p6} ∧ yy �∈ waiting ∧ yy �∈ active ∧ yy �∈ ready

2. the evaluation of substitutions: waiting := waiting ∪ {yy}
3. the verification of the invariant properties on the new state.

The sets handled in the computation of substitutions are explicit sets of
known cardinality whose elements are either constants or variables. In this con-
text, the approaches of set constraint resolution based on a reduction of set
intervals as in CLPS [ALL94] or CONJUNTO [Ger97] do not provide a suffi-
ciently effective propagation of constraints. It is the same for the approaches
using set constraints on regular sets [AW93,Koz94] used to analyze programs.
This led us to develop a new solver, CLPS–B, based on an explicit representation
of variable domains by the intersection of sets of variables and constants.

The remainder of the paper is structured as follows:

– section 2 characterizes the domain of constraints SVCO ∪ T , then sets out
the rules of consistency and the reduction rules implemented in the solver
CLPS–B, and finally defines the coverage of the operators in the treatment
of the B notation,

– section 3 applies CLPS-B to animate B specifications,
– section 4 shows the application of CLPS-B to the animation on the example
of the process scheduler.

2 B and Constraint Resolution with CLPS–B

This section presents the domain of the CLPS-B evaluator and shows the part
of the B notation which is covered. We present the CLPS-B mechanism with the
specific resolution of the Constraint Satisfaction Problem and the rules.

CLPS-B – A Constraint Solver for B 191

2.1 Computation Domain

The B method is based on set theory, with four set definitions:

1. Cartesian product: Set × Set
2. Power-set: P(Set)
3. Set comprehension: { Variable | Predicate}
4. Given set: let T be the set of all deferred sets.

The next definitions introduce the universe of computation of the CLPS-B vari-
ables.

Definition 1 (Set). Let V be the set of all the variables, C the set of all the
constants, and O the set of all the pairs over C ∪V (including nested pairs). The
set SVCO is defined as fallows: SVCO = P(V ∪ C ∪ O)

Definition 2 (Computation domain). The computation domain of con-
straints processed in CLPS-B is defined on the set SVCO ∪ T .

The complete list of B operators supported by CLPS-B is given in Tables
2 and 3. These have some limitations for infinite sets because the resolution
purpose to bound some set as the given set or infinite set.

Example 1 (Definition of CLPS-B variables).
List of CLPS-B expressions:

– explicit set: X ∈ {1, 2, 3},
– type: X ∈ N, because (N ∈ T),
– type: X ⊂ N, because (N ∈ T),
– Cartesian product (pairs): X ∈ {1, 2, 3} × {4, 5, 6},
– Set of pairs: X ∈ {(1, 4), (1, 5) . . . (3, 5), (3, 6)},
– Set defined by comprehension (explicit domain): {X ∈ N | X ≤ 3 ∧X ≥ 0}.
List of non CLPS-B expressions:

– Set of sets: X ∈ {{1, 2, 3}, {4, 5, 6}},
– Infinite set: {X ∈ N | X ≥ 3}.

2.2 Translating B Expressions into Constraints System

In CLPS-B, all the set relations are rewritten into an equivalent system with
constraints ∈, =, and �= as show in table 1. The rewriting uses rules or axioms
of logic and the semantics of B operators [Abr96]. A,B are sets of SVCO, x and
y are elements of V ∪ C ∪ O, and s and r are relations.
Example 2. Set constraint transformation: {x1, x2} =S {y1, y2} is rewritten into
x1 ∈ {y1, y2} ∧ x2 ∈ {y1, y2} ∧ y1 ∈ {x1, x2} ∧ y2 ∈ {x1, x2}

The constraints are rewritten into normal disjunctive form and each disjunc-
tion is explored by a separate prolog choice point.

192 F. Bouquet, B. Legeard, and F. Peureux

Definition 3 (Domain of constraints). We call Ω the Domain of con-
straints. It is the set of all the constraints over SVCO ∪ T . Also, the set con-
straints over VCO is called ΩVCO and the set of constraints over T called ΩT .

Remark 1. we do not translate all the system at once, but each predicate sepa-
rately. So, the transformation is very fast, because we do not have to calculate
the disjunction normal form of the whole specification.

Table 1. B set operators and their CLPS-B definitions

Terminology Operator Definition
membership x ∈ A CLPS-B primitive
not member x
∈ A {y | y ∈ A ∧ x
= y}

equality x = y CLPS-B primitive
not equality x
= y CLPS-B primitive

subset A ⊆ B A ∈ P(B)
set equal A =S B A ⊆ B ∧ B ⊆ A

set not equal A
=S B card(A)
=
card(B) ∨ ∃ x(x ∈
A∧x
∈ B)∨∃ x(x /∈
A ∧ x ∈ B)

cup A ∪ B {x | x ∈ A ∨ x ∈ B}
cap A ∩ B {x | x ∈ A ∧ x ∈ B}

set minus A \ B {x | x ∈ A ∧ x
∈ B}
cardinality card(A) CLPS-B primitive
identity id(A) {(x , x) | x ∈ A)}
reverse r−1 {(y, x) | (x , y) ∈ r}
domain dom(r) {x | ∃ y((x , y) ∈ r)}
range ran(r) {y | ∃ x((x , y) ∈ r)}

Terminology Expression Definition
restriction of:

domain A � r {(x , y) | (x , y) ∈ r ∧ x ∈ A}
range s � B {(x , y) | (x , y) ∈ s ∧ y ∈ B}

subtraction of:
domain A−� r {(x , y) | (x , y) ∈ r ∧ x
∈ A}
range s −� B {(x , y) | (x , y) ∈ s ∧ y
∈ B}

overriding s �− r {(x , y) | (x , y) ∈ s ∧ x
∈
dom(r) ∨ (x , y) ∈ r}

relation s ↔ r P(s × r)
set of partial:

function s �→ r {f | f ∈ s ↔ r ∧ (f−1, f) ⊆
id(r)}

injection s �� r {f | f ∈ s �→ r ∧ f−1 ∈ s �→
r}

surjection s �→→ r {f | f ∈ s �→ r ∧ ran(f) = r}
bijection s �→�� r s �� r ∩ s �→→ r

set of total:
function s → r {f | f ∈ s �→ r ∧ dom(f) =

s}
injection s � r s �� r ∩ s → r
surjection s →→ r s �→→ r ∩ s → r
bijection s �→ r s � r ∩ s →→ r

Theorem 1 (Validity). The set of constraints given by rewriting is semanti-
cally equal to the system given by the B specification.

Proof. All logic identities used (table 1) are the definitions given and proved in
the B-Book [Abr96]. The rewriting process always terminates because there is
no recursion in the definitions. The consistency of operator definitions gives the
soundness of the method and the termination property gives the completeness
of the method.

Example 3. Rewritten predicates of the process scheduler invariant:

B Invariant CLPS-B Form
active ⊆ PID ∧ active ∈ P(PID) ∧
ready ⊆ PID ∧ ready ∈ P(PID) ∧
waiting ⊆ PID ∧ waiting ∈ P(PID) ∧
ready ∩ waiting = ∅ ∧ {x | x ∈ ready ∧ x ∈ waiting} = ∅ ∧
active ∩ (ready ∪ waiting) = ∅ ∧ {x | x ∈ active ∧ x ∈ {z | z ∈ ready ∨ z ∈ waiting}} = ∅ ∧
card(active) ≤ 1 ∧ card(active) ≤ 1 ∧
(active = ∅)⇒ (ready = ∅) card(active) = 0⇒ card(ready) = 0

CLPS-B – A Constraint Solver for B 193

2.3 Substitution

The B language describes actions in the operations or events by substitution of
the state variables. Here, only the definition of a simple substitution is given,
the reader can find all other substitution definitions in B-Book [Abr96].

Definition 4 (Substitution). Let x be a variable, E an expression and F a
formula, [x := E]F is the substitution of all free occurrences of x in F by E.

Example 4. The result of transformation by substitution of the swap operation
of the process scheduler is:

(active �= ∅) ∧
(waiting’ := waiting ∪ active) ∧ (waiting’ ⊆ PID) ∧
(((ready = ∅) ∧ (active = ∅)) ∨

(¬ (ready = ∅) ∧ (@pp.(pp∈ready) ⇒
(active’ := {pp}) ∧ (active’ ⊆ PID) ∧
(ready’ := ready - {pp}) ∧ (ready’⊆ PID)))

Table 2. List of operators in B notation and CLPS-B constrained solver. The symbol
� means that the operator is not implemented.

2.4 Coverage of the B Notation

The coverage of B set operators is high. More than 80% of set operators are
achieved (Tables 2 and 3). The main integer primitives are implemented using

194 F. Bouquet, B. Legeard, and F. Peureux

integer finite domain propagation rules [Tsa93] in order to express properties
of set cardinality and basic arithmetic operation. The finite tree structures and
finite sequences are not treated. One area of future work will include extending
the operator coverage.

Table 3. In CLPS-B solver, the set operators are different on explicit SVCO sets and
T universe sets. Note that only the operators on sets of sets are not implemented(�).

B language Constrained solver
Operator Notation SVCO T

membership ∈ ins ins
Cartesian product × x �

set of subsets of a set P p partie �
set of non-empty subsets of a set P1 p1 partie �

set of finite subsets of a set F f partie �
set of finite non-empty subsets of a set F1 f1 partie �

inclusion of one set in another ⊆ sub sub
union of two sets ∪ union �

intersection of two sets ∩ inter �
difference of two sets − differ �

non membership
∈ nin nin
equality = = =
inequality
= neq neq
set equality =S eqS eqS
set inequality
=S neqS neqS

cardinality of a set # card card

2.5 Constraint Management

The constraint system ΩVCO presents some characteristics of the Constraint Sat-
isfaction Problem (CSP). In the CSP, each variable is associated with a domain
defined in the constant set C. A domain Dx of a variable x is a finite set of
possible values which can be assigned to x . Formally, a CSP is denoted by a
triplet (V ,D ,C) where:

– V is a finite set of variables {V1, . . . ,Vn},
– D is a set of domains, Dx for each x ∈ V ,
– C is a finite set of constraints on V .

Unlike ordinary CSP, the variables of ΩVCO can have several domains Dx
i

containing elements of C ∪ V ∪ O and defined by the constraints x ∈ Dx
i . The

resulting domain of x is the intersection of the domain Dx =
⋂

i D
x
i . The ma-

jor difference to CSP is that each Dx
i may contain variables as well as values,

whereas in CSP each Dx
i only contains values. Note that

⋂
i D

x
i cannot always

be calculated deterministically when the domains Dx
i contain variables. This

problem is called V-CSP by analogy with CSP. In the case where all the V-CSP
domains only contains values, it reduces to a CSP.

Definition 5 (V-domain). A V-domain Dx =
⋂

i D
x
i of a variable x is a

finite set of possible elements (variables or constants) which can be assigned to
x . Thus, Dx is included in C ∪ V ∪ O.

CLPS-B – A Constraint Solver for B 195

Initially, a V-domain Dx is defined by the constraint x ∈ Dx
i . Then, it is

modified by the propagation rules. The V-Domain number, nx , is the number
of subdomains Dx

i . It increases when new constraints x ∈ Dx
i are added, and

decreases when simplification rules are applied.

Definition 6 (V-label). A V-label is a pair < x , v > that represents the
assignment of the variable x .

The V-label < x , v > is meaningful if v is in a V-domain of x . Note that
v can be either a constant or a variable. The concept of V-CSP can also be
introduced and used to resolve the constraints on SVCO by:

Definition 7 (V-CSP). A V-CSP is a triplet (V ,D ,C) where:

– V is a finite set of variables {V1, . . . ,Vn},
– D is a set of V-domains, {D1, . . . ,Dn},
– C is a finite set of constraints of the form Vi �= Vj , where Vi ,Vj ∈ V .

Remark 2. In CSP, D can be seen as a function which links a variable of V with
a domain. In V-CSP, it is a relation because each variable x can have several
domains Dx

i . Moreover, in contrast to CSP, the variables V of a V-CSP can
appear in the domains.

2.6 Consistency and Satisfiability

Finally, the definitions of satisfiability and consistency of the constraint system
ΩVCO have to be extended.

Definition 8 (Satisfiability). A V-CSP (V = {V1, . . . ,Vn},D ,C) is satis-
fiable if and only if there is a subset B ⊆ D, called the V-base of V-CSP, and a
set of V-label L = (< V1,B1 >, . . . , < Vn ,Bn >) with Bi ∈ B such that all the
constraints of C can be rewritten with:

1. Bi ∈ {B1, . . . ,Bi , . . . ,Bk} with Bi ∈ B ∧ B1 ∈ B ∧ . . . ∧ Bk ∈ B
2. Bi �= Bj with i �= j ∧ Bi ∈ B ∧ Bj ∈ B.

Remark 3. constraints like (1) are trivially satisfied.

Example 5. Given the constraint systems on variables:

– x1 ∈ {y1, y2}∧x2 ∈ {y1, y2}∧x3 ∈ {y1, y2}∧y1 �= y2∧x1 �= x2∧x1 �= x3∧x2 �=
x3
It is not satisfiable because there is no V-base or a V-label to make con-
straints like (1) or (2). If we take B = {y1, y2} and L = (< x1, y1 >,<
x2, y2 >, < x3, y1 >), we obtain y1 �= y1.

196 F. Bouquet, B. Legeard, and F. Peureux

– x1 ∈ {y1, y2} ∧ x2 ∈ {y1, y2} ∧ y1 �= y2 ∧ x1 �= x2
It is satisfiable. If B = {y1, y2} and L = (< x1, y1 >,< x2, y2 >), the resulting
system only has constraints (1) and (2): y1 ∈ {y1, y2}∧y2 ∈ {y1, y2}∧y1 �= y2.

Definition 9 (Consistency). A V-CSP ({V1, . . . ,Vn},D ,C) is consistent
if and only if the two following conditions are verified:

1. ∀ i((Vi ,DVi) ∈ D ⇒ ∃ j (Vj ∈ DVi ∧ (Vj �= Vi) �∈ C))
2. ∀ i(Vi �= Vi) �∈ C
In other words, the domain DV of a variable V is consistent if and only

if there is an element e in this domain and e �= V is not a constraint of the
specification. Arc-consistency is also performed in the constraint graph where the
nodes represent variables and the edges represent the constraints �= (Example 7).
Example 6. An inconsistent constraints system:
x1 ∈ {y1, y2} ∧ y1 �= y2 ∧ x1 �= y1 ∧ x1 �= y2

Theorem 2. A satisfiable constraint system on SVCO is consistent.

Proof. by negation,
Let S be an inconsistent V-CSP ({V1, . . . ,Vn},D ,C), B = {B1, . . . ,Bm} a
V-Base and {< V1,Bj1 >, . . . , < Vn ,Bjn >} the V-label with j1, . . . , jn ∈
{1, . . . ,m}, two cases are possible according to definition 9:
1. S inconsistent ⇒ ∃ i((Vi ,DVi) ∈ D ∧ ∀ j (Vj �∈ DVi ∨ (Vj �= Vi) ∈ C)) ⇒

∃ i((Bji ,DBji
) ∈ D ∧ ∀ k(Bjk �∈ DBji

∨ (Bjk �= Bji) ∈ C))⇒ S non satisfiable.
There is a pair (Bji ,DBji

) of D with an element Bji of the base B which does
not appear in its domain DBji

.
2. S inconsistent⇒∃ i(Vi �=Vi) ∈ C⇒∃ i(Bji �=Bji)∈C⇒S non satisfiable

Thus, in both cases, S inconsistent ⇒ S non satisfiable.

Remark 4. The reciprocal is not true, for example the following constraint sys-
tem is consistent but not satisfiable:

x1 ∈ {y1, y2}∧ x2 ∈ {y1, y2}∧ x3 ∈ {y1, y2}∧y1 �= y2∧ x1 �= x2∧ x1 �= x3∧ x2 �= x3
The inconsistency of a system can also be detected by the constraints x ∈ {}

and x �= x . These concepts define the formal framework to resolve the ΩVCO
system.

The correctness of the reduction procedure is ensured by two points: deleted
values in the domains are inconsistent values (see rule P1 below), and deleted
constraints are trivially satisfied (see rule P2 and P3 below).

The reduction procedure does not ensure the assignment of the variables to
an element of the domain, and is thus not complete. The completion can also
be performed by a generation procedure, which is a variation of the forward −
checking algorithm [Nad89].

CLPS-B – A Constraint Solver for B 197

2.7 Inferred Rules

The notion of consistency establishes the conditions which the elements of a
domain must satisfy. If the consistency is not verified, the domain is reduced, i.e.
elements are deleted in order to make it consistent. In the following, the element
ei belongs to V ∪ C ∪O and τ belongs to T . The notation Ω ∪ {C1,C2, . . . ,Cn}
describes the conjunction of the current constraint system Ω and the constraints
C1,C2, . . . ,Cn . Ω is divided into two subsets ΩVCO and ΩT which correspond
respectively to the constraints on the elements of V ∪ C ∪ O and T .
Rule P1 ensures the consistency on ΩVCO:

P1 :
Ω ∪ {e ∈ {e1, . . . , ei−1, ei , ei+1, . . . , en}, e �= ei}
Ω ∪ {e ∈ {e1, . . . , ei−1, ei+1, . . . , en}, e �= ei}

The following two rules are simplification rules:

P2 :
Ω ∪ {ei ∈ {e1, . . . , ei , . . . , en}}

Ω

P3 :
Ω ∪ {e ∈ {e1, . . . , en}, e ∈ {e1, . . . , en , . . . , en+m}}

Ω ∪ {e ∈ {e1, . . . , en}}
When a domain is reduced to one variable, unification is carried out:

P4 :
Ω ∪ {ei ∈ {ej}}
Ω ∪ {ei = ej}

Two additional inference rules describe the cases where the constraint system
ΩVCO is inconsistent:

P5 :
Ω ∪ {e ∈ {}}

fail
P6 :

Ω ∪ {e �= e}
fail

The following inference rule describes the case where the constraint system ΩT
is inconsistent:

T1 :
Ω ∪ {e ∈ τ, e �∈ τ}

fail

Rule T2 infers a new constraint on ΩVCO from the system ΩT :

T2 :
Ω ∪ {ei ∈ τ, ej �∈ τ}

Ω ∪ {ei ∈ τ, ej �∈ τ, ei �= ej}

These inference rules are used until a fixed point is obtained, i.e. until no rules
can be applied.

Example 7. Given the following system:
x0 ∈ {x1, x2, x3} ∧ x0 ∈ {x1, x2, x4} ∧ x5 ∈ {x3, x4} ∧ x0 �= x5.
When the constraint x3 �= x5 is added to the system, the rules infer the following
reductions:

198 F. Bouquet, B. Legeard, and F. Peureux

– x0 ∈ {x1, x2, x3} ∧ x0 ∈ {x1, x2, x4} ∧ x5 ∈ {x3, x4} ∧ x0 �= x5 ∧ x3 �= x5 P1=⇒
– x0 ∈ {x1, x2, x3} ∧ x0 ∈ {x1, x2, x4} ∧ x5 ∈ {x4} ∧ x0 �= x5 ∧ x3 �= x5 P4=⇒
– x0 ∈ {x1, x2, x3} ∧ x0 ∈ {x1, x2, x4} ∧ x0 �= x4 ∧ x3 �= x4 P1=⇒
– x0 ∈ {x1, x2, x3} ∧ x0 ∈ {x1, x2} ∧ x0 �= x4 ∧ x3 �= x4 P3=⇒
– x0 ∈ {x1, x2} ∧ x0 �= x4 ∧ x3 �= x4
the reduced system is consistent and satisfied, and offers two solutions:
1) L = (< x0, x1 >) 2) L = (< x0, x2 >)

B = {x1, x2, x3, x4} B = {x1, x2, x3, x4}
C = (x1 �= x4 ∧ x3 �= x4) C = (x2 �= x4 ∧ x3 �= x4)

3 Simulation of B Machines in CLPS-B

This part describes the constrained evaluation process. It consists in resolving set
logical B formulas with CLPS-B solver. This process can manage the evolution
of the constrained state from the initial state of the B machine (given by the
specifications) by executing operations.

Definition 10 (Constrained state). A constrained state is a pair (V ,CV)
where V is a set of state variables of the specification, and CV is a set of con-
straints based on the state variables of the specification.

The constrained evaluation models the evolution of the B machine state. It
changes one constrained state to another by executing operations.

Definition 11 (Constrained evaluation). Given a constrained state (V ,CV)
and ϕ constraints of the specification. The constrained evaluation is a relation
called EVAL, which associates a constrained state to the next constrained state:

EVAL : (V ,CV) �→ (V ′,CV ∧ ϕ)
where V ′ represents state variables V after substitution calculation ϕ.

More accurately, three procedures, based on the calculus of logical set B
formula, have been defined to make this evaluation. These procedures can es-
tablish preconditions, compute substitutions and verify the invariant properties.
This set solver is called CLPS-B. It ensures the reduction and propagation of
constraints given by the B specifications.

3.1 Activating an Operation

From the initial state, any operation can be activated. An activation consists
in verifying the preconditions of the operation, computing substitutions and
verifying the invariant properties for the different computed states. CLPS-B
evaluates each substitution, with eventual choice points, which give one or more
new generated states.

CLPS-B – A Constraint Solver for B 199

Precondition Processing. The operation preconditions are a constraint set
based on specification variables and local operation variables. Given the con-
strained state of the specification θ = (V ,CV) and ϕpre precondition constraints,
the processing of preconditions adds the constraints ϕpre to CV . The result is
a system of constraints reduced by the CLPS-B solver to a system disjunction,
where Red i represents the i th rewritten constraints:

⋃

i

Red i(CV ∪ ϕpre)

Finally, processing of preconditions can change the constrained state θ to the
constrained states θprei = (V ,Red i(CV ∪ ϕpre)).

The operation is activated in θprei if the constraint system Red i(CV ∪ϕpre) is
satisfiable. To test satisfiability, a solution can be generated. Only the satisfiable
states θprei are retained to activate operations. These are called activation states.

Substitution Calculus. ϕsub are the constraints induced by the substitutions.
ϕsub incrementally builds a constraint model over the state variables. Thus, each
state variable is always represented by a CLPS-B variable introduced by the last
constrained substitution.

Substitution calculation is made by the reduction of the constraint system
CV ∪ϕsub . As in the precondition processing of ϕsub , the reduction can introduce
choice points. Thus, substitution calculation ϕsub can change from a constrained
state θ = (V ,CV) to the constrained states θsubi = (V ′,Red i(CV ∪ ϕsub)) as:
∀X ′ ∈ V ′, (X ′ ∈ V ∨(X ′ = exp∧X ∈ V)), a solution can be generated to verify
satisfiability of each resulting state. Only the satisfiable states θsubi are retained.

Invariant Verification. This stage of evaluation is used to validate the con-
strained state θ = (V ,CV) given by the invariant ϕI (V). The verification is
made by an inclusion test in the constraint graph.

The procedure PNP gives a disjunction of the system of constraints given by
ϕI . It is called

∨
i ϕ

i
I . The invariant is verified if:

∃ i .(CV ⇒ ϕi
I (V)))⇔ ∃ i .(ϕi

I (V) ⊆ CV))

Assuming the inclusion test does not allow isomorphism of the sub-graph,
the variables of the constrained state V verify the invariant. In this case, there
is no advantage in using the constrained state for the concrete state. Efficiency
of constrained evaluation is based on the minimization of the number of enumer-
ated constrained states. The different processed applications gave good results
[BLP00,LP01].

Synthesis. An operation can make a model from a pair (ϕi
pre , ϕ

i
sub) where ϕ

i
pre

are the constraints from preconditions and ϕi
sub are the substitution constraints.

Evaluation of the operation (ϕpre , ϕsub) changes the system from a constrained

200 F. Bouquet, B. Legeard, and F. Peureux

state θi = (V ,CV) to a constrained state θi+1 = (V ′,CV ∪ϕpre∪ϕsub). Initially,
state θprei = (V ,CV ∪ ϕpre) is computed from the preconditions. In the second
stage, state θi+1 = (V ′,CV ∪ ϕpre ∪ ϕsub) is computed from the addition of
substitution constraints. In the last stage, verification of the invariant ϕI (V ′) is
made with state θi+1.

3.2 Complexity

In CLPS-B, the constraint satisfaction is based on the fact that:

– an element can possess domains,
– a domain can possess variables,
– adding a constraint can generate new constraints ∈, �∈, �=.

The SVCO Constraints:
Adding a new constraint (∈ or �=) implies, by propagation, the creation of other
constraints (∈ and �=). In the worst case, propagation generates n.(n-1)/2 new
difference constraints if all the variables are different from each other. This com-
plexity is theoretical and, in practice, the number of system variables are linear.

Property 1 (Number of membership constraints) Given a V-CSP com-
posed of n variables, d is the size of the largest domain and nd is the highest
number of variable domains. The maximum number of membership constraints
inferred is n2 × nd × d

Proof. The membership constraints are inferred by propagation given by the P1
and P7 rules:

P7 adds an element e to the common domain of the other elements. This rule
does not create a new domain in the system.

P1 substitutes a new domain exp′ to exp with the relation: exp′ ⊂ exp ∧
(#exp′ = #exp − 1). Thus, for each domain, d new membership constraints can
be generated.

For a variable, the number of inferred membership constraints is, in the
worst case, the number of maximum domain ∗size of domain, i.e. (n ∗nd)∗d .
Finally, the number of inferred membership constraints for all variables is limited
by n2 × nd × d .

The T constraints:
Given a number of set variables nv and a number of elements ne , the worst case
is ne × nv membership constraints and no membership constraints are generated
by propagation.

CLPS-B – A Constraint Solver for B 201

4 Application to the Process Scheduler

The B machine is a process scheduler. The first part presents constrained
evaluation process with an execution sequence: NEW(PP1), NEW(PP2),
READY(RR1), where PP1, PP2 and RR1 are variables. The second part deals
with comparison between concrete and constrained graphs of the process sched-
uler.

4.1 Constrained Evaluation

This part explains the evolution of the constrained state in CLPS-B operation
evaluation process. The evolution of the constrained state is described in Table 4.
Only CLPS-B reduced constraints are added to the store.

All the invariant constraints are satisfied or are entailed by the constrained
state. Thus, no generation phase is needed. The role of the rules, which infers
new constraints and gives the powerful inclusion test procedure, should be noted.

Table 4. Constrained evaluation

Operation CLPS-B constraint store

B Variables Other constraints

waiting = ∅ waiting = ∅
INIT SUB ready = ∅ ready = ∅

active = ∅ active = ∅
PP1 ∈ PID waiting′ = {PP1}

NEW(PP1) PRE PP1
∈ ∅ ready = ∅ PP1 ∈ PID

PP1
∈ ∅ active = ∅
SUB waiting′ = ∅ ∪ {PP1}

PP2 ∈ PID

PRE PP2
∈ ∅ waiting′′ = {PP1,PP2} PP1 ∈ PID

NEW(PP2) PP2
∈ {PP1} ready = ∅ PP2 ∈ PID

SUB waiting
′′
={PP1}∪
{PP2}

active = ∅ PP1
= PP2

PRE RR1∈{PP1,PP2}
PP1 ∈ PID

waiting(3) = {PP3} PP2 ∈ PID

READY(RR1) ready = ∅ PP1
= PP2

active′ = {RR1} RR1 ∈ {PP1,PP2}

SUB

waiting(3) = PP3 ∈ {PP1,PP2}
{PP1,PP2} \ {RR1} RR1
= PP3

active′ = {RR1}

The table of Fig. 3 presents the evolution of the number of state according to
the max number of parameters for the reachable graph of the process scheduler.

202 F. Bouquet, B. Legeard, and F. Peureux

[][][]

e1

[a][][]

e2

new

[b][][]

new

del

[ab][][]

e4

new

[][][a]

e3

ready

del

new

[][][b]

ready

del

del

[a][][b]

e5

ready

[b][][a]

ready

swap

new

swap

new

swap

del

[][a][b]

e6

ready
swap

del

[][b][a]

ready

swap

swap

Fig. 2. Reachability concrete graph with max = 2

4.2 Experimental Results

The entire reachability graph for the process scheduler B machine was built. The
number of processes was limited to max by adding the following precondition
in the NEW operation: card(waiting ∪ ready ∪ active) ≤ max . Figures 2 and
3present respectively the constrained and concrete graphs for max = 2 and
PID = {a, b}.

Fig. 3shows the advantage of constrained evaluation to build an reachable
graph. The number of states is reduced because one constrained state represents
several concrete states.

e1 e2
new

del
e3

new

e4ready

del

e5
ready

swap

del

e6
ready

swap

new

swap

Fig. 3. Constrained reachability graph with max = 2

number of states
max constrained concrete
1 3 3
2 6 10
3 10 35
4 15 124
5 21 437
6 28 1522
7 36 5231

n n2+3n+2
2 > 3n

5 Conclusion and Prospects

Classic Logic Programming is often used for animation of formal specifications
but it is mostly a valued animation [SCT96,B-C01]. The CLPS-B constraint
solver allows a constraint animation [BLP00] as ZETA used a concurrent con-
straint resolution [Gri00]. Test generation on the ground of CLP is known to be
a flexible and efficient framework [OJP99], in structural testing [GBR00,Meu01]
and in specification-based test generation [LP00,MA00]. Our proposal is a spe-
cific solver for the B notation.

This article introduced a constraint resolution system adapted to the evalu-
ation of B formal specifications. The objective was to enable the traversal of the
graph to reach states defined by the specifications, in particular to animate and
check the model. The traversal of constrained states, rather than concrete ones,

CLPS-B – A Constraint Solver for B 203

propagates the non-determinism of the specifications and reduced the number
of states.

The key point of this approach is the expression of domains of constraints by
explicit sets where the elements of the domains can be variables (constrained)
as well as constants. Rules of propagation and consistency reduce the need for
enumeration in entailment and consistency tests during the computation of sub-
stitution, the treatment of the preconditions and the checking of the invariant
properties.

The constrained evaluator based on the solver CLPS-B is being used as a
basis for several applications:

– an animator of B specifications [BLP00] for validation purposes,
– generation of test patterns from B specifications [LP01].

Animation of specifications and model checking complement the tools offered
by environments dedicated to the B method - i.e. Atelier B [Cle01], B ToolKit
[B-C01] - which essentially concern the syntactic verification of B notation, in-
variant proofs, code generation by refinement, and project management.

We have consolidated this technology using real-life size industrial applica-
tions, including the study of GSM 11-11 standard [Eur99] which gave very good
results in term of coverage and saving of time [LP01]. Today, we are studying the
transaction mechanism of Java Card Virtual Machine 2.1.1, in the framework
of an industrial partnership. In parallel with this study, we are improving the
solver CLPS-B, by:

– taking into account numerical constraints on continuous domains,
– consolidation of the inference rules to improve propagation.

References

[Abr96] J-R Abrial. The B-Book. Cambridge University Press, 1996.
[ALL94] F. Ambert, B. Legeard, and E. Legros. Constraint Logic Programming on

Sets and Multisets. In Proceedings of ICLP’94, pages 151–165, 1994.
[AW93] A. Aiken and E.L. Wilmmers. Type Inclusion Constraints and Type Infer-

ence. In Conference on FPL Computer Architecture, pages 31–41, 1993.
[B-C01] B-Core(UK) Ltd, http://www.b-core.com/btoolkit.html. B-Toolkit,

10/2001.
[BLP00] F. Bouquet, B. Legeard, and F. Peureux. Constraint logic programming

with sets for animation of B formal specifications. In CL’2k Workshop
LPSE, 2000.

[Cle01] Clearsy, http://www.atelierb.societe.com. Atelier B V3, 10/2001.
[Dic90] J. Dick. Using Prolog to animate Z specifications. In Z User Meeting 1989.

Workshops in Computing. Springer-Verlag, 1990.
[Eur99] European Telecoms Std Institute. GSM 11.11 v7. http://www.etsi.org,

1999.
[GBR00] A. Gotlieb, B. Botella, and M. Rueher. A CLP framework for computing

structural test data. In Springer-Verlag, editor, CL’2000, pages 399–413,
2000.

204 F. Bouquet, B. Legeard, and F. Peureux

[Ger97] C. Gervet. Interval Propagation to Reason about Sets: Definition and Im-
plementation of a practical language. Constraints, 1(2), 1997.

[Gri00] Wolgang Grieskamp. A computation model for Z based on concurrent con-
straint resolution. In LNCS, editor, ZB’00, volume 1878, pages 414–432,
2000.

[Koz94] D. Kozen. Set Constraints and logic Programming (abstract). In Pro-
ceedings of the 1st International Conference Constraints in Computational
Logics, LNCS 845. Springer-Verlag, 1994.

[LP00] H. Lotzbeyer and A. Pretschner. AutoFocus on constraint logic program-
ming. In CL’2000 Workshop LPSE, London, UK, 2000.

[LP01] B. Legeard and F. Peureux. Generation of functional test sequences from B
formal specifications - presentation and industrial case-study. In 16th IEEE
International conference on ASE’2001, pages 377–381, 2001.

[LPU02] B. Legeard, F. Peureux, and M. Utting. A comparison of the LIFC/B
and TTF/Z test-generation methods. In The 2nd International Z and B
Conference (ZB’02), page to appear, Grenoble, France, January 2002.

[MA00] B. Marre and A. Arnould. Test Sequence generation from Lustre descrip-
tions: GATEL. In Proceedings of the 15th IEEE International Conference
on Automated Software Engineering (ASE’00), Grenoble, France, 2000.

[Meu01] C. Meudec. ATGEN: Automatic test data generation using constraint logic
programming and symbolic execution. The Journal of Software Testing,
Verification and Reliability, 11(2):81–96, 2001.

[Nad89] B. A. Nadel. Constraint Satisfaction Algorithms. Computer Intelligence,
5:188–224, 1989.

[OJP99] A.J. Offutt, Z. Jin, and J. Pan. The dynamic domain reduction procedure
for test data generation. The Journal of SPE, 29(2):167–193, 1999.

[SCT96] L. Sterling, P. Ciancarini, and T. Turnidge. On the animation of ”not
executable” specification by prolog. in Journal of Software Engineering
and Knowledge Engineering, 6(1):63–87, 1996.

[Tsa93] E. Tsang. Foundation of constraint satisfaction. Academic Press, 1993.
[WE92] M.M. West and B.M. Eaglestone. Software Development: Two approaches

to animation of Z specifications using Prolog. Software Engineering Journal,
7(4):264–276, 1992.

	CLPS-B – A Constraint Solver for B
	Introduction
	B and Constraint Resolution with CLPS--B
	Computation Domain
	Translating B Expressions into Constraints System
	Substitution
	Coverage of the B Notation
	Constraint Management
	Consistency and Satisfiability
	Inferred Rules

	Simulation of B Machines in CLPS-B
	Activating an Operation
	Complexity

	Application to the Process Scheduler
	Constrained Evaluation
	Experimental Results

	Conclusion and Prospects
	References

