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Summary. Wireless sensor networks are now in widespread use to monitor regions, detect
events and acquire information. Since the deployed nodes are separated, they need to cooper-
atively communicate sensed data to the base station. Hence,transmissions are a very energy-
consuming operation. To reduce the amount of sending data, an aggregation approach can
be applied along the path from sensors to the sink. However, usually the carried information
contains confidential data. Therefore, an end-to-end secure aggregation approach is required
to ensure a healthy data reception. End-to-end encryption schemes that support operations
over cypher-text have been proved important for private party sensor network implementa-
tions. These schemes offer two main advantages: end-to-endconcealment of data and ability
to operate on cipher text, then no more decryption is required for aggregation. Unfortunately,
nowadays these methods are very complex and not suitable forsensor nodes having limited
resources. In this paper, we propose a secure end-to-end encrypted-data aggregation scheme. It
is based on elliptic curve cryptography that exploits a smaller key size. Additionally, it allows
the use of higher number of operations on cypher-texts and prevents the distinction between
two identical texts from their cryptograms. These properties permit to our approach to achieve
higher security levels than existing cryptosystems in sensor networks. Our experiments show
that our proposed secure aggregation method significantly reduces computation and commu-
nication overhead and can be practically implemented in on-the-shelf sensor platforms. By
using homomorphic encryption on elliptic curves, we thus have realized an efficient and se-
cure data aggregation in sensor networks. Lastly, to enlarge the aggregation functions that can
be used in a secure wireless sensor network, a watermarking-based authentication scheme is
finally proposed.
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1.1 Introduction

Wireless sensor networks have received enormous attentionover past few years, due
to a wide range of potential applications (environmental, ecological, military,etc.).
A typical sensor network is expected to consist of a large number of sensor nodes



deployed randomly in a large scale. Usually, these nodes have limited power, storage,
communication, and processing capabilities, making energy consumption an issue.

A major functionality of a sensor node is to measure environmental values using
embedded sensors, and transmit it to a base station called “sink”. The sensed data
needs to be analyzed, which eventually serves to initiate some action. Almost this
analysis presumes computation of the maximum, minimum, average,etc. It can be
either done at the base station or by the nodes themselves, ina hierarchical scenario.
In order to reduce the amount of data to be transmitted to the sink, it is beneficial
that this analysis can be done over the network itself. To save the overall energy
resources of the network, it is agreed that the sensed data needs to be aggregated
on the way to its final destination. Sensor nodes send their values to certain special
nodes, i.e., aggregators. Each aggregator then condenses the data prior to sending it
on. In terms of bandwidth and energy consumption, aggregation is beneficial as long
as the aggregation process is not too CPU-intensive. The aggregators can either be
special (more powerful) nodes or regular sensors nodes.

At the same time, sensor networks are often deployed in public or otherwise
untrusted and even hostile environments, which prompts a number of security issues
(e.g., key management, privacy, access control, authentication,etc.). Then, if security
is a necessary in other (e.g., wired or MANET) types of networks, it is much more so
in sensor networks. Actually, it is one of the more popular research topic and many
advances have been reported on in recent years.

From the above observations, we can notice the importance ofa cooperative se-
cure data aggregation in sensor networks. In other terms, after the data gathering
and during transmissions to the base station, each node along the routing path co-
operatively integrates and secures the fragments messages. In this paper, we focus
on security data aggregation and we propose a simple secure homomorphic cypher-
system that allows efficient aggregation of encrypted data.

Data encryption becomes necessary in sensor networks when this type of sensors
can be subject of many types of attacks [1]. Without encryption, adversaries can
monitor and inject false data into the network. In a general manner the encryption
process is done as follows: sensor nodes must encrypt data ona hop-by-hop basis.
An intermediate node (i.e., aggregator) possessing the keys of all sending nodes,
decrypts the received encrypted value, aggregates all received values, and encrypts
the result for transmission to the base station. Though viable, this approach is fairly
expensive and complicated, due to the fact of decrypting each received value before
aggregation, which generates an overhead imposed by key management. Encryption
can solve the security problem, but how can we aggregate overencrypted data [1]?

Some privacy homomorphism based works have been proposed recently [2, 3, 4]
that, without participating in checking, the aggregators can directly aggregate the en-
crypted data. However, such schemes, for the moment, need high and complex com-
putations to encrypt data and aggregate it, which leads to large cypher-texts. Sensor
nodes cannot provide sufficient CPU, memory and bandwidth toaddress such com-
plex operations. For instance, Rivest Shamir Adleman (RSA)cryptosystems [5, 6]
are used, which requires high CPU and memory capabilities toperform exponential
operations. Therefore, in our study we adopt an elliptic curve encryption [7] that al-



lows nodes to generate a smaller key size while providing thesame security level
of existing complex schemes. The cypher-system we exploit permits N additions
and one product, thus it is not limited to a single basic function. A major advantage
of our method is the fact that it has been proved safe, and until now it has not been
cryptanalized. To assess the practicality of our technique, we evaluate it and compare
it to existing cypher-system. The obtained results show that we significantly reduce
computation and communication overhead and that our secureaggregation method
can be practically implemented in on-the-shelf sensor platforms.

The rest of this paper is organized as follows: in the next section we present
a review of some previous related work. Section 1.3 presentsour security model.
Sections 1.4 and 1.5 discuss the details of the proposed aggregation scheme for
sensor networks. In Section 1.6, we describe simulation andresults of simulation
experiments. In Section 1.7 is proposed a new authentication scheme based on a wa-
termarking approach, to improve the variety of aggregationfunctions through the
secure wireless sensor network. Finally, we end the paper bya conclusion.

1.2 Related Work

The benefit and vulnerability, as well as the need to secure in-network aggregation,
have been identified by a number of schemes in the literature.One approach [8]
proposed a secure information aggregation protocol to answer queries over the data
acquired by the sensors. Even though their method provided data authentication to
provide secrecy, the data still sent in plain text format, which removes the privacy
during transmission. Another one [9] proposed a secure energy efficient data aggre-
gation (ESPDA) to prevent redundant data transmission in data aggregation. Unlike
conventional techniques, their scheme prevents the redundant transmission from sen-
sor motes to the aggregator. Before transmitting sensed data, each sensor transmits
a secure pattern to the aggregator. Only sensors with different data are allowed to
transmit their data to the cluster-head. However, since each sensor at least needs to
transmit a packet containing a pattern once, power cannot besignificantly saved.
In addition, each sensor mote uses a fixed encryption key to encrypt data; data pri-
vacy cannot be maintained in their scheme. In [10], the authors presented a secure
encrypted-data aggregation scheme for wireless sensor networks. The idea is based
on eliminating redundant sensor readings without using encryption and maintains
data secrecy and privacy during transmission. This scheme saves energy on sensor
nodes but still do not guarantee the privacy of sent data.

The problem of aggregating encrypted data in sensor networks was introduced
in [3] and further refined in [2]. The authors propose to use homomorphic encryption
schemes to enable arithmetic operations over cypher-textsthat need to be transmitted
in a multi-hop manner. However, these approaches provide a higher level of system
security, since nodes would not be equipped with private keys, which would limit the
advantage gained by an attacker compromising some of the nodes. Unfortunately,
existing privacy homomorphisms used for data aggregation in sensor networks have
exponential bound in computation. It is too computationally expensive to implement



in sensor nodes. Moreover, the expansion in bit size during the transformation of
plain text to cypher-text introduces costly communicationoverhead, which directly
translates to a faster depletion of the sensors energy. On the other hand and from
security viewpoint, the cryptosystems [11] used in these approaches were cryptanal-
ized [12, 13], which means they can’t guarantee anymore highsecurity levels.

In this paper we try to relax the statements above by investigating elliptic curve
cryptography that allows feasible and suitable data aggregation in sensor networks
beside the security of homomorphisms schemes. First, our proposed scheme for se-
cure data aggregation in sensor networks is based on a cryptosystem, which has
been proved safe and has not been cryptanalyzed. Another property that enforces the
security level of such approach is coming from the fact that,as it is the case in ElGa-
mal cryptosystem, for two identical messages it generates two different cryptograms.
This property suggested fundamental for security in sensornetworks [7, 10, 14], to
the best of our knowledge, was not addressed in previous homomorphism-based se-
curity data aggregation works. Beside all these propertiesand due to the use of el-
liptic curves, our approach saves energy by allowing nodes to encrypt and aggregate
data without the need of high computations. Lastly, the scheme we use allows more
aggregations types over cypher data than the homomorphic cryptosystem used until
now.

1.3 Security Model

In this work, we are primarily concerned with data privacy insensor networks. Our
goal is to prevent attackers from gaining any information about sensor data. There-
fore, ensuring an end-to-end privacy between sensor nodes and the sink becomes
problematic. This is largely because popular and existing cyphers are not additively
homomorphic. In other words, the summation of encrypted data does not allow for
the retrieval of the sum of the plain text values. Moreover, privacy existing homomor-
phisms have usually exponential bound in computation. To overcome this problem,
in our model we propose a security scheme for sensor networksusing elliptic curve
based cryptosystem. We show that our model permits many operations on crypted
data and does not demand high sensor capabilities and computation.

1.3.1 Operations over elliptic curves

In this section, we give a brief introduction to elliptic curve cryptography. The reader
is referred to [15] for more details.

Addition and multiplication

Elliptic curve cryptography (ECC) is an approach to public-key cryptography based
on the algebraic structure of elliptic curves over finite fields [15]. Elliptic curves used
in cryptography are typically defined over two types of finitefields: prime fieldsFp,



wherep is a large prime number, and binary extension fieldsF2m [16]. In our paper,
we focus on elliptic curves overFp. Let p > 3, then an elliptic curve overFp is
defined by a cubic equationy2

= x3
+ ax + b as the set

E =
{

(x, y) ∈ Fp × Fp, y
2 ≡ x3

+ ax + b (mod p)
}

wherea, b ∈ Fp are constants such that4a3
+ 27b2

. 0 (mod p). An elliptic curve
overFp consists of the set of all pairs of affine coordinates(x, y) for x, y ∈ Fp that
satisfy an equation of the above form and an infinity pointO.

The point addition and its special case, point doubling overE is defined as fol-
lows (the arithmetic operations are defined inFp) [15] :

Let P = (x1, y1) andQ = (x2, y2) be two points ofE. Then:

P +Q =

{

O if x2 = x1 andy2 = −y1,
(x3, y3) otherwise.

where:

• x3 = λ
2 − x1 − x2,

• y3 = λ × (x1 − x3) − y1,

λ =

{

(y2 − y1) × (x2 − x1)−1 if P , Q ,
(3x2

1
+ a) × (2y1)−1 if P = Q.

Finally, we defineP + O = O + P = P,∀P ∈ E, which leads to an abelian group
(E,+). On the other hand the multiplicationn×P meansP+P+ ....+ P n times and
−P is the symmetric ofP for the group law + defined above for allP ∈ E.

Public/Private keys generation with ECC

In this section we show how we can generate the public and private keys for encryp-
tion, following the cryptosystem proposed by Bonehet al. [7]. The analysis of the
complexity will be treated in a later section.

Let τ > 0 be an integer called “security parameter”. To generate public and
private keys, first of all, twoτ-bits prime numbers must be computed. Therefore, a
cryptographic pseudo-random generator can be used to obtain two vectors ofτ bits,
q1 andq2. Then, a Miller-Rabin test can be applied for testing the primality or not of
q1 andq2. We denote byn the product ofq1 andq2, n = q1q2, and byl the smallest
positive integer such thatp = l × n − 1. l is a prime number whilep = 2 (mod 3).

In order to find the private and public keys, we define a groupH, which presents
the points of the super-singular elliptic curvey2

= x3
+ 1 defined overFp. It consists

of p + 1 = n × l points, and thus has a subgroup of ordern, we call it G. In another
step, we computeg andu as two generators ofG andh = q2×u. Then, following [7],
the public key will be presented by(n,G, g, h) and the private key byq1.



Encryption and Decryption

After the private/public keys generation, we proceed now tothe two encryption and
decryption phases:

• Encryption : Assuming that our messages space consists of integers in theset
{0, 1, ...,T}, whereT < q2, andm the (integer) message to encrypt. First, a ran-
dom positive integer is picked from the interval[0, n − 1]. Then, the cypher-text
is defined by

C = m × g + r × h ∈ G,

in which+ and× refer to the additive and multiplication laws defined previously.
• Decryption : Once the messageC arrived to destination, to decrypt it, we use the

private keyq1 and the discrete logarithm of(q1 × C) baseq1 × g as follows:

m = logq1×g q1 × C.

This takes expected time
√

T using Pollard’s lambda method. Moreover, this
decryption can be speed-up by precomputing a table of powersof q1 × g.

1.3.2 Homomorphic properties

As we mentioned before, our approach ensures easy encryption/decryption without
any need of extra resources. This will be proved in the next section. Moreover, our
approach supports homomorphic properties, which gives us the ability to execute
operations on values even though they have been encrypted. Indeed, it allowsN ad-
ditions and one multiplication directly on cryptograms, which prevents the decryp-
tion phase at the aggregators level and saves nodes energy, which is crucial in sensor
networks.

Additions over cypher-texts are done as follows: letm1 andm2 be two messages
andC1,C2 their cypher-texts respectively. Then the sum ofC1 andC2, let call it C,
is represented byC = C1 + C2 + r × h wherer is an integer randomly chosen in
[0, n − 1] andh = q2 × u as presented in the previous section. This sum operation
guarantees that the decryption value ofC is the summ1+m2. The addition operation
can be done several times, which means we can do sums of encrypted sums.

The multiplication of two encrypted values and its decryption are done as fol-
lows: let e be the modified Weil pairing on the curve andg, h the points ofG as
defined previously. Let us recall that this modified Weil pairing e is obtained from
the Weil pairingE [7], [17] by the formula:e(P,Q) = E(x × P,Q), wherex is a root
of X3 − 1 onFp2 . Then, the result of the multiplication of two encrypted messages
C1,C2 is given by[Cm = e(C1,C2) + r × h1], whereh1 = e(g, h) andr is a random
integer pick in[1, n].

The decryption ofCm is equal to the discrete logarithm ofq1 × Cm to the base
q1 × g1:

m1m2 = logq1∗g1
(q1 × Cm.)

whereg1 = e(g, g).



1.4 Our Secure Data Aggregation for Sensor Networks

1.4.1 Presentation

Data aggregation schemes aim to combine and summarize data packets of several
sensor nodes so that amount of data transmission is reduced.An example data ag-
gregation scheme is presented in Figure 1.1 where sensor nodes collect information
from a region of interest. When the user (sink) queries the network, instead of send-
ing each sensor node’s data to the base station, aggregatorscollect the information
from its neighboring nodes, aggregates them, and send the aggregated data to the
base station over a multihop path.

Collecting data & Encryption

Aggregation over cypher−text

Aggregation over cypher−text

Decryption & Aggregation

Normal Sensors

Aggregators

Aggregators

Sink (base station)

Fig. 1.1. Secure data aggregation in sensor networks

As the majority of wireless sensor network applications require a certain level
of security, encryption of the sensed data before its transmission becomes necessary
and it is preferable to decrypt the data only at the base station level (c.f. previous
sections). In our work, we adopt the following scenario as shown in Figure 1.1:
after collecting information, each sensor node encrypts its data according to elliptic
curve encryption (c.f. Section 1.3.1) and sends it to the nearest aggregator. Then,
aggregators aggregate the received encrypted data (without decryption) and send it
to the base station, which in his turn decrypts the data and aggregates it. We notice
that all aggregators can doneN additions and the final layer of aggregators can done
one multiplication on encrypted data.

1.4.2 Example of use

Computing the Arithmetic Mean

The arithmetic mean is the “standard” average, often simplycalled the “mean”, de-
fined forn valuesx1, . . . , xn by



x̄ =
1

n
·

n
∑

i=1

xi.

To compute the average of nodes measurements, aggregators can calculate the
sum of the encrypted measurements and the number of nodes took these measure-
ments and send it to the base station. More precisely, when using our scheme, each
sensor encrypts its dataxi to obtaincxi. The sensor then forwardscxi to its parent,
who aggregates all thecx j’s of its k children by simply adding them up. The result-
ing value is then forwarded. The sink ends up with valueCx =

∑n
i=1 cxi. It can then

decryptCx, and divide the result byn to derive the average.

Computing the Variance

Another common aggregation is to estimate the variance of the sensed values. Let us
recall that the variance ofn valuesx1, ..., xn is defined by:

s2
n =

1

n

n
∑

i=1

(xi − x)2
=




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
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
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.

Our scheme can also be used to derive the variance of the measured and encrypted
data, by the same method as in [18]. In this case, each sensori must computeyi =

x2
i
, wherexi is the measured sample, and encryptsyi to obtaincyi. xi must also be

encrypted, as explained in the previous section. The sensorforwardscyi, together
with cxi, to its parent. The parent aggregates all thecy j of its k children by simply
adding them up. It also aggregates, separately, thecx j, as explained in the previous
section. The two resulting values are then forwarded. The sink ends up with values
Cx =

∑n
i=1 cxi andCy =

∑n
i=1 cyi. Cx is used to compute the averageAv, when

Cy is used to compute the variance as follows:Var =
Vy

n − Av2, whereVy is the
decryption ofCy.

Computing the Weighted Mean

The weighted mean of a non-empty set of datax1, x2, . . . , xn with non-negative
weightsw1,w2, . . . ,wn, is the quantity

x̄ =
w1x1 + w2x2 + · · · + wnxn

w1 + w2 + · · · + wn
.

We suppose now that each aggregatori of the first aggregation layer has com-
puted the meanxi of the encrypted values received from its sensor node. Addition-
ally, we suppose that these aggregators are weighted, depending on their importance.
For security reasons, this weight is also encrypted and the cypher value is denoted
by wi. Thiswi can be proportional to the number of aggregated sensors. This weight
can also illustrate the fact that two given regions have not the same relevance. To
achieve weighted mean, each aggregator multiplies its encrypted meanxi with en-
crypted weightwi as it has been explained previously. The resulting value is then



forwarded to the sink, which can decryptwi × xi and sum all these decrypted values,
to obtain the weighted mean defined above.

1.5 Security study

Due to hostile environments and unique characteristics of sensor networks, it is a
challenging task to protect sensitive information transmitted by nodes to the end
user. In addition, this type of networks has security problems that traditional net-
works do not face. In this section, we present a security study dedicated to wireless
sensor networks. First we introduce the principal attacks that sensor networks can
face and how our approach can support them, then we present some practical issues
that improve the network security.

1.5.1 Related attacks and results

In a sensor network environment adversaries can commonly use the following at-
tacks:

Known-plain text attack: They can use common key encryption to see when two
readings are identical. By using nearby sensors under control, attackers can con-
duct a known-plain text attack.

Chosen-plain text attack: Attackers can tamper with sensors to force them to pre-
determinated values.

Man-in-the-middle: They can inject false readings or resend logged readings from
legitimate sensor motes to manipulate the data aggregationprocess.

In Tables 1.1, 1.2 and similar to [16], we present a comparison between differ-
ent encryption policies and possible attacks. In our method, as data are encrypted
by public keys, and these public keys are sent by the sink to the sole authenticated
motes, the wireless sensor network is then not vulnerable toa Man-in-the-middle at-
tacks. On the other hand, our approach guarantees that for two similar texts gives two
different cryptograms, which prevents the Chosen-plain text attacks and the Man-
in-the-middle attacks. Finally, as the proposed scheme possesses the homomorphic
property, data aggregation is done without decryption, andno private key is used in
the network.

1.5.2 Practical issues

In this section we present some practical issues to our security model. First we study
the sizes of the encryption keys and we compare it to existingapproaches. Then, we
present how we can optimize the sizes of cryptograms in orderto save more sensors
energy.



Table 1.1. Encryption polices and vulnerabilities

Encryption Policy Possible attacks

Sensors transmit readings without encryption Man-in-the-middle

Sensors transmit encrypted readings Known-plain text attack

with permanent keys Chosen-plain text attack

Man-in-the-middle

Sensors transmit encrypted readings None of above

with dynamic keys

Our scheme None of above

Table 1.2. Encryption polices and aggregation

Encryption Policy Data aggregation
Sensors transmit readings without encryption Generating wrong aggregated results
Sensors transmit encrypted readings Data aggregation is impossible,
with permanent keys unless the aggregator has encryption keys

Sensors transmit encrypted readings Data aggregation cannot be achieved
with dynamic keys unless the aggregator has encryption keys
Our scheme Data aggregation can be achieved

Sizes of the keys

Cryptograms are points of the elliptic curveE. They are constituted by couples of
integer coordinates lesser than or equal top = lq1q2 − 1.

It is commonly accepted [19], [20] that for being secure until 2020, a cryptosys-
tem:

• must havep ≈ 2161, for EC systems overFp,
• must satisfyp ≈ 21881 for classical asymmetric systems, such as RSA or ElGamal

onFp.

Thus, for the same level of security, using elliptic curve cryptography does not
demand high keys sizes, contrary to the case of RSA or ElGamalon Fp. The use of
small keys leads to small cryptograms and fast operations for encryption.

1.5.3 Reducing the size of cryptograms

In this section we show how we can reduce the size of cryptograms while using
ECC. This is benefit for sensor nodes in terms of reducing energy consumption by
sending data with smaller size. The messages are encrypted with q2 bits, which leads
to cryptograms with a mean of 160 bits long.

Let us suppose thatp ≡ 3 ( mod4). As the cryptogram is an element(x, y) of E,
which is defined byy2

= x3
+1, we can compress this cryptogram(x, y) to (x, y mod



2)) before sending it to the aggregator (as the value ofy2 is known). In this situation,
we obtain cryptograms with a mean of81 bits long for messages between20 and40
bits long.

To decompress the cryptogram(x, i), the aggregator must computez = x3
+

1 modp andy =
√

z modp, which can be written asy = z(p+1)/4modp, then :

• if y ≡ i(mod2), then the decompression of(x, i) is (x, y).
• else the decompression is(x, p− y).

1.6 Experimental Results

To show the effectiveness of our approach we conducted a series of simulations com-
paring our method to another existing one based on RSA cryptosystem. We consid-
ered a network formed of500 sensor nodes, each one is equipped by a battery of100
units capacity. We consider that the energy consumption′′E′′ of a node is propor-
tional to the computational timet, i.e., E = kt. The same coefficient of proportion-
ality k is taken while comparing the two encryption scenarii. Sensor nodes are then
connected to 50 aggregators chosen randomly. Each sensor node choose the nearest
aggregator. The running of each simulation is as follows: each sensor node takes a
random value, encrypts it using one of the encryption methods then sends it to its
aggregator. Aggregators compute the sum of the encrypted received data and send it
to the sink. We compared our approach to the known RSA public-key cryptographic
algorithms, and we evaluated the energy consumption of the network while varying
the sizes of the keys and obviously the security levels. The energy consumption is
the units of the battery used to do the encryption.

Tables 1.3 and 1.4 show the energy consumption of sensor nodes to do the en-
cryption operations using our encryption method and the RSAone respectively. We
varied the keys sizes and obviously the security levels. We notice that for the same
level of security in our approach we used small keys while saving more energy. For
instance, for high security levels (4 for example) a node using our approach needs to
use a key of167 bits instead of1891 in the case of RSA and consumes 0.1 % of the
battery power instead of 3.63 %.

Security levelSizep of the keyE (battery units)
1 46 0.02
2 85 0.05%
3 125 0.07
4 167 0.10

Table 1.3. Our approach

Tables 1.5 and 1.6 give the energy consumptionE at the aggregation stage. The
same hypothesis that above have been made, the sole difference is that aggregator
nodes have a battery of 1000 units of energy. It can be seen that the energy needed by



Security levelSize of the keyE (battery units)
1 472 0.08
2 945 0.53
3 1416 1.63
4 1891 3.63

Table 1.4. RSA encryption

aggregators are between 50 and 500 times more important in the RSA-based scheme,
for the same level of security.

Security levelSizep of the keyE (battery units)
1 46 0.02
2 85 0.04
3 125 0.07
4 167 0.10

Table 1.5. Our approach

Security levelSize of the keyE (battery units)
1 472 1.13
2 945 8.09
3 1416 24.74
4 1891 56.27

Table 1.6. RSA encryption

Figure 1.2 gives the comparison between RSA and elliptic curve based encryp-
tion, concerning the average energy consumption of an aggregating wireless sensor
network. We can notice that our approach saves the energy largely greater than the
case of RSA, where its depletion is so fast. Finally let us notice that, in addition of
reducing the amount of energy units needed for encryption and aggregation, the sink
receives many more values per second in EC-based networks than in RSA-based one.

1.7 Enlarging the number of allowing authentication functions

In the previous sections, we have proposed to use a homomorphism encryption
scheme to support in-network processing while preserving privacy. Compared to ex-
isting secure aggregation schemes based on homomorphism encryption, our method
has not been cryptanalysed. Moreover, due to the possibility to realizen additions
and one product over the cypher values, this scheme enlargesthe variety of allowing
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aggregation operations through cyphertexts. However, allof the homomorphism en-
cryption schemes only allow some specific query-based aggregation functions,e.g.,
sum, average,etc.

Another way to achieve secure data aggregation in wireless sensor networks is to
authenticate sensing values. In-network processing presents a critical challenge for
data authentication in wireless sensor networks. Current schemes relying on Mes-
sage Authentication Code (MAC) cannot provide natural support for this operation,
because a MAC computation is a very energy-consuming operation. Additionally,
even a slight modification to the data invalidates the MAC.

In [21] a new way to achieve authentication through wirelesssensor networks is
introduced. It is based on digital watermarking and proposes an end-to-end, statis-
tical approach for data authentication that provides inherent support for in-network
processing. In this scheme, authentication information ismodulated as watermark
and superposed on the sensory data at the sensor nodes. The key idea formerly pre-
sented in [21] is to visualize the sensory data at a certain time snapshot as an image.
Each sensor node is viewed as a pixel and its value corresponds to the gray level of
the pixel. Due to this equivalency, information hiding techniques can be used to au-
thenticate a wireless sensor network. The watermarked datacan be aggregated by the
intermediate nodes without incurring any en route checking. Upon reception of the
sensory data, the sink is able to authenticate the data by validating the watermark,
thereby detecting whether the data has been illegitimatelyaltered. In this way, the
aggregation-survivable authentication information is only added at the sources and
checked by the data sink, without any involvement of intermediate nodes.



In [21] the authors proposes to use a data hiding scheme basedon spread spec-
trum techniques to achieve authentication. In their proposal, “each sensor node em-
beds part of the whole watermark into its sensory data, whileleaving the heavy
computational load of watermark detection at the sink”. Moreover, as stated be-
fore, their scheme supports in-network aggregation. However spread spectrum is
known to be not robust: even if their scheme survives to a certain degree of distor-
tion, spread-spectrum cannot face to elementary blind attack. Furthermore, spread-
spectrum data hiding techniques are only stego-secure in the “Natural Watermark-
ing” situation [22]. The spread-spectrum subclass used in [21] is related to classical
SS,i.e. with BPSK modulation [22]. This subclass is neither stego-secure [22], nor
chaos-secure [23]. Among the consequences of these lack of security is the fact that
an attacker how observes the network can access to the secretembedding key in all
of the following situations:

• Watermarked Only Attack (WOA): the attacker has access onlyto watermarked
contents.

• Known Message Attack (KMA): the attacker has access to pairsof watermarked
contents and corresponding hidden messages.

• Known Original Attack (KOA): occurs when an attacker has access to several
pairs of watermarked contents and their corresponding original versions.

• Constant-Message Attack (CMA): the attacker observes several watermarked
contents and only knows that the unknown hidden message is the same in all
contents.

To improve the security of the network in WOA setup, the use ofNatural Wa-
termarking instead of BPSK modulation is required [22]. Indeed, this subclass of
spread-spectrum techniques, recalled in [22], is stego-secure and so can face WOA
attacks. However, Natural Watermarking is less chaos-secure than the data hiding
algorithm presented in [24]. This algorithm, based on chaotic iterations, is able to
withstand attacks in KMA, KOA and CMA setups [25]. Moreover,this technique
is more robust than spread-spectrum, as it is stated in [26].To sum up, the use of
the scheme proposed in [24] improves the security and robustness of the scheme
presented in [21].

Finally, an hybrid approach of secure data aggregation in wireless sensor net-
works can be obtained by combining homomorphic encryption and watermarking-
based authentication, as it is summed up in Figure 1.3.

1.8 Conclusion

In this paper, we presented an elliptic curve based approachfor secure data aggrega-
tion in sensor networks. It is based on data encryption with homomorphic properties
that provide the possibility to operate on cypher-text. It prevents the decryption phase
at the aggregators layers and saves nodes energy. Existing works have exponential
bound in computation and are not suitable for sensor networks, which we tried to



Collecting data & Encryption

Authentication over clear−text

Aggregation over cypher−text

Decryption & Aggregation

Normal Sensors

Authentication

Aggregators

Sink (base station)

Fig. 1.3. Secure data authentication and aggregation in sensor networks

relax in our approach. The proposed scheme permits the generation of shorter en-
cryption asymmetric keys, which is so important in the case of sensor networks. The
experimental results show that our method significantly reduces computation and
communication overhead compared to other works, and can be practically imple-
mented in on-the-shelf sensor platforms.
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