
Assembly of components based on interface automata and
UML component model

Samir Chouali , Sebti Mouelhi , Hassan Mountassir

Laboratoire d’Informatique de l’université de Franche-Comté, LIFC
{schouali, smouelhi, hmountassir }@lifc.univ-fcomte.fr

Abstract. We propose an approach which combines component UML model
and interface automata in order to assemble components and to verify their in-
teroperability. We specify component based system architecture with compo-
nent UML model, and component interfaces with interface automata. Interface
automata is a common Input Output (I/O) automata-based formalism intended
to specify the signature and the protocol level of component interfaces. We im-
prove interface automata approach by component UML model, in order to con-
sider system architecture, in component composition and interoperability veri-
fication methods. Therefore, we handle in interface automata, the connection
between components, and the hierarchical connections between composite com-
ponents and their subcomponents.

1 Introduction
Component based systems are made up of collection of interacting entities, called compo-

nents. The idea in component based software engineering (CBSE) is to develop software ap-
plications not from scratch but by assembling various library components, Szyperski (1999);
Heineman and Councill (2001). This development approach allows, to extend component
based systems via plug and play components, and to reuse components. Therefore one saves
on development costs and time.

A component is a unit of composition with contractually specified interfaces and explicit
dependencies, Szyperski (1999). An interface describes the services offered and required by a
component without disclosing the component implementation. It is the only access to the infor-
mation of a component. Interfaces may describe component information at signature (method
names and their types), behaviour or protocol (scheduling of method calls), semantic (method
semantics), and quality of services levels. The success of applying the component based ap-
proach depends on the interoperability (we say also component compatibility) of the connected
components. The interoperability can be defined as the ability of two or more entities to com-
municate and cooperate despite differences in their implementation language, the execution
environment, or the model abstraction, Konstantas (1995); Wegner (1996). The interoperabil-
ity holds between components when their interfaces are compatible.

In this paper, we focus on assembling components described by interface automata. The
interface automata based approach was proposed by L.Alfaro and T.Henzinger, Alfaro and

Assembly of components based on interface automata and UML

Henzinger (2001, 2005); Alfaro et al. (2002). They have proposed to specify component inter-
faces with automata, which are labelled by input, output, and internal actions. These automata
allow to describe component information at signature and protocol levels. An interesting veri-
fication approach was also proposed to detect incompatibilities at signature and protocol levels
between two component interfaces. The verification is based on the composition of interfaces,
which is achieved by synchronizing component actions.

The essential drawback of the interface automata approach is that, it is unable to accept as
an input a set of interface automata, more than two, associated to all components composing
a component based system, and also consider system architecture. In fact, interface automata
are proposed to specify component behaviour only and therefore are unable to describe, the
connection between primitives components and composites (composed of others components),
and the hierarchical connections between composites and their subcomponents, which also
influences component behaviors. Therefore, we propose to enrich this approach by exploiting
the component UML model which specifies the component based system architecture. The
point we want to address in our paper is to show how to combine UML and interface automata
to verify interoperability in component based systems.

The paper is organized as follows: In section 2, we describe the approach based on interface
automata to verify component iteroperability. In section 3, we describe our approach which
combines UML component model an interface automata in order to assemble components and
to verify their interoperability, according to system architecture. The approach was illustrated
on the vehicle CyCab use case. Related works are presented in section 4. We conclude our
work and present perspectives in section 5.

2 Interface Automata
Interface automata (IAs) have been defined in Alfaro and Henzinger (2001), to model the

temporal behavior of software and hardware component interfaces. These models are non-
input-enabled1 like I/O automata in Lynch and Tuttle (1987) . Every component interface is
described by one interface automaton where input actions (assigned by ?) are used to model
methods that can be called, and the end of receiving messages from communication channels,
as well as the return values from such calls. Output actions (assigned by !) are used to model
method calls, message transmissions via communication channels, and exceptions that occur
during the method execution. Hidden actions (assigned by ;) describe the local operations of
the component.

Definition 1 (Interface Automata). An interface automaton A = 〈 SA, IA, ΣI
A, ΣO

A , ΣH
A , δA 〉

consists of

• a finite set SA of states;

• a subset of initial states IA ⊆ SA. Its cardinality card(IA) ≥ 1 and if IA = ∅ then A is
called empty;

• three disjoint sets ΣI
A,Σ

O
A and ΣH

A of inputs, output, and hidden actions;

1input actions are not enabled at every state of one automaton

Chouali et al

• a set δA ⊆ SA × ΣA × SA of transitions between states.

The composition operation may take effect only if their actions are disjoint, except shared input
and output actions between them. When we compose them, shared actions are synchronized
and all the others are interleaved asynchronously.

Definition 2 (Composition Condition). Two interface automata A1 and A2 are composable
if

ΣI
A1
∩ ΣI

A2
= ΣO

A1
∩ ΣO

A2
= ΣH

A1
∩ ΣA2 = ΣH

A2
∩ ΣA1 = ∅

Shared(A1,A2) = (ΣI
A1
∩ΣO

A2
)∪ (ΣI

A2
∩ΣO

A1
) is the set of shared actions between A1 and A2.

We can now define the product automaton A1 ⊗A2 properly.

Definition 3 (Synchronized product). Let A1 and A2 be two composable interface automata.
The product A1 ⊗A2 is defined by

• SA1⊗A2 = SA1 × SA2 and IA1⊗A2 = IA1 × IA2 ;

• ΣI
A1⊗A2

= (ΣI
A1
∪ ΣI

A2
) \ Shared(A1, A2);

• ΣO
A1⊗A2

= (ΣO
A1
∪ ΣO

A2
) \ Shared(A1, A2);

• ΣH
A1⊗A2

= ΣH
A1
∪ ΣH

A2
∪ Shared(A1, A2);

• ((s1, s2), a, (s′1, s
′
2)) ∈ δA1⊗A2 if

– a 6∈ Shared(A1, A2) ∧ (s1, a, s′1) ∈ δA1 ∧ s2 = s′2

– a 6∈ Shared(A1, A2) ∧ (s2, a, s′2) ∈ δA2 ∧ s1 = s′1

– a ∈ Shared(A1, A2) ∧ (s1, a, s′1) ∈ δA1 ∧ (s2, a, s′2) ∈ δA2 .

The incompatibility between two composable interface automata is due to the existence of
some states (s1,s2) in the product where one of the automata outputs a shared action sa from
the state s1 which is not accepted as input from the state s2 or vice versa. These states are
called illegal states.

Definition 4 (Illegal States). Given two composable interface automata A1 and A2, the set
of illegal states Illegal(A1, A2) ⊆ SA1 × SA2 of A1 ⊗ A2 is defined by {(s1, s2) ∈ SA1 ×
SA2 |∃a ∈ Shared(A1, A2). (a ∈ ΣO

A1
(s1)∧a 6∈ ΣI

A2
(s2))∨ (a ∈ ΣO

A2
(s2)∧a 6∈ ΣI

A1
(s1))}.

The reachability of states in Illegal(A1, A2) do not implies that A1 and A2 are not compatible.
The existence of an environment E that produces appropriate inputs for the product A1 ⊗ A2

ensures that illegal states will not be entered and then A1 and A2 can be used together. The
compatible states, denoted by Comp(A1,A2), are states from which the environment can pre-
vent entering illegal states. The compatibility can be defined differently, A1 and A2 are com-
patible if and only if their initial state is compatible.

Assembly of components based on interface automata and UML

Definition 5 (Composition). Given two compatible interface automata A1 and A2. The com-
position A1 ‖ A2 is an interface automaton defined by: (i) SA1‖A2 = Comp(A1,A2), (ii) the
initial state is IA1‖A2 = IA1⊗A2 ∩ Comp(A1,A2), (iii) ΣA1‖A2 = ΣA1⊗A2 , and (iv) the set of
transitions is δA1‖A2 = δA1⊗A2 ∩ (Comp(A1,A2) × ΣA1‖A2 × Comp(A1,A2)).

The verification of the compatibility between a component C1 and a component C2 is
obtained by verifying the compatibility between their interface automata A1 and A2. The ver-
ification steps of the compatibility between A1 and A2 are listed below.

Algorithm
Input : interface automata A1, A2.
Output : A1 ‖ A2.
Algorithm steps :

1. verify that A1 and A2 are composable,

2. compute the product A1 ×A2,

3. compute the set of illegal in A1 ×A2,

4. compute the set of incompatible states inA1×A2: the states from which the illegal state
are reachable by enabling only internal and output actions (one suppose the existence of
a helpful environment),

5. compute the composition A1 ‖ A2 by eliminating from the automaton A1 × A2, the
illegal state, the incompatible states, and the unreachable states from the initial states,

6. if A1 ‖ A2 is empty then A1 and A2 are not compatible, therefore C1 and C2 can not
be assembled correctly in any environment. Otherwise, A1 and A2 are compatible and
their corresponding component can be assembled properly.

The complexity of this approach is in time linear on |A1| and |A2| Alfaro and Henzinger
(2001).

3 Assembling components according to their IAs specifica-
tion and an UML -based architecture

UML 2.0 offers concepts to well-design CBS architectures and interactions between their
components. These concepts are based on required and provided interfaces to model inter-
actions between components without giving any information about the protocol specification
of components. UML 2.0 specifies a component as reusable modular unit, which interacts
with its environment. Interfaces describe component operations annotated by their pre and
post-conditions and they may also describe component data models.

In this paper, we specify component interfaces by interface automata in order to strengthen
UML component models by checking formally the component compatibility at the protocol
level. We propose a fully algorithmic approach that exploits a component UML model to
improve interface automata approach, in order to verify component composition.

Chouali et al

3.1 Improvement of interface automata approach based on component
UML model

We specify the UML architecture as a graph where nodes are the components of the system
and edges represent both the hierarchical relations between composite components and their
subcomponents and the connections between subcomponents within a composite component in
the model. The nodes of the graph can be seen as tree if we consider only hierarchical relations.
For an UML architecture M, we denote by AM all the interface automata specifications of all
the primitive components constructing the UML architecture M and by CM all the (compos-
ite and primitive) components constructing M. AC is the interface automaton of a component C.

Definition 6 (Graph Representation of an UML Architecture). A Graph Representation GM

= 〈 NGM
, CpGM

, CnGM
〉 of an UML architecture M, consists of

• a finite set NGM
of nodes representing CM ;

• a finite set CpGM
of edges representing the relations between the nodes representing

composite components and their subcomponents;

• a finite set CnGM
of edges representing the connections between the nodes representing

subcomponents within a same component.

By traversing this graph, we propose an algorithm that can at the same time, (i) check the
compatibility between connected components at the level of a subcomponent and (ii) construct
progressively the IAs specification of the final system. In the case where incompatibilities is
detected at most between two interfaces, it returns an empty interface automata. In order to
specify this algorithm, We propose to improve interface automata of a each component C,
with the set of components connect to C(neighbors of C). This set is deducted from the graph
defining component UML model.

The following definitions show the adaptation to introduce in interface automata approach
in order to handle the component UML model.
Definition 7 (Improved interface automata). An interface automaton A, which describes a
component CA, is defined by a tuple, 〈 SA, IA, ΣI

A, ΣO
A , ΣH

A , δA, UA 〉, such that:

• a finite set SA of states;

• a subset of initial states IA ⊆ SA. Its cardinality card(IA) ≥ 1 and if IA = ∅ then A is
called empty;

• three disjoint sets ΣI
A,Σ

O
A and ΣH

A of inputs, output, and hidden actions;

• a set δA ⊆ SA × ΣA × SA of transitions between states.

• UA is the set of the components connected to the component CA, according to the UML
model of the component based system architecture

We adapt also the synchronized product of two interface automata.
Definition 8 (Improved synchronized product). Let A1 and A2 be two composable interface
automata corresponding respectively to the components CA1 and CA2 . The product A1 ⊗ A2

is defined by 〈 SA1⊗A2 , IA1⊗A2 , ΣI
A1⊗A2

, ΣO
A1⊗A2

, ΣH
A1⊗A2

, δA1⊗A2 , UA1⊗A2 〉, such that:

Assembly of components based on interface automata and UML

• SA1⊗A2 = SA1 × SA2 and IA1⊗A2 = IA1 × IA2 ;

• ΣI
A1⊗A2

= (ΣI
A1
∪ ΣI

A2
) \ Shared(A1, A2);

• ΣO
A1⊗A2

= (ΣO
A1
∪ ΣO

A2
) \ Shared(A1, A2);

• ΣH
A1⊗A2

= ΣH
A1
∪ ΣH

A2
∪ Shared(A1, A2);

• ((s1, s2), a, (s′1, s
′
2)) ∈ δA1⊗A2 if

– a 6∈ Shared(A1, A2) ∧ (s1, a, s′1) ∈ δA1 ∧ s2 = s′2

– a 6∈ Shared(A1, A2) ∧ (s2, a, s′2) ∈ δA2 ∧ s1 = s′1

– a ∈ Shared(A1, A2) ∧ (s1, a, s′1) ∈ δA1 ∧ (s2, a, s′2) ∈ δA2 .

• UA1⊗A2= {UA1 ∪ UA2} \ {CA1 , CA2}.

When we compose two components C1, and C2, by their respective interface automata A1

and A2, the set UA1‖A2 corresponding the the interface automata, A1‖2, which describes the
composite C1 ‖ C2, is defined by: UA1⊗A2 . And, for each set UAi

, belonging to an interface
automaton Ai, we replace each occurrence of C1 or C2 by C1 ‖ C2.

Remark: The other steps to verify the compatibility between two components, with the
interface automata approach, are not affected by the adaptation. They are the same as those
explained in the section 3 : after calculating the synchronized product, we calculate the com-
position by eliminating the illegal states.

3.2 The CyCab case study
As an example, we consider a CyCab car component-based system (in Baille Gérard and

Pissard-Gibollet (1999)). The CyCab car is a new electrical means of transportation conceived
essentially for free-standing transport services allowing users to displace through pre-installed
set of stations.

In Figure 1, we describe the CyCab architecture with UML component model. The CyCab
system is composed of two main composites : Station and Vehicle. The Vehicle sends signals
spos! to inform the upcoming station about its positions and it receives as consequence signals
(far! or halt!) to know if it steels far from the station or not. The two automata Sensor (Ss)
and ComputingUnit (Cu) are the subcomponents of the station. The sensor detects a position
signal sent from the vehicle and converts it to geographic coordinates (pos!) which will be
used by the ComputingUnit to compute the distance between the vehicle and the station and
decide if they steel far from each other or not. The vehicle is composed from three primitive
components: the VehicleCore (Vc), the Starter (Sr), and the embedded EmergencyHalt (Eh)
device.

We depict so the CyCab UML architecture as shown in Figure 2. The continuous edges
represent the hierarchical relations between composite components and their subcomponents.
The dashed edges represent the connections between components at the level of composite
components. Two components are connected if and only if there is at least one interaction
between their interfaces.

Chouali et al

FIG. 1 – The UML 2.0 architecture of a basic CyCab CBS

whole system

Vehicle Station

Vc SrEh SsCu

FIG. 2 – The graph representation of the CyCab car system

3.3 The algorithm:
We present the algorithm allowing the component composition and the verification of com-

ponent interoperability, based on improved interface automata approach and component UML

Assembly of components based on interface automata and UML

Model.
This algorithm is based on traversing the graph which specifies system architecture, in or-

der to check the compatibility between connected components at the level of a subcomponent,
and to construct progressively the IAs specification of the final system. In the case where
incompatibility is detected at most between two interfaces, it returns an empty interface au-
tomata.

The algorithm, is based on DFS (depth first search) algorithm, and we explain this algo-
rithm by three steps.

We consider a graph GM which specifies an UML component model M .

3.3.1 First Step

This step consists in traversing the graph in order to:

• find the sets UAi
(neighbors of each components in a system architecture) of each inter-

face automata Ai corresponding to a primitives components in a system. These sets will
be used in the second step.

• find the sets of child nodes for each node associated to composite components. These
sets will be used in the third step.

3.3.2 Second Step (see algorithm 1)

In this step, we define a function Compose(C1, ..., Cn) which accepts as input a set of
components and as output, the interface automata of the resulting composite or the empty set
(empty interface automaton) if there is incompatibility between two components. The function
is described by Algorithm 1.

Algorithm 1: Compose

Input: A set of components C ⊆ CM for a given UML architecture M.

Output: The IA of the composition of all c ∈ C.

begin
c1← Π(C); /*c1 is selected form C*/
repeat

c2← Π(Uc1); /*c2 is selected form the set of neighbors of c1, Uc1 */
Verify the compatibility between, Ac1 and Ac2 , with the interface automata approach (see section
2 and 3.1)
if Ac1 and Ac2 are compatible then

C← {C\{c1, c2}} ∪ {c1 ‖ c2};
Ac1 ← Ac1 ‖ Ac2 ;

else
return emptyIA;

until card(C)=1 ;
return Ac1 ;

end

Chouali et al

3.3.3 Third Step (see algorithm2)

In this step, we define the main function, MainComposition(N), which traverses the
graph recursively and calculates the composition of interface automata by calling the function
defined in algorithm 1. This function, accepts as input, a node of the graph GM corresponding
to a composite. At the initial state, this function accepts the node corresponding to the whole
system composite. It returns as output the interface automata corresponding to the whole
system composite or the empty set if there is incompatibility between components.

We denote by SetChild the set of child nodes corresponding to subcomponents in a com-
posite Ci. We denote by SettoCompose, the set of components to compose by the function
Compose(). At the initial state, we associate to each leaf node in GM , corresponding to a
primitive components C, an interface AC . However, nodes corresponding to composites are
not associated to interface automata. The function is described by Algorithm 2.

Algorithm 2: MainComposition

Input: the node corresponding to the whole system composite in the graph GM .

Output: The interface automaton corresponding the whole system composite.

begin
SetChild={the set of child nodes of the node corresponding to the whole system composite} /* this set
is calculated in the first step */ while (SetChild is not empty) do

Let N a node in SetChild, and corresponding to the component C ;

if (the interface automaton associated to N exists, because N is a leaf node or it is a node
corresponding to composite which is associated to an interface automaton by this function) then

SettoCompose = SettoCompose ∪ {C};
SetChild = SetChild \ {N}

else
AC = MainComposition(N) /* calculate the interface automaton AC corresponding to
N*/

AC = Compose(C1, ..Cn), where SettoCompose = {C1, ..., Cn}; /* call to the function
Compose in algorithm 1 in order to compose the components in the set SettoCompose*/
return Ac;

end

Remark: Since the proposed algorithms are based on traversing graphGM , corresponding
to system architecture M , with the complexity in time linear on the set of components com-
posing the system, then our method does not augment the complexity of the interface automata
approach, which is time linear of the the size of the composed interface automata.

3.3.4 Illustration on the CyCab

Lets take our previous example, the interface automata of the primitive components of
the CyCab car system are presented in Figure 3 and Figure 4. The algorithm starts first by
constructing the Station and the Vehicle composite components. from their subcomponents.

The algorithm starts first by constructing the Station and the Vehicle composite components
from their subcomponents. The reader can easily verify that the two interface automata Station
and Vehicle are not empty. Then, We construct the whole system composite representing the

Assembly of components based on interface automata and UML

communication between the Vehicle and the Station. Figure 5 represents the IAs specification
of the composite component Vehicle.

1

2

3

4

start?

spos!

far?

halt?

em
gc
y?

emgcy?reset!

Vehicle Core (Vc)

reset

start

emgcy

far

halt

spos

1

start!

Starter(Sr)

start

1 2

emgcy?

reset!

Emergency Halt (Eh)

emgcy

reset

FIG. 3 – The interface automata of the Vehicle subcomponents

1 2

spos?

pos!

Sensor (Ss)

spos

pos 1 2

halt!

pos?

far!
Computing Unit (Cu)

halt

pos

far

FIG. 4 – The interface automata of the Station subcomponents

4 Related works
As some related works, we can mention the model in Allen and Garlan (1997) where

the protocols are associated to the component connectors. In Brim et al. (2006) the authors
proposed a new approach to component interaction specification and verification process which
combines the advantages of architecture description languages and formal verification oriented
model. So, they proposed component interaction automata to specify component interfaces
and verify their compatibility. In Poizat and Royer (2006) the authors proposed an ADL based
the Korrigan language which enables to describe the component based systems architectures
formally. This ADL supports: integration of fully formal behaviors and data types, expressive

Chouali et al

1

2

3

4

start;

spos!

far?

halt?

em
gc
y;

emgcy;reset;

far

halt

spos

FIG. 5 – The interface automata of the Vehicle composite.

component composition mechanisms through the use of modal logic, specification readability
through graphical notations, and dedicated architectural analysis techniques.

Others works as the ones in Steffen et al. (2004), the authors proposed a comparison be-
tween models at three grades of interoperability using the operation signatures, the interfaces
protocols and the quality of service. The protocols in Magee et al. (1999) based on transi-
tions systems and concurrency including the reachability analysis. The composition operation
is essential to define assembly and check the surety and vivacity properties. The approach
in Moisan et al. (2003) aims to endow the UML components to specify interaction protocols
between components. The behavioral description language is based on hierarchical automata
inspired from StateCharts. It supports composition and refinement mechanisms of system be-
haviors. The system properties are specified in temporal logic. In Chouali et al. (2006), the au-
thors proposed to specify component interface and to verify their compatibility with B method.
However component protocols are not considered in the interfaces. In André et al. (2005), the
authors define a component-based model Kmelia with abstract services, which does not take
into account the data during the interaction. The behavior described by automata associated
to services. This environment uses the tool MEC model-checker to verify the compatibility
of components. Other works consider real-time constraints Etienne and Bouzefrane (2006).
The idea is to determine the component characteristics and define certain criteria to verify the
compatibility of their specifications using the tool Kronos.

The contribution of our approach, compared the related works, is the specification of com-
ponent interfaces with interface automata (which is an interesting approach to express compo-
nent behaviors) and the expression of a component based system architecture in the interface
automata method, thanks to the UML component model which specifies the architecture. So,
we exploit UML component model and the interface automata method to verify the component
composition.

5 Conclusion
In this paper, we present a new formal approach to assemble components and to verify

their interoperability, according to a system architecture, specified by component UML model.
This approach is based on interface automata method to specify component interfaces and to

Assembly of components based on interface automata and UML

verify interface compatibility. We have improved this approach by exploiting component UML
model, in order to specify , connection between components and composites, and hierarchi-
cal connection in composites. Component UML model corresponding to system architecture
is specified formally by a graph, where nodes correspond to components and edges specify
connections between components. From this graph, we deduce information to improve inter-
face automata approach in order to verify interface compatibility. So, we have proposed an
algorithm to assembles components and composites, based on a both, system architecture and
component interface automata.

Actually, we develop a tool in order to implement the proposed approach. This tool will
allow to specify component based system architecture with component UML model, and com-
ponent interfaces with enhanced interface automata. As future work, we plan to specify com-
ponent interfaces, only with UML models, because UML is more expressive for most of people,
and then propose an approach to translate this models automatically to interfaces automata in
order to verify component interoperability.

References

Alfaro, L. and T. A. Henzinger (2001). Interface automata. In 9 th Annual Aymposium on
Foundations of Software Engineering, FSE, pp. 109–120. ACM Press.

Alfaro, L. and T. A. Henzinger (2005). Interface-based design. In Engineering Theories of
Software-intensive Systems, Volume 195 of NATO Science Series: Mathematics, Physics,
and Chemistry, pp. 83–104. Springer: M. Broy, J. Gruenbauer, D. Harel, and C.A.R. Hoare.

Alfaro, L., T. A. Henzinger, and M. Stoelinga (2002). Timed interfaces. In EMSOFT ’02:
Proceedings of the Second International Conference on Embedded Software, London, UK,
pp. 108–122. Springer-Verlag.

Allen, R. and D. Garlan (1997). A formal basis for architectural connection. ACM Transactions
on Software Engineering and Methodology 6(3), 213–249.

André, P., G. Ardourel, and C. Attiogbé (2005). Behavioural Verification of Service Compo-
sition. In ICSOC Workshop on Engineering Service Compositions, WESC’05, Amsterdam,
The Netherlands, pp. 77–84. IBM Research Report RC23821.

Baille Gérard, Garnier Philippe, M. H. and Pissard-Gibollet (1999). The INRIA Rhône-Alpes
CyCab. Technical report, INRIA. Describes the package natbib.

Brim, L., I. Černá, P. Vařeková, and B. Zimmerova (2006). Component-interaction automata
as a verification-oriented component-based system specification. SIGSOFT Softw. Eng.
Notes 31(2), 4.

Chouali, S., M. Heisel, and J. Souquières (2006). Proving component interoperability with b
refinement. Electr. Notes Theor. Comput. Sci. 160, 157–172.

Etienne, J.-P. and S. Bouzefrane (2006). Vers une approche par composants pour la modélisa-
tion d’applications temps réel. In (MOSIM’06) 6ème Conférence Francophone de Modéli-
sation et Simulation, Rabat, pp. 1–10. Lavoisier.

Heineman, G. and W. Councill (2001). Component Based Software Engineering. Addison
Wesley.

Chouali et al

Konstantas, D. (1995). Interoperation of object oriented application. In O. Nierstrasz and
D. Tsichritzis (Eds.), Object-Oriented Software Composition, pp. 69–95. Prentice Hall.

Lynch, N. and M. Tuttle (1987). Hierarchical correctness proofs for distributed algorithms. In
6th ACM Symp. on Principles of Distributed Computing, pp. 137–151. ACM Press.

Magee, J., J. Kramer, and D. Giannakopoulou (1999). Behaviour analysis of software archi-
tectures. In WICSA1: Proceedings of the TC2 First Working IFIP Conference on Software
Architecture (WICSA1), Deventer, The Netherlands, The Netherlands, pp. 35–50. Kluwer,
B.V.

Moisan, S., A. Ressouche, and J. Rigault (2003). Behavioral substitutability in component
frameworks: A formal approach.

Poizat, P. and J.-C. Royer (2006). A formal architectural description language based on sym-
bolic transition systems and temporal logic. J. UCS 12(12), 1741–1782.

Steffen, B., O. Sven, and R. Ralf (2004). Classifying software component interoperability er-
rors to support component adaption. In C. Ivica, S. Judith, S. Heinz, and W. Kurt (Eds.),
Component Based Software Engineering, 7th International Symposium, CBSE 2004, Edin-
burgh, UK, May 24-25, 2004, Proceedings, pp. 68–83. Springer.

Szyperski, C. (1999). Component Software. ACM Press, Addison-Wesley.
Wegner, P. (1996). Interoperability. ACM Computing Survey 28(1), 285–287.

Résumé
Nous proposons une approche qui exploite le modèle à composants UML est les automates

d’interfaces pour l’assemblage des composants et la vérification de leur interopérabilité. Nous
spécifions l’architecture d’un système à base de composants avec le modèle à composants
UML, et les interfaces des composants avec les automates d’interfaces. Ces automates sont des
automates Input Output adaptés pour spécifier la signature et les protocoles des opérations dans
les interfaces de composants. Nous enrichissons l’approche à base des automates d’interfaces
avec le modèle à composants afin de prendre en considération l’architecture du système lors
de l’assemblage des composants. Ainsi, les connections entre les composants élémentaires
et entre les composants composites sont prises en compte dans l’approche de vérification de
l’assemblage basée sur les automates d’interfaces.

