
High Speed Parallel Kinematic Manipulator State Estimation

from Legs Observation

Erol Özgür, Redwan Dahmouche, Nicolas Andreff, Philippe Martinet

Abstract— To control dynamics of a parallel robot, we should
measure the state feedback accurately and fast. In this paper,
we show how to estimate positions and velocities simultaneously
(i.e., the state feedback) at a reasonable accuracy and speed. We
did this using only the sequential visual contours of the legs. A
single-iteration virtual visual servoing scheme regulates rapidly
an error of these contours. We validated this theory, a step to
control parallel robots at high speed by their leg kinematics,
with simulations and experiments.

I. INTRODUCTION

Dynamic control of robots requires fast feedback. Motor

encoders feed back the joint values fast enough to control

dynamics of serial robots. However, one still wishes to use

vision-based control schemes [1] for better performances of

robots, even though it is difficult to satisfy a reasonable

accuracy and frequency for visual feedback.

In serial robots, the solution for vision-based dynamic

control is found in a cascade of two control loops: (i) The

first inner loop, and also the fast one, compensates for the

dynamics. This inner loop uses an inverse dynamic model

based on joint values provided by the motor encoders at

high frequency. (ii) The second outer loop, slower one, uses

feedback of a vision sensor. This outer loop is actually a

kinematic control made possible by the inner loop which

compensates for the dynamics of the serial robot.

This approach does not work for parallel robots. Because

the joint values do not always represent the state of a parallel

robot. The state of a parallel robot for dynamic control can

be expressed by its end-effector pose and velocity – yet it is

possible to express the state with different variables.

Therefore, we should now think how to compute pose

and velocity at high speed with vision sensor. Some of the

attempts to adapt vision for control schemes are as follows:

Since the state of a parallel robot is expressed by its end-

effector pose and velocity, these variables are computed

with classical pose estimation algorithms. Unfortunately,

these algorithms cannot give directly the velocity. The pose

velocity is usually computed by numerical differentiation

of the estimated pose, consequently introducing additional

noise. Besides, predictive control techniques are exploited

to adapt the visual sampling rate to the control sampling

rate, but this increases the complexity [2]. Instead, from a

control viewpoint, increasing visual feedback frequency to

the control frequency is more appropriate [3], [4]. Then to

This work is supported by the ANR-VIRAGO project.
The authors are with Pascal Institute, CNRS, Clermont Universités,

Clermont-Ferrand, France. N. Andreff is also with FEMTO-
ST Institute, Université de Franche-Comté, Besançon, France.
firstname.lastname@lasmea.univ-bpclermont.fr

do so, one compresses image data [5], builds fast communi-

cation interfaces, or embeds image processing unit closer to

the camera [6], [7], [8], etc. These attempts complicate the

system, too.

In previous work, we reviewed the standard dynamic

control schemes for PKM [9] showing that theoretically

observing the end-effector was far preferable to using joint

encoders. Further, we demonstrated that observing the end-

effector pose and velocity with a sequential grabbing strat-

egy (one feature point after the other) could overpass the

performances of the joint-based computed-torque control of

a PKM [10]. Note that acceleration needs not be estimated

in such control schemes since it is the input variable. We

also demonstrated [11] that observing the kinematic elements

(legs) of a PKM was a relevant alternative to observing

the end-effector: less calibration, same accuracy as standard

kinematic visual servoing. Of course, mixing vision with

joint sensing could be of some interest (especially for vision-

sceptic people), but we prefer to focus on the next challenge:

dynamic control based on leg observation in a 100% vision

way. We already showed in simulation [12] that the tracking

of the legs associated to the control in the Cartesian space

outperformed all other schemes (including joint-space con-

trol and Cartesian-space control with direct observation of

the end-effector). The purpose of this paper is therefore to

show how the tracking of the legs at high frequency can be

achieved.

For this purpose we propose to grab small sub-images

that allow only for local observations. In a parallel robot,

since legs exist plentifully, this implies a sequential grabbing

strategy (one by one) to collect enough information from the

whole mechanism. In these sub-images, we observe contours

of the legs. Image contours are one of the simplest visual

features to detect. Then, required information is the contours

of the legs which are grabbed sequentially at discrete instants

of the motion of the robot.

However, although simultaneous multiple sub-images

grabbing strategy (non-sequential) provides all the informa-

tion at once, it is not preferable because of addressing prob-

lem and because it is slower for estimation. To compute the

full state at each control sample time, the following methods

are proposed: An extended Kalman filter predicts relative

state of the robot by fusing a set of image feature points be-

longing to an object with some redundant measurements [6].

A CMOS Rolling Shutter camera captures a single image row

by row. This causes image artifacts for the moving objects.

Then, exploiting these visual artifacts, the pose and velocity

of a moving object are simultaneously estimated with a non-

2013 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS)
November 3-7, 2013. Tokyo, Japan

978-1-4673-6358-7/13/$31.00 ©2013 IEEE 424

linear least squares method [13]. A virtual visual servoing

scheme [14] estimates the state variables by sequentially

grabbing blobs of a rigid pattern at high speed [15], [10].

Our work also exploits the virtual visual servoing scheme

associated with sequential grabbing strategy as in [10]. And

improves it to track an articulated set of legs of a parallel

robot at high speed rather than to track a rigid pattern

fastened to the end-effector at high speed. Yet, since we are

good without any pattern, in a roundabout way, this gets rid

of calibration between the pattern, the camera and the end-

effector. The objective of this work is:

• to estimate the posture and velocity (without derivation)

of a parallel robot through a copy virtual robot imitating

its motion.

The rest of this paper goes on as follows: Section II

provides background information about the kinematics of

legs. Section III explains the estimation of the state variables

through a single-iteration virtual visual servoing scheme.

Section IV shows the simulation and experimental results.

Section V concludes the paper and offers some perspectives.

II. EDGE KINEMATICS OF A CYLINDRICAL LEG

Fig. 1. The Quattro parallel robot with a base-mounted camera.

A. Notation

• B∈ℜ3×1 is one of the tip points lying on the revolution

axis of the cylindrical leg (see Fig. 1).

• x ∈ ℜ3×1 is the orientation unit vector and also corre-

sponds to the revolution axis direction of the leg.

• s ∈ {L , R} is the literal representation for the (L)eft or

the (R) ight side of the leg seen from the camera.

• ps ∈ ℜ3×1 is a projection contour point lying on the

image plane and located inside a visual edge of the

cylindrical leg, ps = [x,y,1]T (see Fig. 2).

• ns ∈ ℜ3×1 is a unit vector orthogonal to the plane

defined by the projection center O of the camera and

by a side visual contour of the leg. Hence, it stands for

a mathematical representation of such a visual contour.

• X ∈ ℜn×1 is the end-effector pose of a parallel robot.

• Unless specified in a left supper-script, all the variables

are expressed in the camera frame.

Fig. 2. View of the geometry of a cylindrical leg from its 3D orientation
direction x (perpendicular to the paper plane).

B. Edge Kinematics

Let Mx ∈ℜ3×n and LB ∈ℜ3×n be the differential kinematic

models that relate the velocity of the end-effector pose to the

velocity of the orientation unit vector x and to the velocity

of the tip point B of the cylindrical leg in a kinematic chain:

ẋ = Mx Ẋ , Ḃ = LB Ẋ (1)

The geometry of a cylindrical leg (see Fig. 2) imposes the

following constraints [16]:

BT ns =−r , xT ns = 0 , pT
s ns = 0 (2)

where r is radius of the leg. Since we would like to exploit

contours of a leg, the third constraint will be used in the

virtual visual servoing scheme. This requires completion of

a differential model defined between an edge ns and the

end-effector pose X. Exploiting the second constraint and

knowing that ṅT
s ns = 0, the image velocity of the contour

ṅs is expressed as follows:

ṅs = α x + β (x × ns) (3)

where α and β are two unknown scalars. The α comes out

by differentiating the second constraint in (2) and replacing

(3) into the differentiated second constraint, which yields:

ẋT ns + xT (α x + β (x × ns)) = 0 (4)

that gives α as below:

α = Mα

[
Ḃ

ẋ

]
with Mα =

[
0

1×3
−nT

s

]
(5)

Afterwards, the β is computed by differentiating the first

constraint in (2) and replacing (3) and (5) into the differen-

tiated first constraint. This yields:

ḂT ns + BT (α x + β (x × ns)) = 0 (6)

which allows to calculate β as follows:

β = Mβ

[
Ḃ

ẋ

]
with Mβ =

[
−nT

s

BT (x×ns)
BT x nT

s

BT (x×ns)

]

(7)

Thus, the differential model between an edge velocity and

the end-effector pose velocity appears when (5), (7) and (1)

are inserted into (3). This gives:

ṅs = Ms Ẋ with Ms = (x Mα + (x × ns) Mβ)

[
LB

Mx

]

(8)

425

where s ∈ {L , R} denotes for either left or right edge.

Finally, the differential model for both of the left and right

edges of a cylindrical leg is defined as follows:

ṅ = Mn Ẋ (9)

where n ∈ ℜ6×1 and Mn ∈ ℜ6×n are as below:

n =

[
n

L

n
R

]
, Mn =

[
M

L

M
R

]
(10)

III. VIRTUAL VISUAL SERVOING

The non-sequential (simultaneous) acquisition approach

gives the complete static pose of a robot straightaway. On the

other hand, the sequential acquisition approach takes several

(k) successive sub-images to collect the same information.

Since the sequential acquisition approach gives the same in-

formation with k successive sub-images, one needs previous

k− 1 sub-images to be stored. Thus, the static pose can be

computed at each sub-image grabbing instant with previously

stored k − 1 sub-images. Given the sampling time Tcamera,

the beauty of this scenario is that it provides simultaneously

both the static pose and velocity. Furthermore, sequential

approach is a lot faster than the non-sequential one. Table

I compares requirements of the tasks of the sequential and

non-sequential approaches for the computation of the static

pose and velocity. To keep the comparison simple, a task

time is assessed in either a sub-image processing time Tsub

or a full image processing time Tf ull , where Tsub ≪ Tf ull .

TABLE I

COMPARISON OF SEQUENTIAL AND NON-SEQUENTIAL APPROACHES.

Task Sequential Non−Sequential

Image acquisition 1Tsub 1Tf ull

Feature extraction 1Tsub 1Tf ull

Pose computation k Tsub k Tsub

Pose and velocity computation k Tsub 2k Tsub

For example: If a 48×48 pixels sub-image is grabbed

rather than a full 1024×1024 pixels image, then in sequential

approach: (i) Image acquisition is reduced to about 455

times; (ii) Feature extraction is reduced to about 455 times;

(iii) Pose computation time stays same; (iv) Pose and velocity

computation time is reduced to about 2 times.

The estimation of the dynamic state of the robot is faster

when the information grabbed is smaller. However, when

smaller pieces of information are grabbed, less information

is kept for the present time and less accuracy is expected.

Consequently, an optimum should be determined regarding

this tradeoff within theoretical and physical limits.

A. Notation

• t ∈ { tc, t̄c } denotes the time, where tc is an acquisition

instant of the camera and t̄c is an estimation instant for

the state variables of the virtual robot.

• T ∈ {Tc , T c } are time periods of sub-image acquisition

of the camera and of the update of the virtual robot

state variables, respectively. The virtual time period T c

should be equal to or greater than the acquisition time

period Tc of the camera (T c > Tc) so that the virtual

robot can catch the motion of the real robot.

• j (t) ∈ {1, 2, . . .} is a function of time instants that

indicates which cylindrical leg is observed at time t.

Fig. 3. A full image of lower-legs with their 48× 48 pixel2 sub-images
from the base-mounted camera of the Quattro robot. These sub-images are
grabbed consecutively at discrete time instants of the motion of the Quattro.

B. Sequential Postures Error

A posture error is formed with a pair of reference projec-

tion contour points (in metric units), {p∗
jL i
, p∗

jR i
}, extracted

from the sub-image of a cylindrical leg of the real robot, and

their associated edges (feedback signal) computed from the

virtual robot’s cylindrical leg:

e ji =

p∗T
jL i

n
jL

p∗T
jR i

n
jR

 (11)

where i = 1, . . . ,m is the index of a detected contour point.

Then, the error vector e j ∈ℜ2m×1 of the j th leg of the virtual

robot is noted for all the contour points as follows:

e j =C∗
j n j (12)

where n is as in (10) and C∗
j ∈ ℜ2m×6 is a constant reference

contour matrix:

C∗
j =

[
P∗T

jL 0

0 P∗T
jR

]
(13)

with {P∗
jL , P∗

jR } detected left and right side contours of the

j th cylindrical leg of the real robot at an instant of time:

P∗
jL =

[
p∗

jL
1

· · · p∗
jLm

]
∈ ℜ3×m (14)

P∗
jR =

[
p∗

jR
1

· · · p∗
jRm

]
∈ ℜ3×m (15)

Finally, having the sets of contour matrices from the real

robot {C∗} and their corresponding feedback edge pairs {n}
from the virtual robot which are saved at k sequential discrete

instants, the complete error vector e ∈ ℜ2k m×1 is formed by

stacking the last k posture errors of the legs:

e =

C∗
j (tc)

n
j (t̄c)

...

C∗
j (tc −(k−1)Tc)

n
j (t̄c −(k−1)T c)

 (16)

426

where j (·) circular-wise enumerates the cylindrical legs at

consecutive instants of time. Figure 3 shows an example for

the enumeration of the lower-legs of the Quattro robot.

C. Approximated Edge Evolution Model

In order to regulate this time-space error to zero, a

differential model should be defined between an edge n of

time t +∆t and the effector pose X of reference time t. To

find this model, we first write small displacement of an edge:

n t+∆ t = n t + δn t (17)

where ∆ t tells how far in time the displaced edge is, and

where δn t is the displacement in the edge values with

respect to reference time instant t. One can approximate the

displacement δn t through (9):

δn t ≈ Mnt δX t (18)

The displacement in the end-effector pose δX t can be

approximated with a constant acceleration model as follows:

δX t ≈ ∆t Ẋ t +
1

2
∆t2

Ẍ t (19)

If the representation of the end-effector pose X t is not

an element of a linear vector space, (19) is valid only if

the rotational axis of the motion during ∆ t time remains

constant. Otherwise, it will be still acceptable for a small ∆t.

Finally, the approximated differential model can be expressed

using (17), (18) and (19) as below:

ṅ t+∆t ≈
n t+∆ t − n t

∆t
=

δn t

∆t
(20)

ṅ t+∆t ≈ H(t, ∆t)

[
Ẋ t

Ẍ t

]
(21)

where H(t, ∆t) ∈ ℜ6×2n is the constant acceleration evolution

model of the edge pair of a leg:

H(t, ∆t) =
[

Mn t
1
2

∆t Mn t

]
(22)

Mn t is defined in (10). This approximation allows to solve

the inverse kinematic problem of a parallel robot only once

instead of k times, where k is equal to or greater than the

number of observed legs.

D. Visual Servoing Control Law

The control law which regulates the error is computed by

first differentiating (12) with respect to time, which gives:

ė j = C∗
j ṅ j + Ċ∗

j n j (23)

then replacing ṅ j by (21) and imposing ė j = −λ e j for an

exponential convergence, (23) becomes:

−λ e j = Le j

[
Ẋ t

Ẍ t

]
+ Ċ∗

j n j (24)

where Le j
∈ ℜ2m×2n is so-called interaction matrix which

relates the end-effector pose velocity and its derivative to

the error function of a leg:

Le j
=C∗

j H j(t,∆t) (25)

Then, to converge to the state of the real robot, the control

law u =
[
Ẋ

T
u , Ẍ

T
u

]T
is computed to update the pose and

velocity of the virtual robot as follows:
[

Ẋu

Ẍu

]
= −λ L†

e (e − ẽ) , λ > 0 (26)

where Le ∈ ℜ2km×2n and ẽ ∈ ℜ2km×1 are as below:

Le =

Le j (t̄c)

...
Le j (t̄c −(k−1) T̄c)

 , ẽ =

Ċ∗
j (tc)

n j (t̄c)

...

Ċ∗
j (tc −(k−1)Tc)

n j (t̄c −(k−1)T c)

(27)

The term ẽ in (26) is difficult to approximate, since we do

not use any correspondence between successively detected

reference contour points. Therefore, it is considered as a

disturbance. Normally, (26) should not be directly calculated

with an ordinary pseudo-inverse least squares regression.

This can be unstable and slow. Here, (26) is just a represen-

tation of the numerical solution of (24). The linear system in

(24) can be solved with damped total least squares and QR

decomposition. This yields robust and fast solutions. Thus,

one can write (24) as follows:

Au = b (28)

where A ∈ ℜ(2km+2n)×2n and b(2km+2n)×1 are the augmented

coefficient matrix and the augmented error vector, respec-

tively:

A =

[
Le

µ I

]
, b =

[
−λ e

0

]
(29)

with µ damping parameter, I (2n by 2n) identity matrix,

and 0 (2n by 1) zero vector. Linear system (28) can be now

solved for u with QR decomposition.

E. Virtual Robot Motion Evolution

Pseudo-update rule for the dynamic state of the virtual

robot using the control law (26) can be written as follows:

X t̄c = X(t̄c−T c)
+ T c Ẋu , Ẋ t̄c = Ẋ(t̄c−T c)

+ T c Ẍu (30)

This update rule is valid as long as representation of the

end-effector pose forms a vector space. In order to assemble

the feedback edges n, the virtual robot’s pose is displaced

back in time with a constant velocity motion model, since

the updated dynamic state is up to velocity. Using the new

updated state variables and differential kinematic models for

the time tc, the feedback edge set is calculated as follows:

n t̄c+∆t ≈ n t̄c + ∆t Mnt̄c
Ẋ t̄c (31)

where ∆t = iT c is the virtual time displacement with an

index i = 0,−1, . . . ,−(k−1) counting backwards.

F. Predicting Future Sub-Image Location

The next dynamic state estimation needs a future sub-

image to be grabbed at the next future sampling time tc+Tc.

The position of this sub-image on the image plane must be

correctly predicted from the current dynamic state {X, Ẋ}
computed for the time instant tc. Otherwise there will not be

any useful signal in the grabbed sub-image and the tracking

427

will fail. Achieving a correct prediction is, itself, a proof of

the correct performance of the proposed method. In order to

predict any of the corresponding sub-image positions of the

legs, we first find the likely future pose of the real robot:

X̂(tc +Tc) = X t̄c + T c Ẋ t̄c (32)

Once the likely future end-effector pose X̂(tc +Tc) is found,

it is solved for the tip point B̂ j and for the orientation

unit vector x̂ j of a leg through the inverse kinematic model

(IKM). Subsequently, the next location of the corresponding

sub-image center is calculated as follows:

z j

[
imw j

1

]
= K (B̂ j − d j x̂ j) (33)

where imw j ∈ ℜ2×1 is the next predicted location of a sub-

image center in pixel units, d j is a distance that indicates

how far along the cylindrical leg to the leg’s tip point the

observed region is, z j is the projective scale factor, and K is

the camera intrinsic matrix.

IV. RESULTS

We conducted simulation and experimentation on the

Quattro robot (see Fig. 1). The Quattro robot encodes its

pose in the contours of its 4 lower-leg rods. Thus, we

estimated the dynamic state of the Quattro robot by using

at least 4 sub-images grabbed from each of the lower-legs at

consecutive discrete instants of the motion. For example, the

first estimation used sub-images of the lower-legs {1,2,3,4},

the second used {2,3,4,1} and so on. We set the camera

sub-image acquisition frequency to 500Hz. Each sub-image

was a 48× 48 pixel2. Figure 3 shows these 4 sub-images

on the lower-legs. Furthermore, while even the lower-leg

rod being observed is partially out of the field of view

of the camera, we can still measure visual contours by

keeping the sub-image location in the visible region via

parameter d j and/or by observing the other rod if the leg

is a parallelogram type. Figure 4 shows the simple block

representation of the estimation algorithm. We did each

estimation with a single-iteration virtual visual servoing. We

Fig. 4. Single-iteration virtual visual servoing for fast estimation.

noticed that the computation of the velocity control law Ẍu

was very ill-conditioned. Therefore, we assigned the pose

update control law Ẋu to the pose velocity. We evaluated the

performance of the estimated states with root-mean-square of

residuals (RMSE). The end-effector of the Quattro robot has

3 translational (xyz) and 1 rotational (θ) degrees of freedom.

Thus, we examined accuracies in these two parts.

Experimentation: We coded the estimation algorithm in

C++ with nT2 matrix library [17]. The test path was a 8cm by

8cm square motion. The path crosses XY, XZ and YZ planes.

The motion was without rotation. The maximum velocity

and acceleration of the motion were 25cm/s and 1m/s2,

respectively. We calibrated the camera such that a non-

iterative model compensates for distortions rapidly. Figures

5 and 6 show the reference and estimated Cartesian poses

and velocities. Table II lists accuracies of the position and

orientation estimations. Table III tabulates the approximate

−0.02

0

0.02

0.04

0.06

0.08

0.54

0.56

0.58

0.6

0.62

X (m)
 Y (m)

Z
 (

m
)

Estimated

Reference

Fig. 5. Reference (blue dotted line) and estimated (red solid line) Cartesian
space curves in the camera frame (for the results of Table II).

−0.5

0

0.5

X
v
e
l (

m
/s

)

−0.5

0

0.5

Y
v
e
l (

m
/s

)

−0.5

0

0.5

Z
v
e
l (

m
/s

)

0 1 2 3 4 5
−2

0

2

time (s)

θ
v
e
l (

ra
d

/s
)

Reference

Estimated

Fig. 6. Superimposed reference (red dotted line) and estimated (black solid
line) Cartesian velocities in the camera frame (for the results of Table II).

TABLE II

RMSE OF ESTIMATIONS IN THE EXPERIMENT.

Path Pose Errors Velocity Errors

square xyz (mm) θ (deg) ˙xyz (cm/s) θ̇ (deg/s)

25cm/s, 1m/s2 4 1.5 9.8 17.8

taken times of the processes required to estimate a dynamic

state of the Quattro robot using sequential 48× 48 pixel2

sub-images. An estimation costed about 1400 µs. This means

that the posture and velocity of the Quattro can be computed

faster than 500Hz.

TABLE III

TAKEN TIMES FOR AN ESTIMATION WITH 48×48 SUB-IMAGES.

ROI exposure ROI transfer Edge detection Estimation

500 µs 100 µs 200 µs 600 µs

428

Simulations: We also validated the proposed estimation

algorithm in Matlab by simulations. The test path was the

same square motion as in the experimentation part. We also

repeated this square motion with 3 different maximum veloc-

ity and acceleration values: (60cm/s, 1G), (1.2m/s, 5G),
and (1.7m/s, 10G). In order to test the robustness, we

generated the following moderate noises: (i) we deflected

the camera orientation with 1◦ degree around an arbitrary

axis; (ii) we displaced the camera position 5mm away along

an arbitrary direction; (iii) we perturbed the contours [-1,+1]

pixel orthogonally and uniformly. Tables IV and V list the

accuracies of the position and orientation estimations without

and with noise, respectively.

TABLE IV

RMSE OF ESTIMATIONS IN THE SIMULATIONS (WITHOUT NOISE).

Path Pose Errors Velocity Errors

square xyz (mm) θ (deg) ˙xyz (cm/s) θ̇ (deg/s)

25cm/s, 1m/s2 0.4 0.02 0.27 2.7

60cm/s, 1G 1.5 0.07 3.3 5.8

1.2m/s, 5G 2.6 0.12 8.7 8.7

1.7m/s, 10G 3.4 0.16 16 16.3

TABLE V

RMSE OF ESTIMATIONS IN THE SIMULATIONS (WITH NOISE).

Path Pose Errors Velocity Errors

square xyz (mm) θ (deg) ˙xyz (cm/s) θ̇ (deg/s)

25cm/s, 1m/s2 3.4 3.03 9.8 21.04

60cm/s, 1G 3.9 3.03 10.3 29.12

1.2m/s, 5G 4.4 2.98 12.8 34.26

1.7m/s, 10G 5 2.95 20.3 36.20

Discussion: In Table IV, we see that even if there is no

noise, the errors increase. This is because the motion model

used for tracking does not take into account acceleration.

If we look at the first test results of the Table V, we can

see that these results match with the experiment. In Table

V, we also see that the errors remain at the same order of

magnitude and they come from the calibration errors. So, we

can expect that there will not be performance degradation in

experiments where the robot moves on test paths with faster

motion. Moreover, experimentation revealed that the depth

(i.e., along optical axis of the camera) and consequently the

orientation estimations are very sensitive to noise (see Fig. 6).

These errors in depth and orientation might appear because

of a cylindrical leg whose radius is relatively smaller than

its observational distance from the camera. This makes esti-

mations, especially the depth, more sensitive to small noises.

We can eliminate this sensitivity to noise by placing multiple

cameras (e.g., a camera per leg) in different viewpoints.

This also allows us to explore the entire robot workspace.

Yet, we can improve these estimations in a dynamic control

scenario of a robot by exploiting the computed-torque control

law as a feed-forward acceleration term for better update of

state estimations [10]. Generally, the source of errors comes

from: (i) the use of approximated theoretical models; (ii) the

calibration of camera extrinsic parameters; (iii) the image

noise while detecting visual contours.

V. CONCLUSIONS

This paper has shown that we can estimate the postures

and velocities of all parts of a parallel robot rapidly with

reasonable accuracy through sequential observation of the

leg contours. This method does not need any artificial pattern

since the legs are observed, and is applicable for any slim

prism-shaped legs. It is feasible by an edge detection in a

small and structured sub-image. The sub-image contains only

a portion of the slim leg. Some future perspectives to increase

the accuracy of estimation are as follows: (i) to investigate

the grabbing strategy with different number, size and order

of the sub-images; (ii) to explore the number of rods (4 or

8) and the number of sub-images on each rod.

Finally, we conclude that this work will guide us to control

the dynamics of parallel robots from their leg observations.

REFERENCES

[1] F. Chaumette, S. Hutchinson, “Visual servo control, part II: Advanced
approaches”, IEEE Robotics and Automation Magazine, 2007.

[2] J. Gangloff, M. de Mathelin, “High-speed visual servoing of a 6 DOF
manipulator using multivariate predictive control”, Advanced Robotics.

Special Issue: advanced 3D vision and its application to robotics., pp.
993-1021, 2003.

[3] M. Vincze, “Dynamics and system performance of visual servoing”,
IEEE Int. Conf. on Robotics and Automation, (ICRA’00), USA, 2000.

[4] P. I. Corke, “Dynamic issues in robot visual-servo systems”, Int. Symp.

on Robotics Research, ISSR’95, pp. 488-498, Springer, 1995.
[5] I. Richardson, “H.264 and MPEG-4 Video Compression: Video Cod-

ing for Next-generation Multimedia”, J. Wiley, 2003.
[6] Wilson L.W, Hulls C.W, Bell G. S, “Relative end-effector control

using cartesian position based visual servoing”, IEEE Transactions

on Robotics and Automation, pp. 684-696, October, 1996.
[7] Y. Nakabo, M. Ishikawa, H. Toyoda, S. Mizuno, “1ms column parallel

vision system and its application of high speed target tracking”, IEEE

Int. Conf. on Robotics and Automation, (ICRA’00), USA, 2000.
[8] P. Chalimbaud, F. Berry, “Embedded active vision system based on

FGPA achitecture.”, In EURASIP Journal on Embedded Systems, 2007.
[9] F. Paccot, N. Andreff, P. Martinet, “A review on dynamic control of

parallel kinematic machines: theory and experiments”, International

Journal of Robotics Research, (IJRR’09), pp. 395-416, 2009.
[10] R. Dahmouche, N. Andreff, Y. Mezouar, O. Ait-Aider, P. Martinet

“Dynamic visual servoing from sequential regions of interest acquisi-
tion”, International Journal of Robotics Research, (IJRR’12), vol. 31,
no. 4, pp. 520-537, 2012.

[11] N. Andreff, T. Dallej, P. Martinet, “Image-based visual servoing
of a Gough-Stewart parallel manipulator using leg observations”,
International Journal of Robotics Research. Special Issue on Vision

and Robotics Joint with the International Journal on Computer Vision,

(IJRR’07), vol. 26, no. 7, pp. 677-687, 2007.
[12] E. Özgür, N. Bouton, N. Andreff, P. Martinet “Dynamic Control of

the Quattro Robot by the Leg Edges”, IEEE Int. Conf. on Robotics

and Automation, (ICRA’11), China, 2011.
[13] O. Ait-Aider, N. Andreff, J.M. Lavest, P. Martinet, “Simultaneous

object pose and velocity computation using a single view from a
rolling shutter camera”, The 9th European Conference on Computer

Vision, (ECCV’06), pp. 56-68, Austria, 2006.
[14] E. Marchand, F. Chaumette, “Virtual visual servoing: A framework

for real-time augmented reality”, EUROGRAPHICS 2002 Conference

Proceeding, pp. 289-298, Germany, 2002.
[15] R. Dahmouche, N. Andreff, Y. Mezouar, P. Martinet “3D Pose and

Velocity Visual Tracking Based on Sequential Region of Interest
Acquisition”, IEEE/RSJ Int. Conf. on Intelligent Robots and Systems,

(IROS’09), USA, 2009.
[16] N. Andreff, P. Martinet, “Unifying Kinematic Modeling, Identification,

and Control of a GoughStewart Parallel Robot Into a Vision-Based
Framework”, IEEE Transactions on Robotics, vol. 22, no. 6, pp. 1077-

1086, 2006.
[17] J. Falcou, J. Lapresté, T. Chateau, J. Sérot, “NT2: A High-performance

library for computer vision”, 2007.

429

