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tThis paper addresses the following general problem of tree regular model-
he
king:de
ide whether R∗(L) ∩ Lp = ∅ where R∗ is the re�exive and transitive 
losure ofa su

essor relation indu
ed by a term rewriting system R, and L and Lp are bothregular tree languages. We develop an automati
 approximation-based te
hnique tohandle this � unde
idable in general � problem in the 
ase when term rewritingsystem rules are left-quadrati
. The most 
ommon pra
ti
al 
ase is handled thisway.Keywords: Rewriting te
hniques, tree automata, left-linearity, se
urity.1 Introdu
tionAutomati
 veri�
ation of software systems is one of the most 
hallenging re-sear
h problems in 
omputer aided veri�
ation. In this 
ontext, regular model-
he
king has been proposed as a general framework for analysing and verifyingin�nite state systems. In this framework, systems are modelled using regularrepresentations: the systems 
on�gurations are modelled by �nite words ortrees (of unbounded size) and the dynami
 behaviour of systems is modelledeither by a transdu
er or a (term) rewriting system. Afterwards, a systemrea
hability-based analysis is redu
ed to the regular languages 
losure 
ompu-tation under (term) rewriting systems: given a regular language L, a relation

R indu
ed by a (term) rewriting system and a regular set LP of bad 
on�g-urations, the problem is to de
ide whether R∗(L) ∩ Lp = ∅ where R∗ is thePreprint submitted to Elsevier July 4, 2008



re�exive and transitive 
losure of R. Sin
e R∗(L) is in general neither regularnor de
idable, several approa
hes handle restri
ted 
ases of this problem.In this paper we address this problem for tree regular languages by auto-mati
ally 
omputing over- and under-approximations of R∗(L). Computingan over-approximation Kover of R∗(L) may be useful for the veri�
ation if
Kover ∩ Lp = ∅, proving that R∗(L) ∩ Lp = ∅. Dually, under-approximationmay be suitable to prove that R∗(L) ∩ Lp 6= ∅. This approa
h is relevant ifthe 
omputed approximations are not too 
oarse. Another important pointis that in general, there are some restri
tions on the rewriting systems in or-der to ensure the soundness of the above approa
h. This paper follows andadapts an expert-human guided approximation te
hnique introdu
ed in [18℄for left-linear term-rewriting systems. More pre
isely, the paper 1) extends thisapproa
h to term rewriting systems with left-quadrati
 rules, and 2) illustratesits advantages on examples.Related Work Given a term rewriting system R and two ground terms sand t, de
iding whether s →∗

R t is a 
entral question in automati
 proof the-ory. This problem is shown de
idable for term rewriting systems whi
h areterminating but it is unde
idable in general. Several synta
ti
 
lasses of termrewriting systems have been pointed out to have a de
idable a

essibility prob-lem, for instan
e by providing an algorithm to 
ompute R∗(L) when L is aregular tree language [15,13,20,23,25,26℄. In [18℄, authors fo
us on a general
ompletion based human-guided te
hnique. This te
hnique has been su

ess-fully used (not automati
ally) to prove the se
urity of 
ryptographi
 proto
ols[19℄ and re
ently Java Byte
ode programs [5℄. This framework was extended in[24℄ to languages a

epted by AC-tree automata. Several work on tree regularmodel 
he
king are proposed in [9,1,8,21℄.Layout of the paper The paper is organised as follows. Se
tion 2 introdu
esnotations and the basi
 
ompletion approa
h. Next, Se
tion 3 presents themain theoreti
al 
ontributions of the paper, while Se
tion 4 des
ribes a familyof examples and gives related se
urity issues. Finally, Se
tion 5 
on
ludes.2 Preliminaries2.1 Terms and TRSsComprehensive surveys 
an be found in [16,2℄ for term rewriting systems, andin [12,20℄ for tree automata and tree language theory.Let F be a �nite set of symbols, asso
iated with an arity fun
tion ar : F → N,2



and let X be a 
ountable set of variables. T (F ,X ) denotes the set of terms,and T (F) denotes the set of ground terms (terms without variables). The setof variables of a term t is denoted by Var(t). A substitution is a fun
tion σfrom X into T (F ,X ), whi
h 
an be extended uniquely to an endomorphismof T (F ,X ). A position p for a term t is a word over N. The empty sequen
e
ǫ denotes the top-most position. The set Pos(t) of positions of a term t isindu
tively de�ned by: Pos(t) = {ǫ} if t ∈ X and Pos(f(t1, . . . , tn)) = {ǫ} ∪
{i.p | 1 ≤ i ≤ n and p ∈ Pos(ti)}. If p ∈ Pos(t), then t|p denotes the subtermof t at position p and t[s]p denotes the term obtained by repla
ement of thesubterm t|p at position p by the term s. We also denote by t(p) the symbolo

urring in t at position p. Given a term t ∈ T (F ,X ), we denote PosA(t) ⊆
Pos(t) the set of positions of t su
h that PosA(t) = {p ∈ Pos(t) | t(p) ∈ A}.Thus PosF (t) is the set of fun
tional positions of t.A term rewriting system (TRS) R is a set of rewrite rules l → r, where
l, r ∈ T (F ,X ) and l 6∈ X . A rewrite rule l → r is left-linear (resp. right-linear) if ea
h variable of l (resp. r) o

urs only on
e within l (resp. r). ATRS R is left-linear (resp. right-linear) if every rewrite rule l → r of R is left-linear (resp. right-linear). A TRS R is linear if it is right and left-linear. TheTRS R indu
es a rewriting relation →R on terms whose re�exive transitive
losure is written →⋆

R. The set of R-des
endants of a set of ground terms Eis R∗(E) = {t ∈ T (F) | ∃s ∈ E s.t. s →⋆
R t}.2.2 Tree Automata CompletionNote that R∗(E) is possibly in�nite: R may not terminate and/or E may bein�nite. The setR∗(E) is generally not 
omputable [20℄. However, it is possibleto over-approximate it [18℄ using tree automata, i.e. a �nite representation ofin�nite (regular) sets of terms. We next de�ne tree automata.Let Q be a �nite set of symbols, of arity 0, 
alled states su
h that Q∩F = ∅.

T (F ∪ Q) is 
alled the set of 
on�gurations A transition is a rewrite rule
c → q, where c ∈ T (F ∪Q) is a 
on�guration and q ∈ Q. A normalisedtransition is a transition c → q where c = f(q1, . . . , qn), f ∈ F , ar(f) = n,and q1, . . . , qn ∈ Q. A bottom-up non-deterministi
 �nite tree automaton (treeautomaton for short) is a quadruple A = 〈F ,Q,Qf , ∆〉, Qf ⊆ Q and ∆is a �nite set of normalised transitions. The rewriting relation on T (F ∪Q)indu
ed by the transition set ∆ of A is denoted →∆. When ∆ is 
lear fromthe 
ontext, →∆ is also written →A. The tree language re
ognised by A in astate q is L(A, q) = {t ∈ T (F) | t →⋆

A q}. The language re
ognised by A is
L(A) =

⋃

q∈Qf
L(A, q). A tree language is regular if and only if it is re
ognisedby a tree automaton. 3



Let us now re
all how tree automata and TRSs 
an be used for term rea
h-ability analysis. Given a tree automaton A and a TRS R, the tree automata
ompletion algorithm proposed in [18℄ 
omputes a tree automaton Ak
R su
hthat L(Ak

R) = R∗(L(A)) when it is possible (for the 
lasses of TRSs wherean exa
t 
omputation is possible, see [18℄), and su
h that L(Ak
R) ⊇ R∗(L(A))otherwise.The tree automata 
ompletion works as follows. From A = A0

R 
ompletionbuilds a sequen
e A0
R,A1

R . . .Ak
R of automata su
h that if s ∈ L(Ai

R) and
s →R t then t ∈ L(Ai+1

R ). If there is a �x-point automaton Ak
R su
h that

R∗(L(Ak
R)) = L(Ak

R), then L(Ak
R) = R∗(L(A0

R)) (or L(Ak
R) ⊇ R∗(L(A))if R is in no 
lass of [18℄). To build Ai+1

R from Ai
R, a 
ompletion step isa
hieved. It 
onsists of �nding 
riti
al pairs between →R and →Ai

R
. To de�nethe notion of 
riti
al pair, the substitution de�nition is extended to terms in

T (F ∪ Q). For a substitution σ : X 7→ Q and a rule l → r ∈ R su
h that
Var(r) ⊆ Var(l), if there exists q ∈ Q satisfying lσ →∗

Ai
R

q then lσ →∗
Ai

R

q and
lσ →R rσ is a 
riti
al pair. Note that sin
e R and Ai

R is �nite, there is only a�nite number of 
riti
al pairs. Thus, for every 
riti
al pair dete
ted between
R and Ai

R su
h that rσ 6→∗
Ai

R

q, the tree automaton Ai+1
R is 
onstru
tedby adding a new transition rσ → q to Ai

R. Consequently, Ai+1
R re
ognises

rσ in q, i.e. rσ →Ai+1

R

q. However, the transition rσ → q is not ne
essarilynormalised. Then, we use abstra
tion fun
tions whose goal is to de�ne a set ofnormalised transitions Norm su
h that rσ →∗
Norm q. Thus, instead of addingthe transition rσ → q whi
h is not normalised, the set of transitions Norm isadded to ∆, i.e., the transition set of the 
urrent automaton Ai

R.We give below a very general de�nition of abstra
tion fun
tions whi
h allot toea
h fun
tional position of rσ a state of Q. The role of an abstra
tion fun
tionremains to de�ne equivalen
e 
lasses of terms where one 
lass 
orrespondsto one state of Q. An abstra
tion fun
tion γ is a fun
tion γ : ((R × (X →
Q)×Q) 7→ N

∗) 7→ Q su
h that γ(l → r, σ, q)(ǫ) = q. Thus, given an abstra
tionfun
tion γ, the normalisation of a transition rσ → q is de�ned as follows.Let γ be an abstra
tion fun
tion, ∆ be a transition set, l → r ∈ R with
Var(r) ⊆ Var(l) and σ : X → Q su
h that lσ →∗

∆ q. The γ−normalisation ofthe transition rσ → q, written Normγ(l → r, σ, q), is de�ned by:
Normγ(l → r, σ, q) = {r(p)(βp.1, . . . , βp.n) → β |

p ∈ PosF (r),

β =











q if p = ǫ

γ(l → r, σ, q)(p) otherwise.

βp.i =











σ(r(p.i)) if r(p.i) ∈ X

γ(l → r, σ, q)(p.i) otherwise.4



Example 1 Let A = 〈F ,Q,Qf , ∆〉 be the tree automaton su
h that F =
{a, b, c, d, e, f, ω} with ar(s) = 1 with s ∈ {a, b, c, d, e, f} and ar(ω) = 0,
Q = {qb, qf , qω}, Qf = {qf} and ∆ = {ω → qω, b(qω) → qb, a(qb) → qf}.Thus, L(A) = {a(b(ω))}. Given the TRS R = {a(x) → c(d(x)), b(x) →
e(f(x))}, two 
riti
al pairs are 
omputed: a(qb) →∗

A qf , a(qb) →R c(d(qb))and b(qω) →∗
A b(qω) →R e(f(qω)). Let γ be the abstra
tion fun
tion su
h that

γ(a(x) → c(d(x)), {x → qb}, qf)(ǫ) = qf , γ(a(x) → c(d(x)), {x → qb}, qf )(1) =
qf , γ(b(x) → e(f(x)), {x → qω}, qb)(ǫ) = qb and γ(b(x) → e(f(x)), {x →
qω}, qb)(1) = qb. So, Normγ(a(x) → c(d(x)), {x → qb}, qf) = {d(qb) →
qf , c(qf) → qf} and Normγ(b(x) → e(f(x)), {x → qω}, qb) = {f(qω) →
qb, e(qb) → qb}.Now we formally de�ne what a 
ompletion step is. Let A = 〈F ,Q,Qf , ∆〉 be atree automaton, γ an abstra
tion fun
tion and R a left-linear TRS. We de�nea tree automaton CR

γ (A) = 〈F ,Q′,Q′
f , ∆

′〉 with:
• ∆′ = ∆ ∪

⋃

l→r∈R, σ:X 7→Q, lσ→∗
A

q,rσ 6→∗
A

q Normγ(l → r, σ, q),
• Q′ = {q | c → q ∈ ∆′} and
• Q′

f = Qf .Example 2 Given A, R and γ of Example 1, performing one 
ompletionstep on A gives the automaton CR
γ (A) su
h that CR

γ (A) = 〈F ,Q,Qf , ∆
′〉where ∆′ = ∆ ∪ Normγ(a(x) → c(d(x)), {x → qb}, qf) ∪ Normγ(b(x) →

e(f(x)), {x → qω}, qb) = {ω → qω, b(qω) → qb, a(qb) → qf , d(qb) → qf , c(qf) →
qf , f(qω) → qb, e(qb) → qb}. Noti
e that CR

γ (A) is R-
lose, and in fa
t an over-approximation of R∗(L(A)) is 
omputed. Indeed, the tree automaton CR
γ (A)re
ognises the term a(e(e(f(ω)))) when

R∗(L(A)) = {a(b(ω)), a(e(f(ω))), c(d(b(ω))), c(d(e(f(ω))))}.Proposition 3 ([18, Theorem 1℄) Let A be a tree automaton and R be aTRS su
h that A is deterministi
 or R is left-linear, and for every l → r ∈ R,
Var(r) ⊆ Var(l). For any abstra
tion fun
tion γ, one has:

L(A) ∪R(L(A)) ⊆ CR
γ (A).In addition, an abstra
tion fun
tions 
an be de�ned in su
h a way only terms,a
tually rea
hable, will be 
omputed. This 
lass of abstra
tion fun
tions is
alled (A,R)−exa
t abstra
tion fun
tions in [3℄.Let A = 〈F ,Q,Qf , ∆) be a tree automaton and R be a TRS. Let Im(γ) =

{q | ∀l → r ∈ R, ∀p ∈ PosF(r) s.t. γ(l → r, σ, q)(p) = q}. An abstra
tionfun
tion γ is (A,R)−exa
t if γ is inje
tive and Im(γ) ∩ Q = ∅.By adapting the proof of Theorem 2 in [18℄ to the new 
lass of abstra
tions, weshow that with su
h abstra
tion fun
tions, only rea
hable terms are 
omputed.5



Theorem 1 ([18, Theorem 2℄) Let A be a tree automaton and R be a TRSsu
h that A is deterministi
 or R is right-linear. Let α be an (A,R)−exa
tabstra
tion fun
tion. One has: CR
α (A) ⊆ R∗(L(A)).We now give the general result in [18℄ saying that, if there exists a �x-pointautomaton, then its language 
ontains all the terms a
tually rea
hable byrewriting, at least. (A,R)−exa
t abstra
tion fun
tions.Theorem 2 ([18, Theorem 1℄) Let A, R and γ be respe
tively a tree au-tomaton, a TRS. For any abstra
tion fun
tion, if there exists N ∈ N and N ≥

0 su
h that (CR
γ )(N)(A) = (CR

γ )(N+1)(A), then R∗(L(A)) ⊆ L((CR
γ )(N)(A)).The above method does not work for all TRSs. For instan
e, 
onsider a 
on-stant A and the tree automatonA = ({q1, q2, qf}, {A → q1, A → q2, f(q1, q2) →

qf}, {qf}) and the TRSR = {f(x, x) → g(x)}. There is no substitution σ su
hthat lσ →∗
A q, for a q in {q1, q2, qf}. Thus, following the pro
edure, there isno transition to add. But f(A, A) ∈ L(A). Thus g(A) ∈ R(L(A)). Sin
e

g(A) /∈ L(A), the pro
edure stops (in fa
t does not begin) before providingan over-approximation of R∗(L(A)).3 ContributionsThis se
tion extends an approximation-based te
hnique introdu
ed in [18℄ forleft-linear term-rewriting systems, to TRSs with left-quadrati
 rules.Let A = (Q, ∆,Qf ) be a �nite bottom-up tree automaton. The automaton
A� = (Q�, ∆�,Q�

f ) is de�ned by:
• Q� = {{q} | q ∈ Q} ∪ {{q1, q2} | q1, q2 ∈ Q} (states of Q� are denoted witha � exponent),
• Q�

f = {{q} | q ∈ Qf},
• ∆� = {f(q�

1 , . . . , q�

n ) → q� | ∀q ∈ q�, ∃q1, . . . , qn ∈ Q, ∀1 ≤ i ≤ n, qi ∈
q�

i and f(q1, . . . , qn) → q ∈ ∆}.To illustrate the de�nition above, let's 
onsider the automaton A whose �nalstate is qf and whose transitions are A → q1, A → q2 and f(q1, q2) → qf .The states of A� are all pairs of states and singletons over {q1, q2, qf}, andthe transitions are A → {q1}, A → {q2}, A → {q1, q2}, f({q1}, {q2}) → {qf},
f({q1, qi}, {q2, qj}) → {qf} for all i, j ∈ {1, 2, f}. When 
onsidering only thea

essible states, among all the transitions above we just have the transition
f({q1, q2}, {q2, q1}) → {qf} (i = 2 and j = 1).Proposition 4 One has L(A) = L(A�).6



Proof. By de�nition ofA�, if f(q1, . . . , qn) → q ∈ ∆, then f({q1}, . . . , {qn}) →
{q} ∈ ∆�. Consequently, for every term t su
h that t →∗

A q, one also has
t →∗

A� {q}. Sin
e for every qf ∈ Qf , {qf} ∈ Q�

f , L(A) ⊆ L(A�).It remains to prove that L(A�) ⊆ L(A). We will prove by indu
tion on k thatfor every k ≥ 1, for every term t, every state q� of A�, if t →k
A� q�, then forall q ∈ q�, t →k

A q.
• If t →A� q�, then, by de�nition of ∆�, t is a 
onstant and for all q ∈ q�,there exists a transition t → q of A.
• Assume now that the 
laim is true for a �xed positive integer k. Let t be aterm and q� ∈ A� su
h that t →k+1

A� q�. Consequently, there exists f ∈ Fnsu
h that t →k
A� f(q�

1 , . . . . . . , q�

n ) →A� q�. It follows that t = f(t1, . . . , tk)and for all 1 ≤ i ≤ k, ti →
k
A� q�

i . Using the indu
tion hypothesis, ti →
k
A qi,for all qi ∈ q�

i . Consequently, for all q ∈ q�, f(q1, . . . , qn) → q ∈ ∆, provingthe indu
tion.So, L(A�) ⊆ L(A). 2Lemma 5 If C[q1, . . . , qn] →∗
A q and if q�

1 , . . . q�

n are states of A� satisfying
qi ∈ q�

i for all 1 ≤ i ≤ n, then C[q�

1 , . . . , q�

n ] →∗
A� {q}.Proof. We prove by indu
tion on k that for every k ≥ 1, if C[q1, . . . , qn] →k

A qand if q�

1 , . . . q�

n are states of A� satisfying qi ∈ q�

i for all 1 ≤ i ≤ n, then
C[q�

1 , . . . , q�

n ] →k
A� {q}.

• If k = 1, then C[q1, . . . , qn] → q is a transition of A. Therefore, by de�nitionof ∆�, C[q�

1 , . . . , q�

n ] → {q} is a transition of A�.
• Assume now that the proposition is true for all j ≤ k and that C[q1, . . . , qn] →k+1

A

q. There exist q′1, . . . , q
′
ℓ states of A and f ∈ Fℓ su
h that C[q1, . . . , qn] →k

A

f(q′1, . . . , q
′
ℓ) →A q. Consequently, C[q1, . . . , qn] is of the form C[q1, . . . , qn] =

f(t1, . . . , tℓ) where the ti's are terms over F ∪ {q1, . . . , qn}. Moreover, forall i, there exists ki ≤ k su
h that ti →ki

A {q′i} and ∑

i ki = k. There-fore, by indu
tion hypothesis, t�

i →ki

A� {q′i} where t�

i is the term obtainedfrom ti by substituting qi by q�

i . Now, sin
e f(q′1, . . . , q
′
ℓ) → q is a tran-sition of A, f({q′1}, . . . , {q

′
ℓ}) → {q} is a transition of A�. It follows that

C[q�

1 , . . . , q�

n ] →k+1
A� {q}, proving the lemma.

2Lemma 6 If t →∗
A q1 and t →∗

A q2, then t →∗
A� {q1, q2}.Proof. If t →∗

A q1 and t →∗
A q2, then there exists a fun
tion π1 (reps. π2)from positions of t into Q su
h that π1(ε) = q1 (resp. π2(ε) = q2) and for7



every position p of t, if tp ∈ Fn, then t(p)(π1(p.1), . . . , π1(p.n)) → π1(p) (resp.
t(p)(π2(p.1), . . . , π2(p.n)) → π2(p)) is a transition of A. Therefore, by de�ni-tion of ∆�, t(p)({π1(p.1), π2(p.1)}, . . . , {π1(p.n), π2(p.n)}) → {π1(p), π2(p)} isin ∆�. It follows that t →∗

A� {q1, q2}. 2Proposition 7 If R is left-quadrati
, then R(L(A)) ∪ L(A) ⊆ L(Cγ(A
�)).Proof. Sin
e L(A) = L(A�) and sin
e L(A�) ⊆ L(Cγ(A

�)), L(A) ⊆
L(Cγ(A

�)).Let t ∈ R(L(A)). By de�nition there exists a rule l → r ∈ R, a position p of
t and a substitution µ from X into T (F) su
h that

t = t[rµ]p and t[lµ]p ∈ L(A) (1)It follows there exist states q, qf of A su
h that qf is �nal,
lµ →∗

A q and t[q]p →∗
A qf . (2)Consequently,

lµ →∗
A� {q} and t[{q}]p →

∗
A� {qf}. (3)If rµ →∗

A� {q}, then (3) implies that t[rµ]p →∗
A� {qf}. In this 
ase, sin
e

t = t[rµ]p and sin
e {qf} is by 
onstru
tion a �nal state of A�, t is in L(A�),whi
h is a subset of L(Cγ(A
�)).Now we may assume that rµ 6→∗

A� {q}. Let Pl be the set of variable positionsof l; i.e. Pl = {p | l(p) ∈ X )}. Set Pl = {p1, . . . , pℓ}. Sin
e lµ →∗
A q, by (2)there exist states q1, . . . , qℓ of A su
h that

µ(l(pi)) →
∗
A qi and l[q1]p1

. . . [qℓ]pℓ
→∗

A q. (4)We de�ne the substitution σ from variables o

urring in l into 2Q by: σ(xi) =
{qi | l(pi) = xi}. Sin
e l is left-quadrati
, for ea
h xi, σ(xi) 
ontains at mosttwo states. We 
laim that lσ →∗

A� q. Indeed by (4) and by Lemma 6 for ea
h
xi o

urring in l, µ(xi) →∗

A� σ(xi). It follows that lµ →∗
A� lσ. By (4) andusing Lemma 5, lσ →∗

A� {q}, proving the 
laim. By 
onstru
tion of Cγ(A
�),

rσ →∗
Cγ(A�) {q}. Moreover, by de�nition of σ, rµ →∗

A� rσ. It follows that
t = t[rµ]p →∗

A� t[rσ]p →
∗
Cγ(A�) t[{q}]p →

∗
A� {qf},whi
h 
ompletes the proof. 2Proposition 8 IfR is right-linear and if α is (A,R)-exa
t, then L(Cγ(A

�)) ⊆
R∗(L(A)).Proof. This is a dire
t 
onsequen
e of Theorem 1 and Proposition 4. 2

8



4 Example and Appli
ation Domains4.1 ExampleWe have tested our approa
h on the following family of examples. We �rst
onsider a family of tree automata (An) de�ned as follows: the set of states of
An is {q1, . . . , q2n+2, qf}, the set of �nal state is {qf}, and the set of transitionsis {ω → q1, ω → q2, a(q1) → q1, a(q2) → q2, b(q1) → q1, b(q2) → q2, a(q1) →
q3, a(q2) → q4, a(qi) → qi+2, b(qi) → qi+2, f(q2n+1, q2n+2) → qf}, for i ≥ 3.The automaton An a

epts the set of terms of the form f(t1, t2) where t1and t2 are terms over {a, b, ω} su
h that t1|1n−1 and t2|1n−1 exist and are in
{a}.{a, b}∗. Roughly speaking, when using word automata, a(b(ω)) denotes
ab, and ea
h pair (t1, t2) 
an be viewed as words of L = {a, b}n−1.{a}.{a, b}∗satisfying the 
ondition above. We se
ond 
onsider the term rewriting system
R 
ontaining the single rule f(x, x) → x, and we want to prove that bn−1a(ω) ∈
R∗(L(An)). Using �nitely many times Theorem 1 dire
tly onAn may not provethe results. However, to prove the results, one 
an determinise An beforeusing Theorem 1. But, the minimal automaton of L(An) has 2n states atleast [22℄, [Exer
ise 3.20, p. 73℄. Then, the 
ompletion should be applied tothis automaton. Consequently, this automati
 proof requires an exponentialtime step. Using our approa
h, one 
an 
ompute A� and apply Proposition 8,that provides the proof requiring a polynomial time step.4.2 Left-linearity and Se
urity Issues4.2.1 Se
urity Proto
ol AnalysisThe TRSs used in the se
urity proto
ol veri�
ation 
ontext are often nonleft-linear. Indeed, there is a lot of proto
ols that 
annot be modeled by left-linear TRSs. Unfortunately, to be sound, the approximation-based analysisdes
ribed in [19℄ requires the use of left-linear TRSs. Nevertheless, this method
an still be applied to some non left-linear TRSs, whi
h satisfy some weaker
onditions. In [17℄ the authors propose new linearity 
onditions. However,these new 
onditions are not well-adapted to be automati
ally 
he
ked.In our previous work [6℄ we explain how to de�ne a 
riterion on R and A tomake the pro
edure automati
ally work for industrial proto
ols analysis. This
riterion ensures the soundness of the method des
ribed in [19,17℄. However,to handle proto
ols the approa
h in [6℄ is based on a kind of 
onstant typing.In [7℄ we go further and propose a pro
edure supporting a fully automati
analysis and handling � without typing � algebrai
 properties like XOR.9



Let us �rst remark that the 
riterion de�ned in [17℄ does not allow managingthe XOR non-left linear rule. Se
ond, in [6℄ we have restri
ted XOR operations totyped terms to deal with the XOR non-left linear rule. However, some proto
olsare known to be �awed by type 
onfusing atta
ks [14,10,11℄. Noti
e that ourapproa
h in [7℄ 
an be applied to any kinds of TRSs. Moreover, it 
an 
opewith exponentiation algebrai
 properties and this way analyse Di�e-Hellmanbased proto
ols.4.2.2 Ba
kward Analysis of Java Byte
odeA re
ent work [4℄, dedi
ated to the stati
 analysis of Java byte
ode programsusing term-rewriting systems, provides an automati
 pro
edure to translate aJava byte
ode into a term rewriting system modeling the 
ode exe
ution onthe Java Virtual Ma
hine. In this 
ontext, generated TRSs are left-linear butright-quadrati
. In order to 
ompute approximation re�nements as in [3℄ orto manage ba
kward analyses that are � in general and in pra
ti
e � moree�
ient that forward analyses � term rewriting systems have to be turnedleft-right, i.e. left- and right-hand sides of rules have to be permuted. By thispermutation right-quadrati
 TRSs be
ome left-quadrati
 ones.5 Con
lusionRegular approximation te
hniques have been su

essfully used in the 
ontextof se
urity proto
ol analysis. In order to apply them to other appli
ations,this paper proposed an extension of the 
ompletion pro
edure for handling left-quadrati
 rules. Our 
ontributions allow analysing some rea
hability problemsusing polynomial steps 
omputing A�, rather than automata determinisationsteps that are exponential, even in pra
ti
al 
ases. Noti
e that the approa
hpresented only for quadrati
 rules 
an be extended to more 
omplex TRSs.We intend to optimise this te
hnique: polynomial is better than exponentialbut may also lead to huge automata in few steps. We have been implementingthe te
hniques in an e�
ient rewriting tool in order to investigate 
omplexsystems ba
kward analyses.Referen
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