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ABSTRACT
We investigate an approach to automate model-based vul-
nerability testing of payment protocols used by e-commerce
applications. We aim to improve the efficiency and perfor-
mance of logical vulnerability testing. The proposed ap-
proach is based on a formal specification of the protocol
implementation (SUT) and vulnerability attack scenario ex-
ploitation for driving the test execution. This approach is il-
lustrated with a use case example bookshop application and
one of the most used payment protocols: PayPal Express.

1. INTRODUCTION
The tremendous increase in online transactions has been ac-
companied by an equal rise in the number and type of at-
tacks against the security of online payment systems. These
attacks exploit hidden vulnerabilities in payment protocol
implementations within e-commerce applications. In fact,
to guarantee secure online transactions, e-commerce appli-
cations integrate third-party services. This is done by imple-
menting a specific payment module within the application
core using specification of web API provided by Cashier-as-
a-Service (CaaS) companies such as PayPal. However, this
integration introduces new security challenges due to the
complexity of coordinating an application internal state with
those of the component services and the web client across
the Internet. Moreover, some web application developers are
not very well trained with secure programming techniques.
As a result, the security of an application is not necessarily
a priority of the design goals [3]. Indeed, while validation
focuses on absence of runtime errors, and conformance w.r.t.
specifications, security aspects are too often left-aside [14].
This is exacerbated by the rush to meet deadlines in the
fast-moving e-commerce world. Therefore, penetration test-
ing is mandatory to reveal eventual logical flaws that might
be otherwise have been overlooked during the development
phase. This kind of tests can also be achieved by companies
specialized in security testing, in pentesting (for penetration
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testing) as instance. These companies monitor the constant
discovery of such vulnerabilities, as well as the constant evo-
lution of attack techniques.

However, it is worth to say that detecting vulnerabilities in
a security protocol, and, in our case, in the payment pro-
cess, remains a most difficult task to perform, as it requires
a deep knowledge of the (payment) protocol and the way it
is implemented within the e-commerce application. We need
more effective methods to improve the efficiency of imple-
mentation testing tools, as most of the existing approaches
resort to random or manual testing [5]. The work presented
in this paper investigates a semi-automatic tool that aims
to improve the efficiency and accuracy of logic vulnerabil-
ity testing, by means of formal specification and abstract
attack scenarios (inferred or manually designed). Similar
efforts have been reported in SPaCIoS project [13, 1] on
different classes of protocols. These approach differ from
the one presented here, as they rely on a different language
(ASLan) which is more concrete, and thus easier to con-
cretize for test execution. Besides the considered mutations
are very similar to classical code mutation operators, while
the HLPSL mutations we consider more specifically target
the security functions of a protocol. E-commerce payment
protocols and attacks have also been extensively addressed
in [14], however this work did not attempt to automate the
detection of vulnerabilities of the execution of vulnerability
test cases.

We aim to improve a recently proposed architecture for au-
tomatically compiling abstract attack traces to concrete ex-
ecutable tests on protocol implementations [9]. We have im-
plemented a partly-automated penetration testing platform
to detect vulnerabilities on some implementations of Pay-
Pal Express payment protocol which is complex and widely
used in business transactions. We have succeeded to test an
attack scenario on a realistic implementation using formal
attack trace generated by the CL-AtSe model-checker [12].

Although not reported here, a similar experimentation was
conducted with our technique, on an implementation of Ma-
gento [10] containing a logical security flaw that consists in
the absence of signature of the purchase amount. To exploit
this flaw, a malicious attacker can modify the amount to
pay, and purchase expensive items by paying a ridiculous
price. This logical flaw was discovered independently by the
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Notice that, although this work addresses payment proto-
cols, it can also be applied to other security protocols such
as authentication (see [6] for more details).

In the remainder of this paper, we first present, in Section 2,
an overview of the methodology. Then, we discuss the speci-
ficity of the addressed type of vulnerability on a concrete
example, introduced in Section 3. Section 4 describes in de-
tails the principle of the proposed approach. We provide the
modelling material and the platform architecture in order to
show how the test generation tool chain produces abstract
attack traces and how they are reproduced on real-word im-
plementation of an e-commerce application (E-Book Shop)
implemented with a vulnerable payment module. Section 5
describes studies on the formal analysis of payment proto-
cols. The strengths of our proposed approach is discussed in
Section 6. Finally, Section 7 presents a conclusion and the
future works.

2. MODEL-BASED VULNERABILITY TEST
GENERATION

We give here an overview of our Model-Based Vulnerability
Testing (MBVT) approach as a generic solution for logic
vulnerabilities testing.

2.1 Principles of the approach
We first describe the principles of the approach before giv-
ing information on the different artefacts that it involves,
namely the protocol model, formal attack trace and formal
attack scenario. The proposed process to perform vulnera-
bility testing, depicted in Figure 1, is composed of the fol-
lowing activities:

• Formal specification: This activity is done by the se-
curity test engineer before starting the test process.
It consists in formalizing the system under test (SUT)
from the existing specification provided by informal re-
quirements. The formal model is expressed using the
HLPSL language [2].

• Mutation process: Mutation [7] is a technique that
consists in introducing logical faults, in our case into
the HLPSL model in order to create vulnerabilities.
These mutations simulate implementation choices or
actual mistakes that can be made by a programmer.
This can be automated for HLPSL using an existing
mutant generator named jMuHLPSL [6].

• Model checking: After applying the mutation process,
model checking tools are used to verify the protocol,
and possibly generate abstract attack trace if the mu-
tant is declared unsafe. The goal of the model checker
is specified using LTL formula while defining specific
security property. In this approach, we consider the
CL-AtSe model-checker a back-end of the AVISPA pro-
tocol analysis tool-set, as this tool is able to produce
counter-examples as attack traces if the protocol is de-
clared unsafe. However, other back-ends of AVSIPA

1http://www.nbs-system.com/wp-content/uploads/
Advisory_Magento_Paypal.pdf

could be used, such as On-the-Fly Model-Checker (OFMC)
or SAT-based Model-Checker (SATMC).

• Adaptation: Before starting an execution of the for-
mal test scenario, a step is required. Indeed, during
the modelling activity, all data used by the protocol
are modelled at an abstract level. As a consequence,
the attack scenario is expressed at this level, and can
not be executed as is. This step thus consists in bridg-
ing the gap between abstract keywords, used in the
abstract trace, and the real API of the SUT. During
this step, the security test engineer has to define how
modelled data are implemented within the SUT.

• Test execution: it aims to automatically execute ab-
stract scenarios on concrete implementations. This
step relates modelled data existing in the formal at-
tack scenario with the real API defined by the test
engineer in the previous step. Communication with
the SUT happens in real time and in a dynamic way.

If no informal specification of the protocol exists, the first
two steps (formal specification and mutation process) can be
replaced by a model inference technique. This can be per-
formed more or less automatically using other techniques
such as traffic analysis between agents involved in the exe-
cution of the protocol. In this context, the conclusions that
can be drawn from the test execution are different. Instead
of looking for a vulnerability (introduced at the mutation
step), this activity will check that the vulnerability actually
exists in the implementation.

2.2 Logical flaws in payment methods
Nowadays e-commerce web applications increasingly inte-
grate a trusted third-party component presented as a Cashier-
as-a-Service (CaaS) in the payment process. The main pur-
pose is to better guarantee secured payment transactions,
as the CaaS can collect the payment of a purchase from the
shopper and inform the merchant of the completion of the
payment without revealing the shopper’s sensitive data such
as a credit card number. In the considered case study, the
well-known PayPal server is used as an example of CaaS
server.

During a checkout process, communications happen between
the third entity and the merchant as well as between these
two services and the web client controlled by the shopper.
This trilateral interaction is meant to coordinate the internal
states of the merchant and the CaaS, since each party has
only a partial view of the entire transaction. Unfortunately,
this third-party integration introduces a complexity in the
payment protocol implementation within the e-commerce
application which brings new security issues. Indeed, an im-
proper distribution of the protocol functionality between the
involved entities leads to logical flaws that can be exploited
by a malicious shopper. Actually, an online purchase trans-
action is always initiated by the client (web browser) and
managed by some public API methods implemented in the
two sides: the merchant and the CaaS.

A dishonest shopper can make web API calls of methods ex-
isting on the e-commerce application with well-chosen argu-
ments and in an arbitrary order so that he can shop products



Figure 1: Model-based vulnerability test process

for free or alter the way the payment is verified [14]. This
shows that to have communications over https do not pre-
vent sever attacks against e-commerce applications. It is
worth to mention that network man-in-the-middle attacks
are not considered here, since the checkout modules of all
the merchants and CaaS websites communicate exclusively
over https.

3. RUNNING EXAMPLE: E-BOOK WITH PAY-
PAL

3.1 Description of the application
E-Book shop is an e-commerce application that contains a
number of vulnerabilities related to logical flaws in payment
process. Its main goal is to test the efficiency of proposed
approach in a legal environment, simplify the complexity of
the testing process and get more hands on the SUT. Hence,
we consider this application as a honeypot.

E-Book shop has been developed as a real e-commerce ap-
plication with the following features:

• Authentication: E-book shop provides personalized con-
tent to registered users.

• Search: The search feature offers the possibility to fil-
ter books by names.

• Purchase Books: A registered user on E-book shop can
purchase books using his PayPal account.

E-book shop is an e-commerce application that allows a user
to search and select books through a shopping cart sys-
tem and then purchase the chosen products with his PayPal
account. Commands that have been paid successfully are
saved in a local data base. Figure 2 provides some screen-
shots of the application. We implemented the payment mod-
ule using the PayPal sandbox framework provided by Pay-
Pal site, and the integrated vulnerabilities was a subject of a
deep research on the last revealed security flaws in the most
used e-commerce applications.

We now detail one of the attack scenarios we used during
the testing phase of the SUT.

3.2 Example of a concrete attack scenario
The concrete attack scenario we consider enables a dishon-
est user to purchase an expensive product and pay for a
cheaper one. This attack exploit data freshness vulnerabil-
ity integrated within the payment module implemented in
the E-Book Shop application. Figure 3 depicts all the ex-
changed messages between different entities involved in the
payment process. The scenario consists in initiating two
parallel sessions with the system under test (the E-book
Shop application) with the same account and no matter if
its done with the same browser or not. During the first ses-
sion, the attacker chooses an expensive product and starts
the payment process. However, he stops at the login step on
the sandbox of PayPal. On the other session, the attacker
starts the payment steps for a cheap product. When he gets
the confirmation of payment from the PayPal site, he sub-
stitutes the token value with the token of the first session,
before getting redirected to the merchant site. This way, the
merchant (if incorrectly implemented) believes that the at-
tacker has paid for the expensive product and responds with
a successful payment. But, in reality, the attacker has only
paid the cheaper product of the second session. We describe
in details the process of this attack scenario detection and
simulation starting from formal modelling ending to the real
simulation on a concrete implementation.

4. DETAILS OF OUR MBVT APPROACH
In this section, we detail each main activity of the Model-
Based testing process. For each activity, we present its ob-
jectives as well as its process. The E-book shop running
example is used to illustrate our approach.

4.1 Modelling the SUT
In order to conduct the security analysis of the PayPal pay-
ment protocol, the approach starts by specifying the pro-
tocol relying on Alice-Bob notation. The checkout process
begins when the button“Pay Now”on the merchant web site
is clicked. This operation directs the shopper’s browser to
the PayPal website where he is invited to provide his PayPal
buyer account credentials to continue the purchase process.
If the information entered by the user is correct, the shop-
per is again redirected to a payment success merchant Web
page. Behind the scene, there are http interactions between
the three parties, who communicate by calling Web-APIs



Figure 3: Example of a concrete attack scenario on PayPal Payment implementation

exposed by the merchant and the CaaS. Such APIs are es-
sentially dynamic web pages and are invoked through http
requests. A client sends an http request through an URL
with a list of arguments and receives an http response, often
a Web page dynamically built by the server, as the outcome
of the call. The formal model of the protocol was designed
using the PayPal documentation [11] and some traffic anal-
ysis. To examine the traffic, E-Book Shop application was
deployed on a local xampp server [15] and http traffic cap-
turing tools were used, such as Fiddler [8], retrieving all
the http exchanged messages between the involved entities
during a checkout process. Figure 4 provides the Alice-Bob
notation of the PayPal Express protocol, which is described
in an associated HLPSL specification (not shown here). For
the purpose of efficiency and conciseness, only the most sig-
nificant steps and fields were modelled. In this figure, C de-
notes the client (web browser), M is the Merchant (E-book
shop) and C is the CaaS (PayPal).

First, the client starts by login to the application, choos-
ing the product and initiate the payment this is modelled
using the message checkout. It contains also the order de-
scription informations (product details, shipping address,
billing address...). The merchant redirects the client to the
PayPal site using a redirectUrl which corresponds to the
paypalconnect abstract message in Alice-Bob notation. Also,
the latter denotes the login process to PayPal account and
the payment confirmation action on the PayPal site. In ad-
dition, the merchant generate a token which is a random
value used to identify the payment in process. Once the
the previous step is validated by the Paypal server, the lat-
ter responds with 302 HTTP redirection to the returnUrl

url specified by the merchant, the Token received from the
client and the PayerID which identify the client PayPal ac-
count. Finally, the merchant confirm the success of the pay-
ment process. During the execution of the protocol Pay-
Pal Express, communication happen also between the mer-
chant and the PayPal site in two times. First, the Set-

ExpressCheckout message, sent by the merchant, informs
the PayPal server about an upcoming operation. Then, the
DoExpressCheckoutPayment message requests the payment

execution.

4.2 Model checking and test generation
The main purpose of the test generation activity is to pro-
duce test cases from the specified model. After modelling
the protocol, the model checking tools are used to verify the
HLPSL model, and possibly generate abstract attack traces
if unsafe. The goal given to the model-checker is specified
using HLPSL witness and request features. These latter
inform the CL-AtSe model-checker to ensure that the Token

value is generated in a fresh manner during the protocol exe-
cution, CL-AtSe finds the attack trace that violates the test
purpose related to the specified HLPSL model of the SUT.

Figure 5 depicts the attack scenario at the formal level. It
corresponds to a replay attack on the token value. Notice
that, for this example, the mutation phase explained in Sec-
tion 2.1 has not been applied. However, such a model could
result from a correct model that would have been mutated.

4.3 Adaptation
Before starting an execution of the formal test scenario, a
preliminary work step is required. During the modelling
activity, all data used by the protocol are modelled at an
abstract level. As a consequence, the attack scenario can
not be executed as is. The gap between abstract keywords
used in the abstract trace and the real API of the SUT
must be bridged. Indeed, the security test engineer have to
define how modelled data is implemented in the SUT. Also,
while receiving responses from the SUT, our tool is in charge
of retrieving relevant fields from the received response. In
case of sending operation, each abstract message needs to be
translated into real message format. Table 1 describes the
semantics of the abstract data involved in our example of
attack scenario, given in Figure 5. Some abstract messages
correspond to operations performed by the tool Attack Sim-
ulator, others correspond to fields contained in the http
messages.

4.4 Test execution : platform architecture



Table 1: Mapping modelled data to its semantic use for testing
Modeled data Its implementation

checkout start(); loginToBookShop() ; chooseProduct()
paypalconnect loginToPaypal()

returnUrl http://localhost/bookshop/php/checkout.php?action=return
Token getToken()

PayerID getPayerID()

Figure 2: Regular payment process

C -> M : checkout
M -> P : SetExpressCheckout
P -> M : Token
M -> C : paypalconnect, Token
C -> P : paypalconnect,Token
P -> C : returnUrl, Token, PayerID
C -> M : returnUrl, Token, PayerID
M -> P : DoExpressCheckoutPayment, Token, PayerID
P -> M : Result
M -> C : confirmPage

Figure 4: Alice-Bob notation of PayPal Express pro-
tocol

i -> M : checkout1
M -> i : paypalconnect, Token1
i -> M : checkout2
M -> i : paypalconnect, Token2
i -> P : paypalconnect,Token1
P -> i : returnUrl, Token1, PayerID
i -> M : returnUrl, Token2, PayerID
M -> i : confirmPage

Figure 5: Formal attack trace

As discussed above, the attack trace produced by a model-
checker is rather abstract and, in order to be able to de-
tect real attacks that affect protocol implementations, it is
mandatory to provide a platform that performs both (i) mes-
sages format conversion, from a formal level to the imple-
mentation level, and (ii) real communications with the SUT.
This platform’s architecture is now described, in terms of
components, with their functionalities and interactions. It
displays three main components, each with a specific role:

1. Attack Trace Compiler : identifies agents, messages types
and elementary operations.

2. Scenario Execution Engine: generates (resp. retrieves)
outgoing (resp. incoming) messages.

3. Attack Simulator : simulates the scenario on real com-
munication channels.

As shown in Figure 6, the testing environment takes as in-
puts the attack trace and the mutated model of the consid-
ered protocol, and returns an indication whether the consid-
ered attack on the considered implementation exists or not.
To better understand the functionalities of each module, we
will rely on the previous scenario as a use case example in
what follows.

Attack trace compiler
The Attack Trace Compiler transforms an abstract attack
trace given in Figure 8 into an executable attack scenario
described in Figure 9. The component collects intruder ini-
tial knowledge, shown in Figure 10, from the HLPSL pro-
tocol and follows the attack trace instructions to build the



Figure 6: Platform Architecture

L1:
7="received at step:1"
8=p1(7)
9=p2(7)

Figure 7: Additional information for each attack sce-
nario step

attack scenario. The latter describes in details the actions
that should be performed by the intruder when executing
the attack. Hence, it is structured into steps and elemen-
tary operations, each step corresponding to an abstract at-
tack trace instruction. In order to explain the process of
compiling the attack trace, we give here an example of at-
tack trace treatment, based on the detected scenario on Pay-
Pal Express payment protocol. Recall that this scenario
violates the freshness of the exchanged value of token be-
tween the merchant and the PayPal server. For instance,
we take the second line in the abstract trace in Figure 8
which corresponds to: M -> i : paypalconnect, Token1.
It is a receiving operation (denoted by the symbol ?) of
the concatenation of the paypalconnect and Token value.
Thus, the output of the attack trace compiler is as follows:
step : 1 ?7 = pair(paypalconnect, Token g7). Also, the at-
tack scenario contains additional informations about how
to get each part of the composed message described in Fig-
ure 7. We denote here p1(m) (resp. p2(m)) the projection of
a message m on the first (resp. second) component. In addi-
tion, the attack scenario contains a data structure, shown in
Figure 10, which is initialized with intruder Initial Knowl-
edge (keys or agent’s identities) and is updated each time
the system evolves to a new state.

Scenario execution engine
This module is responsible of translating the attack scenario,
from the formal level to the implementation level. Since the

i -> (m,4): Checkout_g1

(m,4) -> i: pair(paypalconnect,Token_g7)

i -> (m,4): Checkout_g1

(m,4) -> i: pair(paypalconnect,Token_n1)

i -> (p,5): pair(paypalconnect,Token_g7)

(p,5) -> i: pair(returnURL,pair(Token_g7,PayerID_n7))

i -> (m,4): pair(returnURL,pair(Token_n1,PayerID_g2))

(m,4) -> i: ConfirmPage_n2

Figure 8: Abstract attack trace as generated from
the model checker

execution environment is designed for an implementation
level, the exchanged messages are real network messages. As
seen previously, messages in the formal model are specified
as first-order terms. Therefore, it is necessary to map these
terms to concrete messages and operations. This is the main
role of the Scenario Execution Engine: it ensures the asso-
ciation between abstract messages and concrete ones, stored
in the Data Store module. Operation execution is held with
the functionality provided by the Primitive Holder. Figure
6 describes more this module components.

The attack scenario instructions can be classified into three
categories: (1) message construction, (2) message sending,
and (3) message receiving. To do this, cryptographic primi-
tives (crypt, pair and unpair) and network primitives (send
and receive) are used.



step: 0
!6= Checkout_g1
L1:
6="generated nonce at step:0"

step: 1
?7= pair(paypalconnect,Token_g7)
L1:
7="received at step:1"
8=p1(7)
9=p2(7)

step: 2
!6= Checkout_g1

step: 3
?10= pair(paypalconnect,Token_n1)

L1:
10="received at step:3"
11=p2(10)

step: 4
!7= pair(paypalconnect,Token_g7)

step: 5
?12= pair(returnURL,pair(Token_g7,PayerID_n7))

L1:
12="received at step:5"
13=p1(12)
14=p2(12)
15=p2(14)

step: 6
!16= pair(returnURL,pair(Token_n1,PayerID_g2))

L1:
18="generated nonce at step:6"
17=pair(11,18)
16=pair(13,17)

step: 7
?19= ConfirmPage_n2

Figure 9: Abstract attack scenario

L0:
0="initially known"
1="initially known"
2="initially known"
3="initially known"
4="initially known"
5="initially known"
6="generated nonce at step:0"
7="received at step:1"
8=p1(7)
9=p2(7)
10="received at step:3"
11=p2(10)
12="received at step:5"
13=p1(12)
14=p2(12)
15=p2(14)
18="generated nonce at step:6"
17=pair(11,18)
16=pair(13,17)

Figure 10: Intruder Knowledge

Primitive holder
The needed cryptographic operations are defined in the Prim-
itive Holder module. In relation with the specification of the
protocol, this component provides a library of operations
such as encryption, decryption, nonce generation, signing
and concatenation. It is necessary to make sure that the
whole scenario can be executed without any errors. To do
that, the Primitive Holder provides all the possible opera-
tions needed by the protocol implementation. It is worth to
say that in the used protocol example (PayPal Express) as
implemented in the E-book Shop application, we do not need
cryptographic operation implementation. However, this can
mandatory when dealing with more complex e-commerce
payment protocols.

Data store
Message creation depends on the knowledge acquired in pre-
vious step of the scenario, since the tested protocols are
stateful. Hence, all the messages handled by the platform
are saved in the Data Store in their real format and in an in-
dexed way which facilitates data processing. The Data Store
also contains all objects required for intermediate computa-
tion like encryption keys, data nonces, agent identities and
sub-messages.

Scenario execution handler
This is the platform core algorithm which handles the instan-
tiation of abstract operations by concrete executable one. It
takes as input the elementary steps of an attack scenario,
and processes each instruction in order to identify the next
operation to perform as well as its arguments. It interacts
with the Primitive Holder module to execute cryptographic
operations and with the Data Store module to save or re-
trieve arguments depending on the attacker behaviour de-
scribed in the attack scenario. Algorithm 1 describes all the
interactions with different modules.

Input: Instruction I
Output: Request to another component
Let I gets instruction value;
Case {I is send(Xi)} then

Get data from the Data Store at position i ;
Call A−Simulator to send message

Case {I is Xi=receive()} then
Call A-Simulator to get the received message ;
Store the message on the Data Store at position i

Case{I is Xi=operation(Xy,Xz)} then
Get data from Data Store at positions y and z;
Call the Primitive Holder to execute the primitive;
Store the message on the Data Store at position i

Case{I is finish()} then
exit with success

Algorithm 1: Scenario Execution Handler

The first (resp. second) case corresponds to a message send-
ing (resp. receiving) operation over the network. The third
case of Algorithm 1 corresponds to the message construc-
tion or decomposition. In all cases, the Handler invokes
the Data Store and the Primitive Holder modules. Con-
sider, for instance, instruction X1 = pair(X2, X3). First,
the Scenario Execution Handler collects the arguments by



requesting them from the Data Store. Then, it calls the con-
catenate method in the Primitive holder to construct the
message. Finally, the latter is stored at the result position
X1 in the Data Store.

Attack simulator
After mapping a formal message to the real format, the Sce-
nario Execution Handler processes emission and reception
operations. In these cases, it sends a request to the Attack
Simulator module, which is the interface of the platform
with the external environment. At the formal level, the pro-
tocol model abstract some fields existing in a real imple-
mentation, which need to be restored at the concrete level.
The Attack Simulator is in charge of the conformance of the
exchanged data with the protocol model, meaning that it
has to identify the relevant fields and retrieve data from the
SUT response (case of receiving operation) and to instanti-
ate the relevant fields in the request message (case of sending
operation). In general, the Attack Simulator tasks include:
(i) creating the real communication channels, (ii) sending
messages, and (iii) receiving messages. Therefore, HtmlU-
nit was integrated in the Attacker Simulator module. Htm-
lUnit is a Java unit testing framework for testing Web based
applications. This headless browser allows Java test code to
examine returned pages either as text, as XML DOM, or as
collections of forms, tables, and links. It can also deal with
https security, basic http authentication, automatic page
redirection and other http headers. Furthermore, this test-
ing framework was used to automate clicks on links and nav-
igation between pages of the online store. We give here an
example of HtmlUnit use within Attack Simulator Class.
In our case study scenario, step 0 of the abstract attack
scenario corresponds to the following informations:

step: 0
!6= Checkout_g1
L1:
6="generated nonce at step:0"

After generating the message nonce using the information
provided by L1 and the operation implementation within
the Primitive Holder module, the Attack Simulator proceeds
with the sending operation. However, as we modelled the
protocol using alice-bob notation Checkout denotes the steps
of login to the application, choosing product randomly and
starting payment process. Therefore, we provide the send-
ing operation manually implemented in the Attack Simula-
tor with the corresponding HtmlUnit fragments of code in
Figure 11.

The attack validation
Attack validation is the most important step of the testing
process, as it affects the efficiency of the proposed tool in
attack detection. The simulator needs to assert whether the
attack is simulated with success or not. This must be done in
a rigorous way to avoid false positives and false negatives.
Mainly, we propose to identify the final state of the SUT
when the attack succeeds. Due to the complexity of this
process, we have studied two cases with different verdict
assignment methods:

1. First case: when the attack success is achieved by

public void send(Object object) {

String name = ((NameValuePair) object).getName();
String value = ((NameValuePair) object).getValue();

if (value.equals("Checkout")) {

HtmlPage currentpage = webClient.getPage(baseUrl + "/index.php");

HtmlTextInput textinput = (HtmlTextInput) currentpage
.getElementByName("login");
textinput.setValueAttribute("test");

HtmlPasswordInput passwordinput = currentpage
.getElementByName("password");
passwordinput.setValueAttribute("test");

HtmlSubmitInput submit = (HtmlSubmitInput) currentpage
.getElementByName("btnConnexion");

currentpage = submit.click();

List<DomElement> products = currentpage
.getElementsByIdAndOrName("btnAjouterPanier");
int max = products.size();
Random randomGenerator = new Random();
int i = randomGenerator.nextInt(max);

HtmlSubmitInput submit = (HtmlSubmitInput) products.get(i);

currentpage = submit.click();
HtmlSubmitInput submit = currentpage.getElementByName("btnPayer");
currentpage = submit.click();
}

Figure 11: Java code implementing the sending op-
eration

reaching a final state which is known by the test en-
gineer and can be identified with a simple verification
using a verdict keyword. In this case, upon completion
of the attack scenario execution, the simulator asserts
whether the final state of the system is the state cor-
responding to an attack success or not. This was done
using the JUnit testing framework that helps deploy-
ing the attack validation process as follows:

String verdict;
assertTrue(currentpage.asText().contains(verdict));

2. Second case: the attack success validation is not trivial
and one needs to verify all informations about payment
operations such as payment status, seller PayPal ac-
count situation, etc. Therefore, we propose to provide
the test engineer with a log file which contains all the
activities performed by the platform while the test ex-
ecution. This facilitates the task of asserting whether
the attack scenario was simulated successfully or not.

5. FORMAL ANALYSIS: AN EXAMPLE
As specified in the first section of this paper, the testing
process using our approach starts with formal specification
of the SUT. Then we proceed with the model checking ver-
ification and validation step in order to generate abstract
attack trace. The latter serves as in input for our testing
platform.

In this section, we present the formal analysis work done on
the most used payment methods (Paypal Payment, Amazon
Payment, Google Checkout). Mainly we focus on how for-



mal verification and validation techniques can help finding
implementation logical flaws. In our work, we rely on a list
of recently discovered implementation logic flaws provided
by [14]. Specifically, we study an other example of attack
scenarios on payment module: Integration of Amazon Sim-
ple Pay : paying to the attacker himself to check out from
the victim

Amazon Simple Pay payment protocol is one of the lead-
ing payment methods implemented in merchant web sites.
Figure 12 shows the workflow while executing the checkout
process.
After choosing a product the shopper starts payment process
by clicking on the pay button. Then the merchant redirects
the shopper’s browser to the payment API of the CaaS, pass-
ing orderID, gross and returnURL as the arguments. This
message is signed by the merchant, so the shopper cannot
tamper with the arguments when forwarding the message to
Amazon site. After the CaaS (i.e., Amazon) verifies the mer-
chant’s signature, the shopper makes the payment, which
the CaaS records to its database. The payee is the mer-
chant who signs the merchant redirection message. Then,
the CaaS redirects the shopper back to the merchant using
the returnURL that the merchant supplies in the redirection
message. The entire CaaS redirection message is signed by
the CaaS, which is verified by the merchant. This checkout
procedure seems secure as no data can be contaminated by
the attacker.

Flaw and exploit. In fact, this protocol implementation
can be vulnerable when the malicious shopper also plays the
role of a different merchant. Specifically, anyone can open a
seller account on Amazon. Suppose that the seller account is
registered under the name “Alice”. What the attacker wants
to do is to pay Alice (actually, himself) but check out an or-
der from a store belonging to Bob (https://Bob.com). The
attack proceeds as follows. First, the attacker starts a pay-
ment process and blocks the redirection message provided by
Bob. Then, he decrypts the received message, and acting as
“Alice”, he signs it with his private key. The trick here is that
the message signed by Alice actually carries a returnURL to
Bob ( Bob.com/finishOrder). As a result, even though Al-
ice (the attacker) is the party that receives the payment,
the CaaS will redirect the shopper’s browser to Bob with a
redirection to call finishOrder. Although the message is
indeed sent to Bob, it is actually about the payment that
the attacker made to Alice. The logics in finishOrder, as
sketched in Figure 12, does not verify that the payment was
made to Bob, and therefore is convinced that the order has
been paid. Fundamentally, the problem comes from the con-
fusion between the merchant and the CaaS about what has
been done by the other party.

Goal specification using LTL formula in HLPSL. After
the modelling step in HLPSL, we proceed with the model-
checking step. We use CL-AtSe tool to detect the attack
trace that exploits the exposed vulnerability. This is done
using a logic formula to invalidate as a goal definition. In
fact, goals in HLPSL language serves as test purposes for
CL-AtSe tool. The latter executes the specified protocol and
tries to find an attacker behavior that violates the property

defined in the goal declaration section of HLPSL specifica-
tion. In the studied example, we define the security property
as follows:

goal
[] ( (pay(a,Km1,amazon_merchant,RedirectLink) /\
iknows(inv(Km1)) /\
deliver(km,a,amazon_merchant,RedirectLink)) /\
~ equal(Km1, km)

=> pay(a,km,amazon_merchant,RedirectLink)
)
end goal

we denote by km (resp. km1) the public key of a merchant
m (resp. m1). Also, “a” represents the identity of the agent
playing the role of the payment service provider (Amazon in
our case). In addition, to define the goal in HLPSL model
we use two meaningful keywords: pay and deliver. Typ-
ically, pay( a, km1, protocol id, text) is the HLPSL fact
stating that the agent a has paid the agent whose public
key is Km1. In other words, agent a has paid the agent m1.
Also, deliver(Km, a, protocol id, text) is the fact stating the
purchase delivery by the agent whose public key is Km to
the agent a. In order to explain the specified goal we give
the following attack state section the IF file [4] .

section attack_states:

attack_state ltl_1_1 (Km1,RedirectLink) :=
pay(a,Km1,amazon_merchant,RedirectLink).
iknows(inv(Km1)).
deliver(km,p,amazon_merchant,RedirectLink) &
not(idequal(Km1,km)) &
not(pay(a,km,amazon_merchant,RedirectLink))

As a result, the attack state corresponding to the speci-
fied security is a state when an agent m1 controlled by the
intruder receives a purchase payment although he did not
deliver any product. Besides, a honest merchant m makes a
purchase delivery and did not receive any payment action.

6. DISCUSSION
While the detection of vulnerabilities can be discharged by
protocol analysis tools, such as AVISPA, performing vulner-
ability tests using penetration test tools remains the most
difficult task when trying to ensure security of protocols
implementations. Such a process is usually tedious and
time-consuming, requiring advanced knowledge in software
debugging and reverse engineering. There are many cases
where no access to the source code/binaries is possible, and
where a “black box” kind of testing is the only viable so-
lution. The best penetration testers intimately understand
each and every attack used by their automated testing tools;
they intuitively and explicitly know what to look for when
assessing the results of their tests; they understand how com-
plex software systems work.

The proposed approach for vulnerability testing protocol im-
plementations is oriented towards the following objectives:

1. Stateful testing : our tool performs testing on real word
implementation in a dynamic way. Also, it is able to



Figure 12: Amazon Pay workflow

simulate multiple session connexions with the SUT un-
like most of the state of the art automatic penetration
tools.

2. Accuracy and precision: our approach is guided by a
preliminary formal analysis and model-checking step.
Exploitation of powerful formal verification techniques
leads to pertinent testing process. The tool helps not
only in detecting known implementation logic flaws but
also in discovering new ones.

3. Time efficiency : the automated tasks in the approach
reduces test execution time compared to alternative
penetration testing tools. Approximatively two days
of engineering work were needed to specify a protocol
model and define a security goal. Then model chek-
ing can be performed in a few seconds. Two days of
software engineering work were required to develop an
adaptation layer.

4. Scalability : the tool architecture can easily be extended
to cover other protocol implementations. In fact, when
dealing with multiple implementations of a specified
protocol, one need to adapt the modelled data with its
semantics within the SUT. In such way, the database of
formal attack traces (inferred or manually generated)
is reusable for all implementations corresponding to
the specified protocol. See Figure 13.

5. Discovering implementations: the construction of a
reusable database of attack scenarios helps to perform
too some reverse-engineering on protocol implementa-
tions. The traces in the database correspond to differ-
ent specifications (mutated models) and different im-
plementations. The black box testing process helps
to derive information about the SUT implementation
depending on the executability of the replayed attack
traces. For instance we can distinguish between Paypal
Standard and Paypal Standard with IPN by the ability
to execute or not some scenario from the database.

7. CONCLUSION AND FUTURE WORKS
In this paper, we proposed an approach that supports the
binding of specifications of payment protocols to actually
deployed implementations through formal model compiling

Figure 13: Testing different protocol implementa-
tions

and the automatic penetration testing of real implementa-
tion against putative attacks found by model checker. The
approach consists in model checking a (possibly) mutated
formal model, looking for attack trace violating security
property. If an attack is returned, the platform generates au-
tomatically concrete attack scenario instructions, encoding
how to verify and generate protocol messages. The abstract
attack trace is analysed and the instructions are executed
accordingly. In order to assess the effectiveness of the pro-
posed platform, we implemented its architecture relying on
the RUP Agile process. We used the Java languages and
libraries to implement its components. Especially, to pro-
vide the needed functionalities and operations we used the
HtmlUnit library. Our platform is able to successfully exe-
cute an attack on a PayPal Express implementation within
a realistic e-commerce application E-Book Shop. In partic-
ular, we applied a replay attack scenario that was detected
at a formal level using model checking. It is worth to say
that our solution is not specific to a single scenario, and it
is able to simulate all the possible formal attack traces re-
lated to the modelled PayPal Express protocol. Following
our work, we are planning several improvements. In order
to simplify the platform use, we will develop a graphical
user interface. Also, we will perform further penetration
tests on other payment protocol implementations for reveal-
ing undiscovered security flaws. To do so, we first need to
generate further formal attack traces related to different se-
curity properties. We can refer to the mutation techniques



described in [6], applied to a formal specification of the pro-
tocol. To achieve that, the model needs to be developed
without any knowledge of a concrete implementation (only
based on requirements documents). The mutations will in-
ject concrete faults that could represent implementation er-
rors, at the model level, that the test will search for, at
the implementation level. Second, we will need to manually
adapt the modelled data to its semantic use in the protocol
implementation.
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