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Abstract. Identification of modal parameters: eigenfrequencies, damping ratios and mode 

shapes from empirical data is of fundamental engineering importance in the dynamical 

analysis of mechanical structures and particularly in the analysis of stay cables. These modal 

parameters will serve to perform structural health monitoring, damage detection and safety 

evaluation. The identification is based on the knowledge of output-only responses, without 

using excitation information. We propose in this communication a time domain method based 

on a subspace algorithm to extract the modal parameters of vibrating stay cables from output-

only measurements. We can then use these identified parameters for structural health 

monitoring by the computation of the Scruton number and the cable tension.  
 

 

1 INTRODUCTION 

       Identification of modal parameters from empirical data is very important in 

mechanical vibrations and in the dynamical analysis of mechanical structures excited by 

external forces. An application constitutes the vibration analysis of stay cables in the civil 

engineering domain. The identified modal parameters will serve to perform structural health 

monitoring, damage detection and safety evaluation of such structures. The identification is 

based on the knowledge of output-only responses, without using excitation information, and is 

known as Operational Modal Analysis (OMA), also named as ambient or natural excitation or 

output-only modal analysis [1-6]. The principal advantages of OMA are the ease of use and 

the fast to conduct since no artificial excitation equipment is required. We propose in this 

communication a time domain method, based on a subspace algorithm to extract the modal 

parameters of vibrating stay cables from output-only measurements. We can then use these 

identified parameters for structural health monitoring. 

     The subspace identification method is a time domain method and uses the covariance 

matrices between output data. The subspace method is based on the observability and 

controllability properties of linear systems and we use shifted properties of the controllability 

matrix to identify the modal parameters.  Unfortunately spurious modes, which are inherent to 

the subspace method, appear [6, 7]. To eliminate such spurious poles a criterion using modal 

coherence indicators is used. This criterion describes the coherence between each mode of the 

state space model and the modes directly inferred from the measured signal. The criterion 
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serves as a model quality measure. Modal parameters are then obtained from stability 

diagrams.  Experimental results of a single tower, double row cable-stayed bridge supported 

by 112 stay cables are presented, where ambient vibrations of each stay cable are carried out 

using accelerometers. The subspace method is then applied to determine the eigenfrequencies 

and damping coefficients of different cables. An estimate of the fundamental frequency fi for 

each cable is then obtained. We can then compute the tension force for each cable. For each 

natural frequency identified a respective damping coefficient is assigned. Thus, a Scruton 

number for each cable and for each mode of vibration is determined [8, 9]. High values of the 

Scruton number tend to suppress the oscillation and bring up to the start of instability at high 

wind speeds. For example, a Scruton number superior to 10 is sufficient to prevent rain, wind 

and traffic induced vibrations. In a continuous monitoring and modal analysis process, the 

tension forces and Scruton numbers could be used to assess the health of stay cables in cable-

stayed bridges.  

2 VIBRATION ANALYSIS OF A CABLE AND THE SUBSPACE IDENTIFICATION 

METHOD 

2.1 Vibration analysis of a cable 

The free vibration equation of cable motion is given by [10] 
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where E is the Young’s modulus, I the moment of inertia of the cable cross-section,  ρ  the 

specific mass, S the cross-sectional area, P the axial load, f(x,t) the external load,  w(x,t) the 

transversal displacement which is assumed to be small, x the position along the cable and t the 

time variable. 

The solution of the free vibration equation can be obtained using the method of separation 

variables as 

                                                w(x,t)=q(t) W(x)
                                                    

                                    (2) 

 

Assuming q(t) harmonic with natural frequency ω  in rad.s
-1

 and substitution of equation (2) 

into equation (1) gives 
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By assuming the solution W(x) to be  

                                                                     W(x) =  C e 
s x

                                                      (4) 

 

in equation (3), the auxiliary equation can be obtained  
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and the roots of this equation are  



Joseph LARDIES. 

 3 

                                      s1
2
, s2

2
  =  

IE2

P
   

1/2

IE

2
ωAρ

2I2E4

2P

















                                  (6) 

The solution of W(x) can be expressed as  
 

                           W(x)  =  C1 cosh s1 x + C2 sinh s1 x + C3 cos s2 x + C4 sin s2 x                    (7) 
 

 where the constants C1 to C4 are to be determined from the boundary conditions: 

                                                  W (0) = 0 ;    
2xd

W(0)
2

d
 = 0                                                    (8) 

                                                W(L) = 0   ;    
2xd

W(L)
2

d
= 0                                                      (9) 

Equations (8) require that  C1 = 0 and C3 = 0, and so  
                

                                           W(x)  =  C2 sinh s1 x  + C4 sin s2 x                                             (10) 
 

The application of (9) to (10) leads to  

                                                   sinh s1 L sin s2 L = 0                                                             (11) 

Since sinhs1 L > 0 for all values of  s1 L   0 , the only roots to this equation are  

                                              s2 L = k π      ,         k = 0, 1, 2,…..                                           (12) 

 Thus equations (12) and (6) give the natural frequencies of vibration: 
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Further, note that the smallest Euler buckling load for a simply supported beam is given by 

Pcri=π
2 

E  I / L
2
 .  Thus equation (13) can be written as  
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           We would like to approximate the desired partial differentiate equation solution w(x,t) 

in a separable form as series expansion of time varying coefficients qi(t) and spatially varying 

basis functions Wi(x) : 

                                                   w~ (x,t) = 


n'

1i

ii (x)W(t)q                                                       (15) 

 

The Galerkin procedure can then be used to specify the equations of motion for the 

coefficients qi(t) and for an n’ degrees of freedom system with viscous damping, the motion 

equation is   
 

                                                             M q  + C q  +  K q  = f                                              (16) 

 

where M, C and K are respectively the mass, damping and stiffness matrices. In [11]  Barbieri 

et al. propose a procedure based on experimental and simulated data to identify damping of 
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transmission line cables. The experimental data are collected through accelerometers and the 

simulated data are obtained using the finite element method. In this communication, we 

identify eigenfrequencies and damping ratios of line cables from output data only using the 

subspace method. 

 

2.2 The subspace identification method 

               The subspace identification method assumes that the dynamic behaviour of a 

structure excited by ambient forces can be described by a discrete time stochastic state space 

model [1, 2] : 

 

  zk+1 = A zk + wk            state equation                                                     (17) 

  yk = C zk + vk                observation equation                                       (18) 

 

where zk is the unobserved state vector of dimension n=2n’; yk is the (mx1) vector of 

observations or measured output vector at discrete time instant k ; wk, vk are white noise terms 

representing process noise and measurement noise together with the unknown inputs, it is 

assumed that the excitation effect appears in the disturbances wk and vk , since the system 

input can not be measured; A is the (nxn) transition matrix describing the dynamics of the 

system and C is the (mxn) output or observation matrix, translating the internal state of the 

system into observations. The stochastic identification problem deals with the determination 

of the transition matrix A using output-only data.   

The modal parameters of a vibrating system are obtained by applying the eigenvalue 

decomposition of the transition matrix A   

                                                   A =  Λ 
-1

                                                                  (19) 

where ( )idiag   , i=1,2,…,n, is the diagonal matrix containing the complex eigenvalues 

and   contains the eigenvectors of A as columns. The eigenfrequencies fi and damping ratios 

i  are obtained from the eigenvalues which are complex conjugate pair: 
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with Δt  the sampling period of analyzed signals. 
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The mode shapes evaluated at the sensor locations are the columns of the matrix Φ  obtained 

by multiplying the output matrix C with the matrix of eigenvectors   : 

Φ  = C                                                                              (22) 

Our purpose is to determine the transition matrix A in order to indentify the modal parameters 

of the vibrating system. Define the (mfx1) and (mpx1) future and past data vectors as y
+
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[y
T

k, y
T

k+1, . . ., y
T

k+f-1]
T
 and y

-
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T
k, y

T
k+1, . . ., y

T
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T
. The (mfxmp) covariance matrix 

between the future and the past is given by [2] : 
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where E denotes the expectation operator and the superscript T the transpose operation. H is 

the block Hankel matrix formed with the (mxm) individual theoretical auto-covariance 

matrices Ri = E[yk+i  y
T

k ] = CA
i-1

G, with G=E[xk+1 y
T

k].  

In practice, the auto-covariance matrices are estimated from N data points and are computed 

by  Ri  = N-1 
1-N

1=k

T
ki+k

yy  ;  i = 0,1, . . .,  p+f  and with these estimated auto-covariance 

matrices we form the block Hankel matrix H. In order to identify the transition matrix A two 

matrix factorizations of H are employed. The first factorization uses the singular value 

decomposition (SVD) of H  
 

                                                         H = U Σ VT = U Σ 1/2 Σ 1/2 VT                                     (24) 
 

with UTU and VTV identity matrices and Σ  a diagonal matrix of singular values. The second 

factorization of the block Hankel matrix H considers its (mfxn) observability and (nxmp) 

controllability matrices, O and K, as 
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By identification we obtain the observability matrix  
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and the controllability matrix 

                                                   K = [G  AG. . .  A p-1G]                                                        (27) 

                    

The two factorizations of the block Hankel matrix are equated to give 

                                                                               

                                      H = U Σ 1/2 Σ 1/2 VT = OK                                                           (28) 

 

implying O = U Σ
1/2

 and K = Σ
1/2

 V
T
. To determine the transition matrix A we use properties 

of the controllability matrix (properties of the observability matrix can also be used). We 

introduce the two following matrices: 

                          

                        K  = [ AG   A
2
G.....A

p-1
G ]   and   K = [ G  AG   A

2
G.....A

p-2
G ]              (29) 

 

where K  is the matrix obtained by deleting the first block column of K and K  is the matrix 

obtained by deleting the last block column K. We obtain then: 
   

                          K  = A K   or   )V (
T1/2

Σ = A )V Σ (
T1/2

                                (30)  
 

We use properties of shifting columns operators ’’  ’’ and ’’  ’’ : let Φ  and Ψ  be two  (axb) 

and (bxc) matrices, we have the following properties: (Φ Ψ )  =(Φ Ψ  ) and 

(Φ Ψ )  =(Φ Ψ  ), consequently we have 
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                                                (31) 

 

The transition matrix is   

                                                A = )V Σ (  
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 )V Σ (
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+     

                                    (32) 

where (  )
+
  represents the pseudo inverse of a matrix, and the eigenvalues of the transition 

matrix are given by 
 

                                             )(A  = λ [ )V  (  
T

 )V  (
T


+
]                                              (33) 

 

This approach constitutes a subspace modal identification method and in the case of noisy 

data a problem of model order determination occurs: when extracting mechanical (or 

physical) modes this algorithm can generate spurious modes. For these reasons, the assumed 

number of modes, or model order, is incremented over a wide range of values and we plot the 

stability diagram. The stability diagram involves tracking the estimates of eigenfrequencies 

and damping ratios as a function of model order. As the model order is increased, more and 

more modal frequencies and damping ratios are estimated, hopefully, the estimates of the 

physical modal parameters stabilize using a criterion based on the modal coherence of 

measured and identified modes. Using this criterion we can separate mechanical modes and 

spurious modes.   
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3 APPLICATION OF THE SUBSPACE IDENTIFICATION METHOD 

The subspace identification method is applied to the analysis of stay cables of the Jinma 

cable-stayed bridge (Figure 1), that connects Guangzhou and Zhaoqing in Guangdong 

Province, China. It is a single tower, double row cable-stayed bridge, supported by 28*4 =112 

stay cables. Inputs could evidently not be measured, so only acceleration data from 

accelerometers in contact with a cable are available.  

 

  

Figure 1: View and schematic of the Jimma cable-stayed bridge 

For the ambient vibration measurement of each stay cable an accelerometer was mounted 

securely to the cables, the sample frequency is 40 Hz and the recording time is 140.8 second, 

which results in total 5632 data points.  Cables 1, 56, 57 and 112 are the longest and cables 

28, 29, 84 and 85 are the shortest. A full description of the test can be found in [8].  Figures 2 

and 3 show the stabilization diagrams on eigenfrequencies of cable 1 and cable 25 using the 

subspace method and the modal coherence indicator. These diagrams show remarkable stable 

eigenfrequencies and from these plots we determine the eigenfrequencies of the two stay 

cables.   

 

  
Figure 2: Ambient time response of cable n°1 and its stabilization diagram on eigenfrequencies  

  

Figure 3: Ambient time response of cable n°25 and its stabilization diagram on eigenfrequencies  
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The subspace identification procedure is applied to determine the eigenfrequencies of 112 

cables of the bridge and we obtain the Figure 4. 

 

 

Figure 4: Fundamental frequency of each cable on upstream side and on downstream side 

 

It can be seen that the fundamental frequencies of both bridge sides are almost identical 

and the fundamental frequency distribution is symmetric with respect to the single tower. The 

fundamental frequencies vary between 0.533 Hz for the longest cable and 2.703 Hz for the 

shortest cable. The cable tension can be estimated by the expression  T = 4 ρL
2
 f0

2
  , where ρ  

is the linear density of the cable (ρ = 66.94 kg/m),  L is the length of the cable and  f0 the 

fundamental frequency. The maximum and minimum cable forces for the Jinma bridge are 

then : Tmax  = 5052 kN (cable number 57), Tmin = 2490 kN (cable number 84). These cable 

forces can be considered as reference tensions and used as indicators in the field of health 

monitoring process. 

The instability of a cable is assessed by the Scruton number [9] which is defined for each 

mode of vibration by , 2

.i
c i

a

S
D

 


 , where i  is the damping ratio for each mode, ρa is the 

density of the air and D is the cable diameter. High values of the Scruton number tend to 

suppress the oscillation and bring up the start of instability at high wind speeds. Considering 

ρa = 1.2 kg/m
3
 and D = 0.203m, the Scruton number for each mode of cable 25 is presented in 

Table 1. In the Scruton number damping is a main factor and most vibration problems in stay 

cables are subject to low damping values.  

 

Table 1: Natural frequencies, damping ratios and Scruton numbers for cable 25 

Modes 1 2 3 4 5 6 

fk (Hz) 1.960 3.938 5.915 7.893 9.856 11.884 

k  (%) 0.314 0.046 0.178 0.078 0.081 0.094 

Sck 4.250 0.622 2.410 1.056 1.096 1.271 
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4 CONCLUSION 

 

 Cable vibrations induced by wind, rain and traffic are observed in a number of cable-

stayed bridges and degradation of these cables may have catastrophic effects. The 

determination of tension and Scruton number of these cables from output only measurements 

can be used as structural health monitoring indicators. Operational modal analysis applied to 

the dynamic data of stay cables provides useful information to determine the current condition 

of stay cables accurately.  
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