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Abstract 

We analytically calculate and discuss the radio-frequency spectrum of the so-

called Akhmediev breathers, a class of nonlinear solutions of the nonlinear 

Schrodinger equation that governs the propagation in a single mode optical 

fiber. We propose a practical application of ABs to the field of ultra-wideband 

pulse generation. 
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1. Introduction 

Solitons on finite background (SFB) are solutions of the nonlinear Schrödinger 

equation (NLSE) that are presently stimulating a renewed and widespread 

attention in nonlinear science. Even if their analytical expressions have been 

proposed for more than 25 years [1, 2], these nonlinear structures have been 

only recently identified as promising prototypes of the infamous oceanic rogue 

waves [3, 4]. Indeed, due to the periodic exchange of energy between a 

continuous background and a localized structure, an initially small 

perturbation can exponentially grow into a brief and intense spike before 

disappearing. With the emergence of the field of optical rogue waves, 

theoretical and experimental works have confirmed that optical fibers 

represent an ideal testbed to easily generate and study SFB : Peregrine 

soliton [5], Akhmediev breathers (ABs) [6], or Kuznetsov-Ma (KM) solitons [7] 

have indeed been demonstrated taking advantage of widely available 

components for ultrafast optics. Connections with modulation instability [8], 

supercontinuum generation [9] and generation of ultrashort structures [10, 11] 

have recently been suggested but at this stage, no solution has been 

designed to take advantage of the specific features of the SFB. 

In this context, it sounds appealing to investigate the potential of 

Akhmediev breathers in the field of optical ultra-wideband pulse generation. 

Indeed, whereas the temporal intensity or phase profiles [5, 12], the 

associated optical spectra [6] or the longitudinal recurrence [12, 13], have 

already been the subject of cautious theoretical and experimental works, the 

radio-frequency (RF) spectrum has not been exploited yet. 



We analytically calculate in this contribution the RF spectrum of ABs 

and demonstrate that they exhibit an ultra-wideband spectrum whose central 

frequency depends on the system parameters. This letter will be organized as 

follows. After having recalled the specific features of ABs, we provide the 

analytical expression of their RF spectrum. The evolution of the central 

frequency of this spectrum according to the parameters of the AB is then 

discussed. Finally, we compare the RF spectrum of ABs with spectra of usual 

Gaussian singlets and doublets for practical application to ultra-wideband 

pulse generation. 

 

 

2. Akhmediev breathers 

The propagation of light in optical fibers is described by the NLSE : 
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where z  and t  denote the distance and retarded time (in the frame travelling 

at the group-velocity) coordinates;  2β  and γ  are the group velocity dispersion 

and the nonlinear Kerr coefficient, and ( , )t zψ  is the field envelope. In order to 

simplify the discussion, it is interesting to introduce the normalized distance ξ  

related to the dimensional distance via / NLz Lξ =  with the nonlinear length 

( )01/NLL Pγ=  for an initial plane wave of power 0P . 

 

AB is a class of solutions of the NLSE whose general expression (neglecting 

a term of propagating phase) reads as : 
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The parameters a and b are the normalized perturbation frequency and 

instability growth rate, and in dimensional units are given by 

( )2
mod2 1 / ca ω ω= −  and 8 (1 2 )b a a= − . Here modω  denotes the dimensional 

modulation frequency in the range mod0 cω ω< <  , where 2
0 24 /c Pω γ β= . a  is 

comprised between 0 and 0.5, the value a = 0.5 leading to the solution known 

as the Peregrine soliton.  

 

At the point of maximum compression (i.e. at  0ξ = ), the compressed field is 

given by :  
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We compare the temporal intensity profiles obtained for a selection of three 

values of a  (0.25, 0.375 and 0.47). The value a = 0.25 leads to the maximum 

of gain of the modulation instability process whereas 0.47 represents the 

highest value of a that has been to date experimentally reported [5]. The 

various examples are plotted on panels (1) of Fig. 1 (a = 0.25, 0.375 and 0.47 

correspond to subplots a, b and c respectively). One can then clearly notice 

ultrashort and intense spikes of light lying over a continuous background as 

well as the increasing compression experienced for higher values of a .  

 

The spectrum ( )s ω  of the AB (i.e. the Fourier transform of Eq. (2), ω  

being the radial frequency) is well documented  [6] and exhibits a typical 



triangular shape when plotted on a logarithmic scale, highlighting the 

decrease of the frequency components. Due to the intrinsic temporal 

periodicity of ABs, the resulting spectrum is a comb with the amplitude ns  of 

the different frequency components given by [6] (here, factors of constant 

amplitude and phase are ignored):  
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with 1n ≥  and the parameter p  being mod2 / cp ω ω= . 

By stating ( ) ( )
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one can rewrite Eq. (4) into the following form : 
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Results are illustrated on panels (2) of Fig. 1 with the optical spectra (i.e. the 

square of the various coefficients (5)) obtained for different values of a. The 

continuously decreasing amplitude of the sn coefficients is confirmed, with a 

spectral extend increasing with higher values of a. We can note that the 

specific value of a = 0.375 leads to a cancelling of the central spectral 

component of the field. 

 

 

3. Radio frequency spectrum of ABs 



The RF spectrum ( )S ω  of ABs (i.e. the Fourier transform of the square of Eq. 

(2)) has been to date fully unexplored and can be derived from Eqs (5) taking 

into account that ( ) ( ) ( )S s sω ω ω= ∗  with ∗  being the convolution product . It 

leads to the general amplitude of the sideband 1n ≥    ( r  being the complex 

conjugate of r) : 
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so that the overall envelope of the RF spectrum is given by : 
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The RF spectrums and the associated envelope corresponding to the fields 

investigated in the previous section are plotted on Fig. 2. Compared to the 

simple algebraic decay of the optical spectrum tails, the RF spectrum 

undergoes a more complex evolution with frequency. The most important 

feature that can be made out is that the RF spectrum does not exhibit a 

monotonic decrease with increasing frequency : the RF envelope of the ABs 

has a local maximum which frequency depends on the value of a. For a = 

0.25, the maximum of the RF spectrum is located at ω/ωmod = 1, whereas for a 

= 0.375 and 0.47, the maximum is shifted to the second and fourth spectral 

components respectively. 

One question that may arise is the influence of the propagation 

distance ξ . Figue 3(a) where the longitudinal evolution of the RF spectrum 

envelope for a = 0.47 is plotted outlines that the most significant shift is 

obtained at the point of maximum compression. From Eq. (7), one can 



evaluate more quantitatively the frequency ωmax at which the envelope is 

maximum : 
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which can be simplified at the point of maximum of compression (where 

2 1 2r a= −  and 1 1 2
2

a
a

q − −
= ) into : 
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Results are plotted in Fig. 3(b) and clearly points out that the central 

frequency continuously increases for increasing values of a. 

 

 

4. Comparison with simple shapes of ultra-wideband pulses 

The generation of an ultrashort pulse train with a maximum of the RF 

spectrum shifted towards high frequency is a feature of interest in the context 

of ultra-wideband pulse generation [14]. Indeed, as the experimental setup 

involved in the generation of ABs is remarkably simple and can be easily 

scaled to repetitions rates of several tens of GHz [5], it is worthy to compare 

the performance of the AB with the spectra of widely used pulse trains such 

as Gaussian singlet or doublets. 

We have therefore considered here an AB at the point of maximum 

compression with a value of a of 0.47. The resulting RF spectrum is compared 

on Fig. 4(a) with Gaussian singlets and doublets having the same central 

frequency. The RF spectrum of an AB is slightly broader compared with the 



singlet, but significantly larger than the spectrum of a doublet. Corresponding 

intensity profiles are compared on Fig. 4(b) and show that obtaining similar 

maximum frequencies of the RF spectrum requires a shorter structure in the 

case of an ABs. For the same average power, the ABs exhibits a higher peak 

level, so that the pulsed part better distinguishes from the continuous 

background. 

 

 

 

5. Conclusions 

We have analytically calculated the RF spectrum of ABs and highlighted a 

significant feature of the soliton over finite background: contrary to their optical 

spectrum, their RF spectrum does not exhibit a monotonic evolving shape and 

the location of the maximum of this spectrum can be directly related to the a 

parameter that takes both the fiber and light properties into account. To 

exploit this intrinsitic property of the ABs can be of interest for ultra-wideband 

pulse generation. Even if the performance of this pulse shape does not seem 

to compare favourably with usual Gaussian singlets and doublets, the ease of 

implementation of the experimental generation may constitute an attractive 

architecture if very high repetition rates are targeted. The present discussion 

has been carried out in the context of passive fiber generation but breathers 

can also be observed in microresonators [15], paving the way to the all-optical 

and cost-effective generation on a compact optical chip. The proposed 

approach further stress all the benefits that can be obtained from the 



controlled shaping occurring in a medium presenting dispersion and Kerr 

nonlinearity [16].  
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Figure captions: 
 
 
Fig. 1    Train of optical breathers for different values of a : a = 0.25, 0.375 and 

0.47 are plotted in panels a, b and c respectively. The temporal intensity 

profile at the point of maximum compression (Eq. (3)) is plotted in panels 1 

whereas the optical spectra (square of Eq. (4)) are displayed in panels 2. 

Time is normalized with respect to the period of the pulse train whereas 

frequency is normalized with respect to the repetition rate of the periodic 

signal. 

 
 
 
Fig. 2    RF spectra obtained for different values of a = 0.25, 0.375 and 0.47 

(subplots a, b, c respectively). The numerical Fourier transform of Eq. (3) 

(black line) is compared with the analytical predictions of Eq. (6) (solid black 

circles) and with the envelope of the RF spectrum (grey solid line, Eq. (7)). 

 
 
 
Fig. 3   (a) Longitudinal evolution of the envelope of the RF spectrum for a = 

0.47. (b) Evolution of the central frequency with respect to the parameter a at 

the point of maximum compression according to Eq. (9). 

 
 
 
Fig. 4    (a) Comparison of the envelopes of the RF spectrum of a train of ABs 

(solid black line, a = 0.47) with the RF spectrum of a Gaussian singlet (dash-

dotted line) and Gaussian doublet (dashed grey line) having similar central 

frequencies. (b) Comparison of the corresponding temporal intensity profiles. 
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Figure 3 
 
 
 

 
 
 
 
 
 



Figure 4 
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