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Summary. Wireless sensor networks are now in widespread use to nmaeigoons, detect
events and acquire information. Since the deployed nodesegrarated, they need to cooper-
atively communicate sensed data to the base station. Heanemissions are a very energy-
consuming operation. To reduce the amount of sending dataggregation approach can
be applied along the path from sensors to the sink. Howeserlly the carried information
contains confidential data. Therefore, an end-to-end seaygregation approach is required
to ensure a healthy data reception. End-to-end encryptibenses that support operations
over cypher-text have been proved important for privatéypsensor network implementa-
tions. These schemes offer two main advantages: end-te@ratalment of data and ability
to operate on cipher text, then no more decryption is requdoeaggregation. Unfortunately,
nowadays these methods are very complex and not suitab&efsor nodes having limited
resources. In this paper, we propose a secure end-to-engtaw:data aggregation scheme. It
is based on elliptic curve cryptography that exploits a sen&ky size. Additionally, it allows
the use of higher number of operations on cypher-texts aeekpts the distinction between
two identical texts from their cryptograms. These progsrpermit to our approach to achieve
higher security levels than existing cryptosystems in genstworks. Our experiments show
that our proposed secure aggregation method significagdiyces computation and commu-
nication overhead and can be practically implemented ithershelf sensor platforms. By
using homomorphic encryption on elliptic curves, we thugehgealized an efficient and se-
cure data aggregation in sensor networks. Lastly, to ealdngaggregation functions that can
be used in a secure wireless sensor network, a watermabkised authentication scheme is
finally proposed.
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1.1 Introduction
Wireless sensor networks have received enormous attemtenpast few years, due

to a wide range of potential applications (environmentabl@gical, military,etc).
A typical sensor network is expected to consist of a large memof sensor nodes



deployed randomly in a large scale. Usually, these nodeslimaited power, storage,
communication, and processing capabilities, making gnesgsumption an issue.

A major functionality of a sensor node is to measure envirental values using
embedded sensors, and transmit it to a base station calldd.“She sensed data
needs to be analyzed, which eventually serves to initiateesaction. Almost this
analysis presumes computation of the maximum, minimunra@egetc. It can be
either done at the base station or by the nodes themsehabjénarchical scenario.
In order to reduce the amount of data to be transmitted toittie & is beneficial
that this analysis can be done over the network itself. Te she overall energy
resources of the network, it is agreed that the sensed datisrie be aggregated
on the way to its final destination. Sensor nodes send thkiesdo certain special
nodes, i.e., aggregators. Each aggregator then condéreseatt prior to sending it
on. In terms of bandwidth and energy consumption, aggregatibeneficial as long
as the aggregation process is not too CPU-intensive. Theegagtprs can either be
special (more powerful) nodes or regular sensors nodes.

At the same time, sensor networks are often deployed in publiotherwise
untrusted and even hostile environments, which promptsyéeu of security issues
(e.g., key management, privacy, access control, autlaiaticetc). Then, if security
is a necessary in other (e.g., wired or MANET) types of nekspit is much more so
in sensor networks. Actually, it is one of the more populaesech topic and many
advances have been reported on in recent years.

From the above observations, we can notice the importanaeobperative se-
cure data aggregation in sensor networks. In other terrnes; thfe data gathering
and during transmissions to the base station, each nodg #ierrouting path co-
operatively integrates and secures the fragments mesdagéss paper, we focus
on security data aggregation and we propose a simple secarerhorphic cypher-
system that allows efficient aggregation of encrypted data.

Data encryption becomes necessary in sensor networks Wisdxge of sensors
can be subject of many types of attacks [1]. Without encoyptadversaries can
monitor and inject false data into the network. In a generahner the encryption
process is done as follows: sensor nodes must encrypt datéhop-by-hop basis.
An intermediate nodei.g., aggregator) possessing the keys of all sending nodes,
decrypts the received encrypted value, aggregates aivegtealues, and encrypts
the result for transmission to the base station. Thoughejahis approach is fairly
expensive and complicated, due to the fact of decrypting eexeived value before
aggregation, which generates an overhead imposed by keggearent. Encryption
can solve the security problem, but how can we aggregatesoveypted data [1]?

Some privacy homomorphism based works have been propasentise[2, 3, 4]
that, without participating in checking, the aggregataus directly aggregate the en-
crypted data. However, such schemes, for the moment, ngadhd complex com-
putations to encrypt data and aggregate it, which leadsde leypher-texts. Sensor
nodes cannot provide sufficient CPU, memory and bandwid#dtivess such com-
plex operations. For instance, Rivest Shamir Adleman (RSgptosystems [5, 6]
are used, which requires high CPU and memory capabilitipgtform exponential
operations. Therefore, in our study we adopt an elliptivewncryption [7] that al-



lows nodes to generate a smaller key size while providingstiree security level
of existing complex schemes. The cypher-system we exptinjis N additions
and one product, thus it is not limited to a single basic fiomctA major advantage
of our method is the fact that it has been proved safe, antinowii it has not been
cryptanalized. To assess the practicality of our technigyeeevaluate it and compare
it to existing cypher-system. The obtained results showwuleasignificantly reduce
computation and communication overhead and that our seggeesgation method
can be practically implemented in on-the-shelf sensofqiats.

The rest of this paper is organized as follows: in the nextieeave present
a review of some previous related work. Section 1.3 presamtsecurity model.
Sections 1.4 and 1.5 discuss the details of the proposecgatipn scheme for
sensor networks. In Section 1.6, we describe simulationrasadits of simulation
experiments. In Section 1.7 is proposed a new authenticatioeme based on a wa-
termarking approach, to improve the variety of aggregafioctions through the
secure wireless sensor network. Finally, we end the papardoyclusion.

1.2 Related Work

The benefit and vulnerability, as well as the need to secuneiwork aggregation,
have been identified by a number of schemes in the litera@ne. approach [8]
proposed a secure information aggregation protocol to eangqueries over the data
acquired by the sensors. Even though their method provid& alithentication to
provide secrecy, the data still sent in plain text formatjolremoves the privacy
during transmission. Another one [9] proposed a secureggredficient data aggre-
gation (ESPDA) to prevent redundant data transmissionta aggregation. Unlike
conventional techniques, their scheme prevents the reduitrdnsmission from sen-
sor motes to the aggregator. Before transmitting sensed €ath sensor transmits
a secure pattern to the aggregator. Only sensors with eliffatata are allowed to
transmit their data to the cluster-head. However, sincé sansor at least needs to
transmit a packet containing a pattern once, power cannaidmgficantly saved.
In addition, each sensor mote uses a fixed encryption keydrypndata; data pri-
vacy cannot be maintained in their scheme. In [10], the asthoesented a secure
encrypted-data aggregation scheme for wireless senseoriet The idea is based
on eliminating redundant sensor readings without usingygtion and maintains
data secrecy and privacy during transmission. This schewessnergy on sensor
nodes but still do not guarantee the privacy of sent data.

The problem of aggregating encrypted data in sensor nesawas introduced
in [3] and further refined in [2]. The authors propose to usabimorphic encryption
schemes to enable arithmetic operations over cyphertteattaeed to be transmitted
in a multi-hop manner. However, these approaches providgreehlevel of system
security, since nodes would not be equipped with private kewich would limit the
advantage gained by an attacker compromising some of thesnathfortunately,
existing privacy homomorphisms used for data aggregaticensor networks have
exponential bound in computation. It is too computationeXpensive to implement



in sensor nodes. Moreover, the expansion in bit size duhiegransformation of

plain text to cypher-text introduces costly communicatwerhead, which directly

translates to a faster depletion of the sensors energy. ©nottter hand and from
security viewpoint, the cryptosystems [11] used in theg@gches were cryptanal-
ized [12, 13], which means they can’t guarantee anymore $gghrity levels.

In this paper we try to relax the statements above by invatstig elliptic curve
cryptography that allows feasible and suitable data aggi@gin sensor networks
beside the security of homomorphisms schemes. First, @poged scheme for se-
cure data aggregation in sensor networks is based on a sygbéon, which has
been proved safe and has not been cryptanalyzed. Anotheentydhat enforces the
security level of such approach is coming from the fact tasit is the case in EIGa-
mal cryptosystem, for two identical messages it generateslifferent cryptograms.
This property suggested fundamental for security in senstworks [7, 10, 14], to
the best of our knowledge, was not addressed in previous mamghism-based se-
curity data aggregation works. Beside all these propeatiesdue to the use of el-
liptic curves, our approach saves energy by allowing nodesitrypt and aggregate
data without the need of high computations. Lastly, the sehe/e use allows more
aggregations types over cypher data than the homomorpjptosystem used until
now.

1.3 Security Mode

In this work, we are primarily concerned with data privacysensor networks. Our
goal is to prevent attackers from gaining any informatioawttsensor data. There-
fore, ensuring an end-to-end privacy between sensor nattksha sink becomes
problematic. This is largely because popular and existypiers are not additively
homomorphic. In other words, the summation of encrypted daes not allow for
the retrieval of the sum of the plain text values. Moreovavgey existing homomor-
phisms have usually exponential bound in computation. EBrayme this problem,
in our model we propose a security scheme for sensor netwsikg elliptic curve
based cryptosystem. We show that our model permits manyatipes on crypted
data and does not demand high sensor capabilities and catigput

1.3.1 Operationsover eliptic curves

In this section, we give a brief introduction to elliptic ®ercryptography. The reader
is referred to [15] for more details.

Addition and multiplication

Elliptic curve cryptography (ECC) is an approach to pullléy cryptography based
on the algebraic structure of elliptic curves over finited#]15]. Elliptic curves used
in cryptography are typically defined over two types of firfiegds: prime fieldsF,,



wherep is a large prime number, and binary extension fidfgs[16]. In our paper,
we focus on elliptic curves ovéF,. Letp > 3, then an elliptic curve ovelF, is
defined by a cubic equatigst = x° + ax + b as the set

&={(x,y) € F, xF,,y* = x* +ax+ b (mod p)}

wherea, b € F, are constants such thét® + 27b* # 0 (mod p). An elliptic curve
overlF, consists of the set of all pairs of affine coordinates) for x, y € [F, that
satisfy an equation of the above form and an infinity péint

The point addition and its special case, point doubling évés defined as fol-
lows (the arithmetic operations are definedry) [15] :

Let P = (x1, y1) andQ = (x2, y») be two points oE. Then:

[0) if x=x1 andyz =Y,
(x3,¥3) otherwise

P+Q={

where:

° X3=A2—X1—X2,
o y3=AX(x—x3)— V1,

1= (y2 — y1) X (g —x1) 7 if P+Q,
T B2 +a) x (2y) ! if P=Q.

Finally, we define®> + O = O + P = P,YP € &, which leads to an abelian group
(&, +). On the other hand the multiplicatiorx P means® + P + .... + P n times and
—P is the symmetric oP for the group law + defined above for dlle &.

Public/Private keys generation with ECC

In this section we show how we can generate the public andterkeys for encryp-
tion, following the cryptosystem proposed by Borethal. [7]. The analysis of the
complexity will be treated in a later section.

Let 7 > 0 be an integer called “security parameter”. To generateipurid

private keys, first of all, twa-bits prime numbers must be computed. Therefore, a

cryptographic pseudo-random generator can be used todbtaivectors ofr bits,
g1 andg,. Then, a Miller-Rabin test can be applied for testing thenatity or not of
g1 andg,. We denote by: the product ofj; andg,, n = g142, and byl the smallest
positive integer such that= [ x n — 1. is a prime number whilg = 2 (mod 3).

In order to find the private and public keys, we define a griuprhich presents
the points of the super-singular elliptic curye= x> + 1 defined oveit,. It consists
of p +1 = n x [ points, and thus has a subgroup of ordewe call itG. In another
step, we computg andu as two generators @ andh = g, X u. Then, following [7],
the public key will be presented Iy, G, g, i) and the private key by, .



Encryption and Decryption

After the private/public keys generation, we proceed nothéotwo encryption and
decryption phases:

e Encryption : Assuming that our messages space consists of integers gethe
{0,1,..., T}, whereT < g, andm the (integer) message to encrypt. First, a ran-
dom positive integer is picked from the intery@) n — 1]. Then, the cypher-text
is defined by

C=mxg+rxhegG,

in which+ andx refer to the additive and multiplication laws defined presly.
e Decryption: Once the messagearrived to destination, to decrypt it, we use the
private keyg; and the discrete logarithm ¢f; x C) baseg; x g as follows:

m= 10gq1><g q1 X C

This takes expected tima/T using Pollard’'s lambda method. Moreover, this
decryption can be speed-up by precomputing a table of povietisx g.

1.3.2 Homomor phic properties

As we mentioned before, our approach ensures easy enarjggiryption without
any need of extra resources. This will be proved in the nestice Moreover, our
approach supports homomorphic properties, which giveshi@sability to execute
operations on values even though they have been encryptikd, it allowsN ad-
ditions and one multiplication directly on cryptograms,ighhprevents the decryp-
tion phase at the aggregators level and saves nodes en&igl,iwcrucial in sensor
networks.

Additions over cypher-texts are done as followsigtandm, be two messages
andC;, C; their cypher-texts respectively. Then the sunCefandC,, let call it C,
is represented b = C; + C, + v X h wherer is an integer randomly chosen in
[0,n — 1] andh = g, X u as presented in the previous section. This sum operation
guarantees that the decryption valu&as the sunmm; +m,. The addition operation
can be done several times, which means we can do sums of ¢aigyms.

The multiplication of two encrypted values and its decrgptare done as fol-
lows: lete be the modified Weil pairing on the curve agdh the points ofG as
defined previously. Let us recall that this modified Weil pagre is obtained from
the Weil pairingE [7], [17] by the formulaze(P, Q) = E(x X P, Q), wherex is a root
of X3~1on F,.. Then, the result of the multiplication of two encrypted sages
Cy,Cy is given by[C,, = e(Cq,C2) + r X h1], whereh; = e(g, k) andr is a random
integer pick in[1, n].

The decryption oC,, is equal to the discrete logarithm gf x C,, to the base
q1 X 81

mimy = logql*g1 (g1 X Cy.)

whereg; = e(g, g)-



1.4 Our Secure Data Aggregation for Sensor Networks

1.4.1 Presentation

Data aggregation schemes aim to combine and summarize aeltatp of several
sensor nodes so that amount of data transmission is reddnegkample data ag-
gregation scheme is presented in Figure 1.1 where sensesmotiect information

from a region of interest. When the user (sink) queries theaor, instead of send-
ing each sensor node’s data to the base station, aggregaties the information

from its neighboring nodes, aggregates them, and send thegaed data to the
base station over a multihop path.

Sink (base station)

Aggregators

Aggregators

O O (O ON0) O O O

Normal Sensors

Fig. 1.1. Secure data aggregation in sensor networks

As the majority of wireless sensor network applicationsuregja certain level
of security, encryption of the sensed data before its trésgom becomes necessary
and it is preferable to decrypt the data only at the baseosté¢vel C.f. previous
sections). In our work, we adopt the following scenario agwshin Figure 1.1:
after collecting information, each sensor node encryptdata according to elliptic
curve encryptiond.f. Section 1.3.1) and sends it to the nearest aggregator. Then,
aggregators aggregate the received encrypted data (witlectyption) and send it
to the base station, which in his turn decrypts the data agceggtes it. We notice
that all aggregators can dohkadditions and the final layer of aggregators can done
one multiplication on encrypted data.

1.4.2 Example of use
Computing the Arithmetic Mean

The arithmetic mean is the “standard” average, often siroplied the “mean”, de-
fined forn valuesxy, ..., x, by



n
. Z Xi.

i=1

To compute the average of nodes measurements, aggregatocsiculate the

sum of the encrypted measurements and the number of nodethese measure-
ments and send it to the base station. More precisely, whag osir scheme, each
sensor encrypts its data to obtaincx;. The sensor then forwards; to its parent,
who aggregates all ther;’s of its k children by simply adding them up. The result-
ing value is then forwarded. The sink ends up with valite= 7" cx;. It can then
decryptCx, and divide the result by to derive the average.

X =

S

Computing the Variance

Another common aggregation is to estimate the varianceso$¢insed values. Let us
recall that the variance of valuesx;, ..., x,, is defined by:

1v 1v
2 _ 1 2|t 2| _ =2
sn—nZ(x, X) {ani] X
i=1 i=1
Our scheme can also be used to derive the variance of the redasw encrypted
data, by the same method as in [18]. In this case, each semst computey; =
xl.z, wherey; is the measured sample, and encrypt® obtaincy;. x; must also be
encrypted, as explained in the previous section. The sdoswmardscy;, together
with cx;, to its parent. The parent aggregates alldhgof its k children by simply
adding them up. It also aggregates, separately;theas explained in the previous
section. The two resulting values are then forwarded. Thie sinds up with values
Cx = Y ,cx; andCy = Y., cyi. Cx is used to compute the average, when
Cy is used to compute the variance as followsr = % — Av?, whereVy is the
decryption ofCy.

Computing the Weighted Mean

The weighted mean of a non-empty set of datax,,...,x, with non-negative
weightswy, wy, . . ., wy, is the quantity
wW1X1 + WoXp + -+ -+ WyXy

wtwy+tw,

X =

We suppose now that each aggregatof the first aggregation layer has com-
puted the mean; of the encrypted values received from its sensor node. Auhdit
ally, we suppose that these aggregators are weighted, dieygeon their importance.
For security reasons, this weight is also encrypted andythbesr value is denoted
by w;. Thisw; can be proportional to the number of aggregated sensorsviight
can also illustrate the fact that two given regions have hetdame relevance. To
achieve weighted mean, each aggregator multiplies itsyptent mearx; with en-
crypted weightw; as it has been explained previously. The resulting valubés t



forwarded to the sink, which can decryptx x; and sum all these decrypted values,
to obtain the weighted mean defined above.

1.5 Security study

Due to hostile environments and unique characteristicen$ar networks, it is a
challenging task to protect sensitive information trartedi by nodes to the end
user. In addition, this type of networks has security protde¢hat traditional net-
works do not face. In this section, we present a securityystiediicated to wireless
sensor networks. First we introduce the principal attabks $ensor networks can
face and how our approach can support them, then we presest@ctical issues
that improve the network security.

1.5.1 Related attacks and results

In a sensor network environment adversaries can commoelythesfollowing at-
tacks:

Known-plain text attack: They can use common key encryption to see when two
readings are identical. By using nearby sensors underalpattackers can con-
duct a known-plain text attack.

Chosen-plain text attack: Attackers can tamper with sensors to force them to pre-
determinated values.

Man-in-the-middle: They can inject false readings or resend logged readings fro
legitimate sensor motes to manipulate the data aggregatimess.

In Tables 1.1, 1.2 and similar to [16], we present a compariztween differ-
ent encryption policies and possible attacks. In our methsddata are encrypted
by public keys, and these public keys are sent by the sinkestie authenticated
motes, the wireless sensor network is then not vulneratdeMan-in-the-middle at-
tacks. On the other hand, our approach guarantees thatdaitwiar texts gives two
different cryptograms, which prevents the Chosen-plaxh attacks and the Man-
in-the-middle attacks. Finally, as the proposed schemsgsses the homomorphic
property, data aggregation is done without decryption,ramgrivate key is used in
the network.

1.5.2 Practical issues

In this section we present some practical issues to ourisgoundel. First we study
the sizes of the encryption keys and we compare it to exisigpgoaches. Then, we
present how we can optimize the sizes of cryptograms in dodgasve more sensors
energy.



Table 1.1. Encryption polices and vulnerabilities

Encryption Policy Possible attacks

Sensors transmit readings without encryption Man-instiidedle
Sensors transmit encrypted readings Known-plain textlatta
with permanent keys Chosen-plain text attack

Man-in-the-middle

Sensors transmit encrypted readings None of above
with dynamic keys

Our scheme None of above

Table 1.2. Encryption polices and aggregation

Encryption Policy Data aggregation
Sensors transmit readings without encryption Generatirmypgvaggregated results
Sensors transmit encrypted readings Data aggregatiorpisssible,
with permanent keys unless the aggregator has encryptien ke
Sensors transmit encrypted readings Data aggregatiotharachieved
with dynamic keys unless the aggregator has encryption keys
Our scheme Data aggregation can be achieved

Sizes of the keys

Cryptograms are points of the elliptic curée They are constituted by couples of
integer coordinates lesser than or equal te lg14, — 1.

It is commonly accepted [19], [20] that for being secure l2QR0, a cryptosys-
tem:

must havey ~ 2'¢!, for EC systems oveF,,
must satisfyp ~ 218! for classical asymmetric systems, such as RSA or EIGamal
onk,.

r

Thus, for the same level of security, using elliptic curvgptography does not
demand high keys sizes, contrary to the case of RSA or EIGam&). The use of
small keys leads to small cryptograms and fast operatiaresforyption.

1.5.3 Reducing the size of cryptograms

In this section we show how we can reduce the size of crypiognahile using
ECC. This is benefit for sensor nodes in terms of reducingggnesnsumption by
sending data with smaller size. The messages are encryfitegh\its, which leads
to cryptograms with a mean of 160 bits long.

Let us suppose that= 3 ( mod4). As the cryptogram is an elemep, i) of &,
which is defined by? = x*+ 1, we can compress this cryptogrémy) to (x, y mod



2)) before sending it to the aggregator (as the valug?a§ known). In this situation,
we obtain cryptograms with a mean&if bits long for messages betwezhand40
bits long.

To decompress the cryptograim, i), the aggregator must compute= x3 +
1 modp andy = +/z modp, which can be written ag = z#*1/*modp, then :

e if y =i(mod2), then the decompression @f i) is (x, y).
e else the decompression(is p — v).

1.6 Experimental Results

To show the effectiveness of our approach we conductedessafrsimulations com-
paring our method to another existing one based on RSA csyptem. We consid-
ered a network formed &i00 sensor nodes, each one is equipped by a battel(of
units capacity. We consider that the energy consumptiesh of a node is propor-
tional to the computational timg i.e,, E = kt. The same coefficient of proportion-
ality k is taken while comparing the two encryption scenarii. Sensales are then
connected to 50 aggregators chosen randomly. Each serd®choose the nearest
aggregator. The running of each simulation is as followshesensor node takes a
random value, encrypts it using one of the encryption methibdn sends it to its
aggregator. Aggregators compute the sum of the encrypted/ezl data and send it
to the sink. We compared our approach to the known RSA pieljoeryptographic
algorithms, and we evaluated the energy consumption ofehgark while varying
the sizes of the keys and obviously the security levels. Treggy consumption is
the units of the battery used to do the encryption.

Tables 1.3 and 1.4 show the energy consumption of sensosrnodi the en-
cryption operations using our encryption method and the RB8&respectively. We
varied the keys sizes and obviously the security levels. @¥ea that for the same
level of security in our approach we used small keys whilérgpmnore energy. For
instance, for high security levels (4 for example) a nodagisiur approach needs to
use a key ofi67 bits instead 0891 in the case of RSA and consumes 0.1 % of the
battery power instead of 3.63 %.

Security leve|Sizep of the key E (battery units
1 46 0.02
2 85 0.05%
3 125 0.07
4 167 0.10

Table 1.3. Our approach

Tables 1.5 and 1.6 give the energy consumpliat the aggregation stage. The
same hypothesis that above have been made, the sole diffeiethat aggregator
nodes have a battery of 1000 units of energy. It can be setththanergy needed by



Security leve|Size of the keyE (battery units
1 472 0.08
2 945 0.53
3 1416 1.63
4 1891 3.63

Table 1.4. RSA encryption

aggregators are between 50 and 500 times more importarg R$A-based scheme,
for the same level of security.

Security leve|Sizep of the key E (battery units
1 46 0.02
2 85 0.04
3 125 0.07
4 167 0.10

Table 1.5. Our approach

Security leve|Size of the keyE (battery units
1 472 1.13
2 945 8.09
3 1416 24.74
4 1891 56.27

Table 1.6. RSA encryption

Figure 1.2 gives the comparison between RSA and elliptieebased encryp-
tion, concerning the average energy consumption of an ggting wireless sensor
network. We can notice that our approach saves the enemgglyagreater than the
case of RSA, where its depletion is so fast. Finally let usceahat, in addition of
reducing the amount of energy units needed for encryptidregigregation, the sink
receives many more values per second in EC-based netwarkgtRSA-based one.

1.7 Enlarging the number of allowing authentication functions

In the previous sections, we have proposed to use a homompr@ncryption
scheme to support in-network processing while preserviivggy. Compared to ex-
isting secure aggregation schemes based on homomorphisypgan, our method
has not been cryptanalysed. Moreover, due to the posgitilitealizen additions
and one product over the cypher values, this scheme enldrgeariety of allowing
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aggregation operations through cyphertexts. Howeveof éfie homomorphism en-
cryption schemes only allow some specific query-based ggtfiom functionse.g,
sum, averagestc.

Another way to achieve secure data aggregation in wiretssos networks is to
authenticate sensing values. In-network processing presecritical challenge for
data authentication in wireless sensor networks. Curm@mtraes relying on Mes-
sage Authentication Code (MAC) cannot provide natural suipjor this operation,
because a MAC computation is a very energy-consuming aperakdditionally,
even a slight modification to the data invalidates the MAC.

In [21] a new way to achieve authentication through wireksssor networks is
introduced. It is based on digital watermarking and prop@seend-to-end, statis-
tical approach for data authentication that provides iehesupport for in-network
processing. In this scheme, authentication informatioméglulated as watermark
and superposed on the sensory data at the sensor nodes.yTlideké&rmerly pre-
sented in [21] is to visualize the sensory data at a certaie inapshot as an image.
Each sensor node is viewed as a pixel and its value corresyoride gray level of
the pixel. Due to this equivalency, information hiding taiffues can be used to au-
thenticate a wireless sensor network. The watermarkeddathe aggregated by the
intermediate nodes without incurring any en route checKigpn reception of the
sensory data, the sink is able to authenticate the data atialg the watermark,
thereby detecting whether the data has been illegitimatiédyed. In this way, the
aggregation-survivable authentication information iyadded at the sources and
checked by the data sink, without any involvement of intetiate nodes.



In [21] the authors proposes to use a data hiding scheme bassglead spec-
trum techniques to achieve authentication. In their prahdsach sensor node em-
beds part of the whole watermark into its sensory data, whié®ing the heavy
computational load of watermark detection at the sink”. &bwer, as stated be-
fore, their scheme supports in-network aggregation. Hewepread spectrum is
known to be not robust: even if their scheme survives to atedegree of distor-
tion, spread-spectrum cannot face to elementary blindlatfeurthermore, spread-
spectrum data hiding techniques are only stego-securesitiNhtural Watermark-
ing” situation [22]. The spread-spectrum subclass usedlhif related to classical
SS,i.e. with BPSK modulation [22]. This subclass is neither stegouse [22], nor
chaos-secure [23]. Among the consequences of these laelcofity is the fact that
an attacker how observes the network can access to the sedvetlding key in all
of the following situations:

e Watermarked Only Attack (WOA): the attacker has access tnlyatermarked
contents.

e Known Message Attack (KMA): the attacker has access to painsatermarked
contents and corresponding hidden messages.

e Known Original Attack (KOA): occurs when an attacker hasesmscto several
pairs of watermarked contents and their correspondingraiigersions.

e Constant-Message Attack (CMA): the attacker observesrakwatermarked
contents and only knows that the unknown hidden message isaime in all
contents.

To improve the security of the network in WOA setup, the us&lafural Wa-
termarking instead of BPSK modulation is required [22].dad, this subclass of
spread-spectrum techniques, recalled in [22], is stegarseand so can face WOA
attacks. However, Natural Watermarking is less chaosreettian the data hiding
algorithm presented in [24]. This algorithm, based on cleatgrations, is able to
withstand attacks in KMA, KOA and CMA setups [25]. Moreovttis technique
is more robust than spread-spectrum, as it is stated in T26kum up, the use of
the scheme proposed in [24] improves the security and rpbsstof the scheme
presented in [21].

Finally, an hybrid approach of secure data aggregation neless sensor net-
works can be obtained by combining homomorphic encryptiwheatermarking-
based authentication, as it is summed up in Figure 1.3.

1.8 Conclusion

In this paper, we presented an elliptic curve based appifoaciecure data aggrega-
tion in sensor networks. It is based on data encryption watin@morphic properties
that provide the possibility to operate on cypher-textréents the decryption phase
at the aggregators layers and saves nodes energy. Existirkg Wwave exponential
bound in computation and are not suitable for sensor nesyavkich we tried to
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Fig. 1.3. Secure data authentication and aggregation in sensor riestwo

relax in our approach. The proposed scheme permits the gf@renf shorter en-
cryption asymmetric keys, which is so important in the cadseasor networks. The
experimental results show that our method significanthuced computation and
communication overhead compared to other works, and carrdmigally imple-
mented in on-the-shelf sensor platforms.
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