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Abstract. This paper describes a dynamic scheduling technique based
on work-stealing that is proved to be efficient on SMP and clusters. We
apply this technique in the MPSoC field, using a simulation in SystemC.
We experiment on a MPEG-4 encoding application and we demonstrate
that the work-stealing scheduling is more efficient than a static place-
ment scheduling in terms of time and use of resources.
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1 Introduction

In order to improve the performance of current embedded systems, Multiproces-
sor System-on-Chip (MPSoC) offers many advantages, especially in terms of
flexibility and low cost.

Applications require more and more intensive computations, especially multi-
media applications such as video encoding. The system should be able to exploit
the resources as much as possible in order to save power and time. This chal-
lenge may be addressed by a technique based on parallel computing coupled with
performant scheduling.

In this paper, we present a dynamic scheduling technique based on work-
stealing. It is proved to be efficient in the SMP and cluster area and we make a
proof-of-concept adaptation for an MPSoC platform based on SystemC. We use
an MPEG-4 encoding algorithm to compare the work-stealing scheduling with
a static placement scheduling.

This paper is organized as follows. Section 2 gives an overview of different
scheduling techniques used on MPSoC and explains the principles of work-
stealing. Section 3 presents the key points in the implementation of work-stealing
and our choices for the implementation on top of SystemC. Section 4 describes
various MPEG-4 implementations including our implementation using work-
stealing. Section 5 exposes the results we obtained with our implementation
on our platform, compared to a static sheduling. Finally, section 6 concludes the
paper.
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2 Related Work and Scheduling on MPSoC

In this section, we discuss about the state of the art related to scheduling, and
in particular scheduling on MPSoC.

2.1 Scheduling by Mapping and Pipelining

Mapping and pipelining are two static scheduling methods to improve the per-
formances of MPSoC.

Mapping consists in sharing data by making a static placement on the avail-
able resources. The way the placement is done is closely linked to the applica-
tion. Moreover, the time of computation highly depends on the input data. So
the performance are irregular and impredictible.

Pipelining consists in sharing computation by cascading several processors,
each one making a part of the whole function. By nature, the number of proces-
sors is limited and fixed by the application. And the global computation rate is
limited by the rate of the slowest processor.

So, all these approaches are neither scalable nor efficient. First, the number
of processors is fixed and depends on the application itself. And more generally,
the program and the hardware are closely linked. Second, the program does not
adapt to the input data. This results in poor performances for the worst-case
data.

2.2 Dynamic Work-Stealing

Scheduling constraints such as architecture independence and input data indepen-
dence are close to the ones considered for fine grain multithreaded computations
[15]. To schedule such computations, many works focus on work-stealing, from
both a theoretical point of view [1] [8] and a practical point of view [9] [3] [10].

A work-stealing scheduling is based on a classical greedy scheme. It consists
in mapping to an idle processor a task that is ready to be executed. Following
[1], we note T∞ the execution time of an algorithm on an infinite number of
processors and T1 the sequential time of this algorithm. Then, neglecting the
cost of the interpretation, R.L. Graham [13] proved that the time Tp required
for execution on p processors verifies:

Tp ≤ T1

p
+ T∞ (1)

This time appears asymptotically optimal in the case of very parallel applications
where T∞ � T1. However, realizing this scheduling also has a cost that must
be taken into account. It is a priori bounded by the number n of tasks. Since
n > T1/T∞, this overhead can be very important for a fine-grained algorithm.

Work-stealing schedulers try to minimize this overhead by generating paral-
lelism only when required, i.e. when a processor becomes idle. Efficient work-
stealing is based on the work-first principle [3]: move the cost of parallelism
to the critical path. Indeed, the number of idle tops is bounded by T∞ on each
processor; thus, if the processors are able to easily find some tasks that are ready
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to be executed, the scheduling overhead, bounded by O(p.T∞), will be negligible
for algorithms that have a high level of parallelism.

Initially developped for SMP architectures [3], the principle has been extended
to processors with different speeds [8] and then to distributed architecture [7],
SMP clusters and heterogeneous grids [2].

2.3 Conclusion

So, on the one hand, usual scheduling techniques on MPSoC such as mapping and
pipelining seems to have many drawbacks, especially in terms of adaptability. On
the other hand, a proven efficient scheduling technique based on work-stealing
exists for distributed systems. Our approach is to import work-stealing in the
MPSoC field.

3 Implementation of Work-Stealing on MPSoC

This section describes our technical choices for the implementation of work-
stealing on MPSoC.

In our experiments, we use a platform to simulate a MPSoC. It is implemented
over SystemC, using a Transaction Level Modeling. It is composed of severals
nodes linked together by a component called network. A node has a processor,
a ROM, a RAM, an interrupt controller and a timer. The network is simply a
shared memory in which we added extra-functionnalities. Figure 1 shows this
platform.

Fig. 1. The MPSoC platform of our experiments

To implement the schedule while reducing contention, work-stealing is often
based on a randomized distributed algorithm. A task is locally managed on the
processor that creates it and the default sequential (depth-first) execution is
optimized. Each processor then locally handles its own list of tasks. When it
is required (synchronization between some tasks on different processors, or idle
time of one processor), a processor can access to a part of the list owned by
another processor, in mutual exclusion, to steal a task (theft operation).

3.1 Choice of the Victim

First, when a processor becomes idle, it steals the oldest ready task on a chosen
processor. Here, two ways are possible. A deterministic approach [2]: the victim
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processor is chosen cyclicly (round-robin). A probabilistic approach: the victim
processor is chosen randomly [3]. Then, for parallel computations on p identical
processors, it is proved that Tp < T1

p + O(p).T∞ with high probability.
To choose a victim processor, we applied the deterministic approach for two

main reasons. First it is simpler to implement, there’s no need for a pseudo-
random number generator, a simple counter is enough. Moreover, a processor
can easily determine the end of the computation: if none of the other processors
has work left then, it’s finished.

3.2 Mutual Exclusion of the Stacks

The synchronization between processors being rare (O(p.T∞) for parallel compu-
tations), most exclusive accesses are local. Then, an arithmetic lock based on an
atomic instruction (such as CompareAndSwap) may be used to implement mu-
tual exclusion. The synchronization may even be implemented basically through
very light counters if both process access to distinct parts of the list, such as the
head and the tail typically (THE protocol [14] [3]).

Working with SystemC, we could not use an architecture-dependent instruc-
tion like CompareAndSwap. In fact, we implemented a very trivial method that
may be improved a lot: we added a hardware lock in the network component. It
is a special address in memory that, when read, activates a lock. There is one
lock for each processor attached to the network. Each one is used to protect each
processor’s stack.

More generally speaking, embedded processors may have or not such an atomic
instruction. It is necessary to have this operation when dealing with efficient
distributed applications. The technique we used is far from efficient due to the
contention it implies: it may be improved in the future.

3.3 Local Stack Management

We implemented the local lists of tasks of the processors in the shared mem-
ory. The main advantage is that processors can steal work themselves to other
processors. So, a processor is never interrupted and is always in activity until
there is no more work anywhere.

The memory is shared between all the processors. Each list of task is simply
organized as a stack of equal size chunks. This is possible because we know the
application and then, we can make some optimizations. More precisely, a chunk
consists in 32 bytes that stores structure information (mainly to reproduce the
calling stack) and the parameters of the functions.

We make this choice because we want to keep things simple ; having only a
single level of memory to manage is easier in this first attempt. We don’t want
to make a fully functional portable system but rather a proof of concept.

In the future, it will be possible to implement the local stacks in the local
memories of the processors. It will probably be more efficient as an access in a
local memory is faster than an access in a shared memory.
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4 Case sudy: MPEG-4 Encoder

In this section, we will first quickly analyze an existing parallel implementations
and then, explain how we did an implementation using work-stealing. We assume
that the reader has a knowledge of the MPEG-4 standard.

4.1 Analysis of an Existing Implementation

An approach for a parallel implementation is to use fine grain parallelism. This
method is fully described in [5]. The idea is to search for the data dependencies
in the algorithm at a very fine grain level. Then, this model is transformed to
add a proper mapping and scheduling. Finally, with all the added meta-data,
the compiler is able to generate a parallel code for an SMP machine.

This approach of parallelism is very application-dependent. Moreover, it does
not allow to adapt the computations to the actual picture. It is close to the static
scheduling problems we talked about previously (see 2.1).

4.2 Adaptive Parallel MPEG-4 Encoding

Our approach is to use the work-stealing scheduler that we implemented (see 3).
We first make some simplifications to the MPEG-4 encoder, based on the

data dependencies analysis: we only consider the encoding of one frame, as each
frame has to be processed after the previous one. Then, we also consider to use a
motion compensation algorithm that only depends on the previous picture and
not the current one. This allows to compute all the macroblocks in parallel.

Then, we introduce a little overhead in the algorithm to improve the perfor-
mance of work-stealing. We make a recursive cut of the image i.e. we make a
function that simply cut the image in several parts and apply itself recursively
on each part until there is only one macroblock in the part. Then, the normal
function effectively treats the macroblock.

This overhead allows to create tasks of different weight at each step of the
recursion so that big task will be stolen first. As a consequence, the number of
steals decreases as each processor computes big tasks before idling.

This configuration given, we can make some theoretical analysis relative to
our application.

The total work T1 is the sum of the computation of all the macroblocks (which
is in fact the sequential work Ts) plus the overhead implied by the recursive cut
and by the work-stealing mechanisms.

T∞ is, in our simple case, the largest computation time among the compu-
tation times of all the macroblocks. It should not be too far from the average
computation time of one macroblock. In fact, to be in the condition of the greedy
scheduling theorem [4] (see 2.2), the average parallelism T1/T∞ should be close
to the number p of processors.

In our case, we make our tests with CIF pictures. That represents roughly 400
macroblocks1. And we consider that p is not higher than 20. So, that allows the
1 In fact, 22*18=396 macroblocks.
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worse macroblock to be computed 20 times slower than an average macroblock,
which should be largely enough.

5 Experiments on an MPSoC Platform and Results

This section presents the results we obtained in our experiments.
For our experiments, we used usual test sequences in CIF format: coastguard,

football, foreman, news and stefan. We encoded them with the algorithm pre-
sented in 4.2.

We made a first series of experiments on each sequence. We encoded 30 con-
secutive frames of each sequence. Then, we calculated the average T∞ and the
average average parallelism (T1/T∞) on the overall frames. Finally, we chose a
picture whose caracteristics were close to this average for the second series of
experiments.

The reason for doing this is that we wanted to make our experiments on real
pictures and not on average unreal pictures, as the work-stealing scheduler takes
advantage of the non-uniformity of input data. So we adopted this compromise
to have an average real picture for our test.

In the second series of experiments, we compare our work-stealing scheduling
with a static placement scheduling. The static placement scheduling consisted in
sharing themacroblocks in strips of 18macroblocks (theheightof thepicture).Each
processor receives the same number of strips with a maximum difference of 1.

We tested both on the same frame (the one chosen previously) of each sequence
and we calculated the parallel efficiency (T1/(p ∗ Tp)).

Fig. 2. (a) Gain of the work-stealing sheduling over the static placement scheduling ;
(b) Number of steals per processors for the work-stealing scheduling

Figure 2(a) shows the gain in term of time of the work-stealing method over
the static method (i.e. Tpsp/Tpws) for p processors, p varying from 2 to 10 (in-
cluded).

With four or more processors, the static placement scheduling is at least 10%
slower. In the worse case, it can even be 50% slower than the work-stealing
scheduling.
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We can notice that there is a big improvement with 7 processors. This can
be explained: in the case of the static placement, a total of 22 strips are shared
among 7 processors, which means that all processors receives 3 strips except the
last one which receives 4 strips. While the last processor computes its fourth
strip, the other one are simply waiting. That’s where the dynamic scheduling is
far more efficient, allowing the idling processors to help the last processor.

Another static placement could have been chosen. More efficient static place-
ment will be used and compared to in the future. But this shows that in a real
case, the static placement can be penalizing.

In addition, for the work-stealing scheduling, we calculated the number of
steals per processor. Figure 2(b) shows the number of steals per processor for p
processors, p varying from 2 to 10 (included).

Figure 2(b) proves that the number of steals per processor does not grow too
much and then remains constant. Further measures with a higher number of
processors confirm this. This totally sticks to the theory (see 2.2): the amount
of communications between processors remains quite low, whatever the number
of processors.

These results must take into account that the overhead of the work-stealing
scheduling does not have much impact as we have been able to make a very
optimized version. A more general implementation would have more weight.
Moreover, this results are based on simulations and the simulations must be
improved in order to have more precise results.

6 Conclusion and Perspectives

In this paper, we demonstrated that the work-stealing scheduling, that was
proved efficient for distributed systems, is worth being considered for MPSoC.
We made some experiments on a MPSoC simulation platform based on SystemC
with a MPEG-4 encoding algorithm that gave us a gain of 10% at least for four
processors or more.

This is currently a proof of concept. We aim at improving the implementation
of the work-stealing scheduler, and to use better MPSoC simulations so that we
can have even more reliable results.
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