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Abstract.

This paper deals with design of knowledge oriented diagnostic system. Two challenges are addressed.
The first one concerns the elicitation of expert practice and the proposition of a methodology for developing four
knowledge containers of case based reasoning system. The second one concerns the proposition of a general
adaptation phase to reuse case solving diagnostic problems in a different context. In most cases, adaptation
methods are application-specific and the challenge in this work is to make a general adaptation method for the
field of industrial diagnostics applications. This paper is a contribution to fill this gap in the field of fault
diagnostic and repair assistance of equipment. The proposed adaptation algorithm relies on hierarchy descriptors,
an implied context model and dependencies between problems and solutions of the source cases. In addition, one
can note that the first retrieved case is not necessarily the most adaptable case, and to take into account this
report, an adaptation-guided retrieval step based on a similarity measure associated with an adaptation measure
is realized on the diagnostic problem. These two measures allow selecting the most adaptable case among the
retrieved cases. The two retrieval and adaptation phases are applied on real industrial system called Supervised
industrial system of Transfer of pallets (SISTRE).

Keywords: case-based reasoning, adaptation, adaptation-guided retrieval, dependency relations, hierarchical
model, context model, diagnostic.

1 Introduction

This study is a part of our research work realized in the European project SMAC. The goal of
this project was to develop a distributed cooperative knowledge oriented platform that
proposes a set of maintenance services (Karray et al, 2009).

These services offer support to the maintenance operators in their daily tasks. The platform is
composed of several modules like the equipment model for instance, and a functional analysis
and resource management unit that is interconnected by domain ontology (Karray et al, 2011)
to ensure an intelligent maintenance policy within a company. The knowledge models are
used in this platform to solve practical problems such as fault detection, fault diagnosis, etc. in
industrial applications.

The paper aims at building an intelligent application based on a case based reasoning system
that is dedicated to industrial diagnostic and repair in the context of maintenance services.
Althoff (Althoff et al, 1996) assert that case based-reasoning (CBR) is the most appropriate
technology to implement a knowledge based system. Moreover, CBR is frequently proposed
as a methodology for knowledge management applications, in particular in experience based
system technologies. It presents the expert knowledge as past and real experiences that are
easily understandable by human users. It is a problem solving and learning method that uses
similar past problems formalization to solve new ones by adapting them to the context. This
method is suitable for diagnostic applications, because fault diagnostic is a domain based on
the experience of human experts, where problems are recurrent and can be reused. In addition,
diagnostic by case-based reasoning is one of the methods preferred by the industrials. Indeed,



reasoning in this method, and unlike machine learning methods where the learning phase has
a significant cost and requires time, can start with an incomplete case.

Therefore designing a diagnostic knowledge oriented system requires time and availability of
experts to explicit their practice. However, the cost of this service is very high, and thus this
phase needs to be optimized. Indeed, the challenge in knowledge management is the
knowledge gathering. Al Jacobson and L. Prusak(1996) studied the knowledge management
in organizations, their prediction on the knowledge cost for the year 2010 was € 2.6 billion.
Their statistical study involved more than 200 knowledge workers of different organizations.
Fig. 1 shows that 37.7% of the time of knowledge workers is dedicated to the elicitation phase
and 45.9% to the knowledge adaptation phase.
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Fig. 1: Percentage of knowledge workers ‘time spent (Jacobson, A., Prusak, L. 1996 )

Our problem is to develop a knowledge based diagnostic system for SISTRE a supervisor
industrial system of pallet transfer (see APPENDIX A) while minimizing development
costs, this can be achieved thanks to the use of an existing method. To reuse an adequate
method, we briefly review some of the CBR industrial diagnosis system.

Industrial systems developed in the CBR diagnosis, can vary from a car studied in a
diagnostic technique system named CREEK (Aamodt, 2004) to a locomotive defined for
remote diagnostics (Varma, 1999), to aircrafts (such as Boeing 747 aircraft developed in
CaseLine (Watson et Marir, 1994) and used as a demonstrator by British Airways or Boeing
737 in CASSIOPEE (Bergman et al, 2003) owned by CFM International). There are also
industrial printers studied by Domino UK Ltd in CHEKMATE and presented in (Grant et
al,1996), gas turbines studied in a fault system of General Electric Energy in Atlanta
(Devaney et Cheetham, 2005) and complex machine like Patdex (Richter, 1991) and Nodal
CBR (Cunningham,1994). There is a wide variety of methods ranging from classification
problems when there is just a weak domain theory, to knowledge based systems.
More knowledge-oriented systems such as Gas Turbine, Creek, Cassiopee, Pad'im,
NodalCBR, Patdex, use models of knowledge different from each other. In most systems, a
case characterizes a diagnostic experience.

We note that there is no common method for building a CBR system. The construction
depends crucially on the representation of cases and knowledge models of the application
domain. That is phases of CBR cycle. Actually, authors provide us just with the cases
representation of the system and without any associated methodology.

Very few authors defined the design methodology in the case based diagnosis system.
Lamontagne & Lapalme (Lamontagne, 2002) represent a generic model of case based



reasoning system in which they combine the CBR online cycle composed of 4 phases
(elaborate, retrieve, reuse, retain) with knowledge container defined by Richter (Richter,
1995) (vocabulary; case base; similarity metrics; adaptation knowledge) making it possible to
preserve and exploit the past experiences.

In the same way our team (Rasovska et al, 2008) combines the CBR reasoning “capitalize”
and “actualize” phases with the knowledge “detection” and “preservation” in the knowledge
capitalization cycle defined by Grundstein (Grundstein, 2000). The elicitation step is not
defined by interviews with experts but by a methodology based on engineering safety tools,
and reliability concepts such as FMECA and failure history (Rasovska et al, 2008). The
creation of knowledge models is carried out by the analysis of the equipment and its
decomposition (approach modeled on the practice ground of Cegelec company).

The idea developed in this paper is similar to Rasovka’s methodology, where a CBR system

is built from knowledge models used by maintenance experts like functional and
dysfunctional equipment models that are accessible on all equipments and easy to build when
not available (Rasovska et al, 2008). This choice minimizes the cost of experts.
To elaborate an oriented knowledge CBR system, we must conceive first the different
knowledge containers of CBR and secondly the CBR reasoning phase.
(1) In the knowledge elicitation, our proposal is to build
a. An appropriate case base (a case formalization based on the definition of the
diagnostic taking into account the indicators used by the maintenance users).
b. Similarity measures taking into account missing values and adaptation
measures reflecting the adaptation cost
(11) In the reasoning process, our proposal is to develop a reasoning process suitable for
this model. The reasoning process is dedicated to retrieve the similar case and adapt
it to solve problems in other contexts. This adaptation phase is complex and is
usually designed for a specific application.
a. The first challenge in this reasoning phase is to propose an algorithm based on
the model and independent of the specific application.
b. The second challenge is to minimize the adaptation cost in the retrieve and
reuse phases by proposing an “adaptation-guided retrieval phase”.

Our objective in this work is to minimize the cost of designing the knowledge diagnostic
system. To evaluate the design cost of our diagnostic method we define in section 6.4.2 three
indicators; the adaptability of the method, the reuse cost and the creation effort.

The paper is organized as follows. We first describe the principle of the elicitation
approach which defines the knowledge containers of CBR system. In section 3, we focus on
the retrieve step of the reasoning phase. One might think that the most similar case is always
the best candidate. However, the literature reviews of the retrieve phase show that this is not
always the case (Smyth et Keane, 1993, 1995, 1998; Cordier et al, 2006). Consequently, we
propose an adaptation-guided retrieval method applied to the industrial diagnostic based on
two measures: the first one is similarity and the second one is adaptation. Section 4 deals with
the adaptation phase, which is applied to the best adaptable retrieved case.

To define a general adaptation method on symbolic data in the field of industrial
diagnostic, we are interested in the adaptation approaches in all applications of CBR.

Some studies of the “memory-based reasoning” (Kasif, 1995) avoid this step because
the wealth of the case-base can compensate for the adaptation phase (Standfill, 1996).
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However, other authors, like us, develop this phase to enrich the case-base. In this context the
adaptation step is the core of CBR (Chebel-morello et al., 2011; Lieber, 2007). Furthermore,
prior works on adaptation were dedicated to a given application. To avoid this specificity,
three axes have been explored: (i) Adaptation Knowledge Acquisition (AKA) aims to define
general principles of clarification in the studied field. A complete state of the art concerning
these methods can be found in (Lieber, 2007). (ii) Catalogs of adaptation strategies are
applied in several domains and are given in (Riesbek,1989). (iii) Unifying approaches are
studied in order to find a general adaptation model as proposed by Fuchs (Fuchs et al, 2000).
These authors propose a general adaptation algorithm independent of the application scope. It
is applied to digital data as an interval that can be extrapolated. Therefore, we were inspired
by the unifying approaches of Fuchs (Fuchs, 2000).

We propose a method is based on the dependencies between the problem and the
solution of a solved case and uses two knowledge models. Three relations of dependencies are
defined and exploited to adapt a retrieved case within an adaptation algorithm described in the
same section. The matching carried out at the time of the retrieval, combined with
dependency relations between the problems and solutions, can adapt the solution to the target
problem.

Section 6 is devoted to the evaluation of the methodology of our CBR diagnosis
system with the other industrial diagnosis systems.

2 Elicitation knowledge approach

2.1 Introduction

Our ambition is to construct a diagnostic system based on the European standard
definition that specifies diagnostic as “they are actions carried out to detect breakdowns,
localize them and identify the cause. (Maintenance terminology, 2001):NF EN 13306 of
diagnostic. In order to build this system of help of diagnostic, we decompose the equipment
into zones that include components. A zone will be characterized by the descriptors d; d; d;
(these descriptors are necessary to define the existing zones).

Within each zone, each component has a specific function. If this function is not
fulfilled, it will induce dysfunctions that are revealed by some symptoms and characterized by
the state of the component and its functioning mode. Fig. 9 gives you the internal functional
analysis of an assembly station in SISTRE.

To define the functional mode d.™ , the observed state is compared with the expected

state in functional context and identified to the normal (nor) or abnormal (abn) mode.
Those components are characterized by symptoms descriptors. Three parameters are
defined by: name, measure defining its state and functional mode d; = (divalue ,d>®e,d ™ )
We describe the failure that might occur using the problem descriptors that include
zone’s descriptors, descriptors in relation to the functions and/or dysfunctions associated to
the zone where the failure is taking place.



These components will be classified into different families of components in a
hierarchy of components (family of sensors, pneumatic actuators). This will be used by the
reasoning phases, mainly, the phase of identification of the failing component.

The localization of the failed zone, when a fault is detected, is done thank at a
conceptual graph (see Fig.3a and Fig.3b) where the node is the value of the zone descriptor
and the solution is the failed zone. Failed zones are composed of the components potentially
failing.

A case will describe the experience of how a diagnostic problem is solved. A retrieval
phase will find the cases the most similar to the case to be solved by using similarity
measures. An adaptation measure will select the most easily adaptable case among the most
similar cases. An adaptation method will be applied if no identical cases are found in the case
base. The method is based on the relations of dependence between the variations of the
problem and the variation of the solution. It includes 3 classes of adaptation that will identify
the cause of the failure in function of the context of the breakdown.

2.2 Diagnostic case representation

The case base reflects the experiment of solving a fault by linking the dysfunctional
mode of component to the cause of this fault, and the repair action. Indeed, we propose the
following representation.

A case is composed of a Problem and a Solution part:

Case= (dl, dz, .di ceeey D], Dz, D3, D4)

(1) The problem space of the case contains descriptors relative to both the
localization and the functional part of the equipment.
(i1) In the solution space of case, descriptors retain information about the

detection of failure and the identification of the cause.

A case is formalized by two kinds of problem descriptors: the localization descriptor
and the symptom descriptor, and by 4 solution descriptors: D;: the Class detected, D,: the
cause of failure, D;: the Repair action, Dy4: the zone of failure.

The existing class is defined in the components taxonomy model.

To simplify the notation of the source case descriptors we note di (SI ) = dSi
and the target case descriptors di (T) — dti

di (Sl ) _ (divalue (Sl ), distate (Sl ), diFM (Sl )) _ (dSi\'alue,detate, dSiFM )
di (T) _ (divalue (T ) : distate (T), diFM (T )) _ (dtivalue, dtistate’ dtiFM )

The solution part is composed of four descriptors, the first one is relative to the class
of the fault component, the second is dedicated to the component causing the failure, the next
one describes the repair actions, and the last one defines the zone of the failure.

The notion defined in this paper will be d by the application SISTRE:

For example: let us consider the puller, a specific component in equipment. This
component can have two states linked to its position: [front; back] and can have two
functional modes [nor, abn].



The descriptor associated to the puller in a diagnosis case can be written as illustrated in
Table 1:

Table 1: example of source case

Problem part Solution part
Localization Supervisor Class Cauze |Repear|Zone
ds, dsy  |——— |ds; value ds; state ds; B D=y D=s D=3y |Dsy
nternal abnor Electrical |[Blocked junblo (Entry
Ring |entry |—— [puller |front |mal —— |actuator |51 ck mternal Ring

We can see in Table 1 a case containing in the supervisor descriptor the first symptom
relative to the pusher dss.

ds, = (ds;™* = puller,ds;* = front,ds" =abnormal )

The localization of this equipment is the entry of internal Ring (ds; and ds,) and so on. The
solution is composed of a class of failure Ds;=The Electrical Actuator and the cause of failure Ds, =
Stopper S; blocked. Ds; is the repair action and Ds, the Failure zone.

2.3 Knowledge models associated with the Case

Moreover, the knowledge representation is based on two models associated with the
case-base, namely: the context model and the components taxonomy model.

2.3.1 The components taxonomy model

A case has a formalization object and defines a hierarchy of descriptors containing
both problem and solution (Haouchine et al, 2008).

The model is determined from the functional components analysis of the industrial
plant. Every group of components (in the source case or observed case) is regrouped by
functional classes, and constitutes a component's hierarchy which is common to the problem
descriptors “ds” and solution “Ds”. A part of SISTRE hierarchical model of components is
described in Fig. 2

Equipment (component) Speed
/ transmission
Pallet
Magnetic sensor

fActuator Conveyor Motor
Pneumatic Electric Detector Baloch m}klt
actuator actuator :

o=

7] \ Gt
@ Class

Fig. 2: A part of the SISTRE’s components hierarchy.




2.3.2 Context Model

The context model is a contextual graph allowing the localization of components
comprising a failure and selection of concerned components compared to the set. Therefore,
the context model enables to inform the “localization” descriptors in order to determine the
failure zone and the components potentially failing. The course of a pallet will be followed.
Using a contextual graph, as shown in Fig. 3a, components likely to be failing will be
localized.

An example of a context model concerning the descriptor “Ds;” is shown in Fig.3b.

Locate the
failure at the
components DI,
Bal0 and S1.

‘Which under

Internal zoneof |/ > Context of Ds;
secondary .
N, “Entry of internal ring”
Place of | Ds;: Blocked Stopper ~ S1=f(D1, Bal0, Int. Carpet)
breakdown Ds,: Shifted Sensor D1=f(S1, Bal0, Int. Carpet)
Ds,: Dust in the Bal0=f(S1, D1, Int. Carpet)
Which under Locate the Ds;: Defective interior carpet=f(S1, D1, Bal0)
zone of exc failure at the 19
secondary onveyor| components D3,
rine? D4 and ext.

Fig. 3a: A part of contextual graph of the equipment. Fig. 3b : A context model of “Ds;”

The context allows the localization of components problems and the selection of the
right descriptors compared to all others. Therefore, these present components constitute the
context in which the failing component is identified. A dependency relation is associated with
these components. The descriptors of the localization part are exploited by a context model in
two phases of the CBR. In the phase of elaboration of the target case, the user is asked a
dynamic tree of questions, and retrieval phase selects the correct element to be substituted in
adaptation phase.

2.4 The diagnostic case base

A set of 125 cases is considered in the SISTRE case base which corresponds to a part
of the component malfunction. The cost to realize the exhaustive case base becomes too large
in complex equipment, and to get to this industrial condition, we do not exhaustively list
malfunctions of all components. The case problem part is composed of seven descriptors. The
first two descriptors define the localization of the failure. This localization is determined by
“ds;: zone”, “ds;: pallet site”.

Let us consider the example of case S1 (Source 1 or observed case 1) in the Table 2.



Table 2: A part of the SISTRE case base

Problemn X
— - Solution
localization Fonctionnel part
di d2 d3 o4 d5 dé d7 o1 D2 D3 D4
. Dét .
Index i i
Zone Emp Det et || 2 | et |wF| 2 |etat [wF| de |Etat|wF| D% |Etat| MF | Faiure Cass | '9ETETCEI0N | oo bair action | Failure zone
palette prin Pneu Elec pré mag cause
51 Internal Ring entry o1 0 |abn STP1 | top [nor Bald | 1 |nor Presence Shifted D1 Replace sniry !nternﬂl
2ensor Ring
52 | internalRing | entry | D1 | 1 |nor STP1 | bot |abn gaio | 1 [nor| FEE | Biocked 54 Unblok | &Py nternal
actuator Ring
53 Post Zone Ball 1 |ner| Ind top | an | STP4 | top |nor Pneumatic Obs.tﬂde under Remuve Post Zone
actuator indexer object
5S4 | Internal Ring exit (n:] 1 |abn| Puller |down |nor| STPS | top |nor Ball 1 [nor Presence Shifted D8 Replace extt Internﬂl
SENs0r Ring
. Pneumatic Ext conw exit
S5 | External Ring | Ext conv D& 1 |nor STPS | top [nor| DS 0 |nor| Ball 1 [nor Blocked puller Unblock R
actuator ext Ring
s6 | PostzZone Ind STP2 | bot |abn| D8 | 0 [nor Magnetic Strong | 0o Balogn | St Bxternal
SENs0r magnetic field Ring
57 | External Ring | Ext conv | Ball 0 |nor|Pusher|down |nor| STPS | top |abn| D7 0 |nor| Ball 1 [nor aEcl,f::;I:r Blocked puller unblock exrt;ﬁgernal

This case represents a problem in the detector “D;”.

The localization part indicates that there is a failure on the entry of the “principal”
internal ring. Then, the supervisor part provides the components state involved at the failure
zone. The STP1 stopper is in “top” position which has a “normal” functional mode. The
balogh ”bal0” has value “1”, which means that it must enter the working area so that it can be
treated by a robot. Finally, the D1 detector does not detect the presence of the pallet which is
in abnormal mode (“abn”).

The solution part is made up of, the class descriptor of the failing component, a
descriptor identifying the failing component, the repair action and the failure zone.

3 Reasoning process: retrieval phase

In this work, three phases, elaboration retrieve and reuse compose the reasoning
process (Mille, 1999). Case descriptors of the localization part are exploited by a context
model (see Fig. 3a) in

(1) The elaboration phase. The user answers a dynamic tree of questions in
order to build a target case (case to solve).
(11) The adaptation phase. The correct element is selected to be substituted in the

adaptation algorithm.
In this section, the retrieval phase is broached.

3.1 Retrieval phase

The main difficulty in the retrieval phase is the choice of the right selection criterion
for cases to be retrieved (Althoff et Bartsch-Sporl, 1996). Most of the traditional approaches
use simple similarity measures, while others involve the organization of the case-base to



improve the retrieval quality (Cordier, 2008). Thus, the retrieval phase can be described by
two categories: the first is “simple retrieval" and the second is ‘“combination
retrieval/adaptation”. The current study is focused on the second type.

Before the Nineties, the two phases of retrieval and adaptation were used in a
completely independent way until Veloso (Veloso, 1992) brought new life and suggested the
combination of these two steps. Smyth et Keane (1998) also point out the synergy between
plan adaptation and retrieval. In our work, we take into account this synergy and we combine
the similarity measure with other criteria to retrieve the most adaptable case.

According to Lopez de Mantaras et al. (Lopez de Mantaras et al, 2005), six types of
retrieval related to the adaptation are identified: Diversity-Conscious Retrieval (Smyth and
McClave, 2001 ; McSherry, 2002 ; McGinty and Smyth, 2003), Compromise-Driven
Retrieval (McSherry, 2003, 2004), Order-Based Retrieval (Althoff and Bartsch-Sporl, 1996;
Bridge and Ferguson, 2002) Explanation-oriented retrieval (Cunningham et al., 2003; Doyle
et al, 2004), Optimization-Based Retrieval (Mougouie et Bergmann, 2002; Tartakovski et al,
2004) and Adaptation-Guided Retrieval (AGR). This present work is based on AGR.

3.2  Adaptation-Guided Retrieval phase.

The AGR assumes that the source cases most similar to the target case are not always
the easiest to adapt, particularly when the similarity measure is based on surface
characteristics. Retrieval therefore must not only search for similar cases but above all easily
adaptable cases. Indeed, the authors explain how this retrieval which is guided by adaptation
binds specifications and solutions spaces by using the knowledge adaptation. The work of
Leake et al. (1997) addresses the adaptation effort concept and the impact of traditional
semantic similarity measures on adaptation. Sometimes, the retrieved cases are “similar” to
target problem but difficult or impossible to adapt. This generates an inability for the system
to solve a problem or give a wrong answer squarely. Therefore, Leake takes into account the
adaptation effort at the time of the retrieval step in order to facilitate the adaptation step. This
consideration is concretized by inserting the “adaptation cost” in the similarity measure.
Leake proposes two steps: first, a classic similarity measure is made by comparing case
descriptors, then the most similar cases retrieved at the end of the first step are prioritized
according to their adaptability.

To retrieve the best similar case for the adaptation in this work, two measures are
implemented:

e the first one is a similarity measure (RM) taking into account all the descriptors informed.
The retrieve phase associates the RM measure with a kNN algorithm in order to choose
the set of the most similar cases to the target case

e The second one, is an “adaptation measure" (AM). It emphasizes on the components
which exhibit an abnormal functional mode. The AM measure selects the most adaptable
retrieved source case (observed case) from the similar cases selected by the RM measure.

3.2.1 Retrieval Measure

To retrieve the best similar case for the adaptation, first one needs to evaluate the
similarity between descriptors and between the attributes of each descriptor. Indeed, for the
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localization part, the problem descriptors of the target case and source cases will be
compared. Then, concerning the functional part, it will be the attributes of descriptors which
will be compared. Four local similarity measures are exploited.

In the first one, the hierarchical relation between the values of the descriptors is taken
into account.

For the value of 0" which belongs to the hierarchical model of descriptors,

Let S, be an expected state (source 0S™“° case) and T a component observed (target

case).
sim (dy®",d""* ) is developed by

sim(d;™*(S,).d;* (T)) =sim(ds;™,dt"™**) =1 when  ds/** =dt"**
=0,8 when level(ds™)=level (dt;)
=0,6 when 1...different...level...(ds", dt"™")
For example: When the descriptor values are on the same level.
sim(ds®*,dt™**)=0,8 if ds®™*=DI anddt"* =D2
When descriptor‘s values have parents with the same level.

sim(ds/,dt*)=0,6 if  ds™*=DI andd"* =Ball

see Fig.4

Fig. 4: Example of a descriptor hierarchy.

For the descriptor value dSiState and dSiMF

sim (dsistate ’ dtistate ) -1 if ds_state _ dtistate

— 0 |f dsistate + dtistate
sim(ds/",dt"" )=1 if  ds"" =dt"
=0 if ds™ =dt™"

The similarity metric depends on the formalization of the case. Note that not all descriptors
are filled. In order to compare cases in which the descriptors are not all filled, a similarity
measure of the presence is defined. It will reflect the presence of descriptors in the case.

To take into account the presence and/or the absence of information in descriptors, a local

similarity is developed.
sim (dsiVallue , dti"a'”e) =1 If information is present both in S;and T

presence

= 0 if an information is not present in one descriptor
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The global similarity measure (1) is obtained by aggregation of these functions on the whole
set of descriptors. From this measure, a set of cases can be selected.

Zp:sim(dsi”""“e, )+ i [ sim(ds™, i) sim( sy, dt?™* ) xsim( ds™ , dt™ ) xsim, g, (05, ™) |
RM (Sl,T ): i=l i=p+l

ZSimpresenoe (dsivalue , dt}/alue )
i=1
(1)
Where p represents the number of localization descriptor
m: represents the number of problem descriptors.

- Similarity Measure Calculation

d,...... o P o PO o P d,
R, (S,,T,) = (O><1)+(1><1)+(1><1><1><l)5+(1><1><l><1)+(1><1><1><1) ~ 0.8
B AR Oyl gl
R,(S,.T)= (1><1)+(1><1)+(O,8><1><0><1)+(1><16><1><1)+(O,8><1><1><1)+(1><1><1><1) 0.8

3.2.2 Adaptation Measure

To determine the most adaptable case, an adaptation measure is established to take
into account the functional modes associated to components involved in the case of
diagnostic. Indeed, during a fault diagnostic, experts are particularly interested in cases with
abnormal operating conditions. Therefore, the adaptation measure preferred descriptors
associated with the functional mode and gives priority to abnormal functional modes.

The Adaptation Measure “AM” (2) takes into account the source cases supervisor
descriptors (expected state) which are different from case target (observed component) and
will be only linked to the class and to the functional mode compared to the solution
descriptors. The adaptation measure is conditioned by the functional mode value. Indeed, a
strong weight is affected to the dysfunctional mode related to the failure.

i |:S|m (dsi\/alue, dtivalue ) % /ll j|
A (ST ) =% )
Z Simpresence (dsivalue’ dt\j/alue )

i=p+1

Where p represents the number of localization descriptor
m-p-1: represents the number of supervisor descriptors
Ai is the associated weight according to the functional mode.

ds™" =dt" =nor » 4 =2°
MF MF Al

™ If dSI idtl ......... %ﬂ’i —2 FM:nOmlale}\q:zO: 1
ds" =dt"" =ab... > 4 =27

A weight is associated to the functional mode because the latter is considered as being
important in the determination of the failing component. The number of different descriptors
is determined by the denominator in equation (2). The retrieved source case having the
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greatest adaptation measure value among the retrieval source cases will be the candidate
chosen for the adaptation step.

- Adaptation measure calculation

The second step consists of applying the adaptation measurement (Ay) by taking the weight A;
= {2° 2',2%}. This value considers that the abnormal functional mode is twice more important
than the normal functional mode.

ody....d.....d, O ds......d,
0,8%2)+(1x1)+(0,8x1)+(1x1
AL (S,.T )= (1x4>+(13x1>+<1x1> _, A (5, T)= 08D+ )Z(, XDHID

We note that Ay (S4, T1) > Am(So, T1). Thus, the case source 4 is the case which will be
selected for the adaptation phase. We observe by at the same time that the source cases 4 and
9 are the same measures of similarity.

4 Adaptation Phase

Our objective in this study is to generalize the adaptation phase.

To obtain a general method in the field of diagnostic, we focused particularly on a
unifying method. These methods have as objectives to propose general models from different
angles (principles, algorithms, etc...). Hanney and Keane (Hanney and Keane, 1996) build
adaptation rules from differences between attributes of cases pairs. Fuchs (Fuchs et al, 2000)
defines the adaptation rules for interval calculations on dependent descriptors (The
dependence of descriptors are determined by an expert.) Our adaptation method is inspired by
Fuchs work which defines the dependency relations between problem and solution.

To set this dependency relationship between the symbolic data, we relied on the
definition of the relevance between problem descriptor and specially the class descriptor.

If the variation of a descriptor d; has an impact alone on the variation of D;, we qualify
the relation as high since di is strongly relevant with respect to Dj. A problem descriptor ds;
is strongly relevant compared to a solution descriptor Ds; when the value of ds; descriptor is
crucial in the determination of Ds; value. The change of ds; value is directly reflected on Ds;
value.

If this variation complete the variation of other descriptors, we have a weakly relevant
with respect to Dj.

These relations identify for each couple (di, Dj=class) the existence of weakly relevant
or strongly relevant features, this will select the kind of adaptation. Therefore three types of
relationships are defined: [high, low, no relation].

Our data is symbolic; the adaptation rules must be detectable by using two models:

e context model that allows a set of components to adapt and,
e hierarchical components model that addresses the component class.
In this contribution, we propose an adaptation algorithm based on the context model,

dependency relations between various problem and solution descriptors and descriptors
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hierarchical model. If the solution class of the best chosen source case is similar to the
problem class then the algorithm uses the hierarchical model. If the class is different, then the
algorithm uses the contextual model to localize a set of potentially failing components_and
then uses the hierarchical model.

4.1  Dependency relations (DR)

4.1.1 Definition

The influence of a descriptor problem “ds” on the solution descriptors “Ds” is
expressed by a dependency relation. A dependency relation is a triplet (ds;, Ds;j, DR;;). DR;;
gives us the type of relationship between the problem and the solution to a given case.

The relationship DRij takes its value in the set DR;; = (No relation, Low, High).

= DRj; = High: there is a high dependency relation between dsi and Dsj descriptors.
Indeed, dsi descriptor is strongly relevant compared to Dsj descriptor.

* DR;j; = Low: there is a low dependency relation, i.e., the descriptors are connected thanks
to the context which will be characterized by a contextual model.

* DR;j; = No relation: there is independency between ds; and Ds;.

These relations are based on the definition of relevance between descriptor problem
and class of solution problem: The strong relevance, the low relevance and the non-relevance.
The relevance notion is well known in the field of feature selection.

“A feature dy is strongly relevant to sample N if there exist examples A and B in N
that differ only in their assignment to dx and have different labels (class) (or have different
distributions of labels if they appear in N multiple times). Similarly, di is strongly relevant to
target Dcjuss and distribution D if there exist examples A and B having non-zero probability
over D that differ only in their assignment to dy_and satisty Dgjass(A) # Delass (B) (Blum and
Langley et al, 1997 definition’s pages 248-249)”.

“A feature di is weakly relevant to sample N (or to target D5 and distribution D) if it
is possible to remove a subset of the features so that dy becomes strongly relevant) (Blum and
Langley et al, 1997 definition’s pages 248-249)”.

Remark

The measures AM and RM select the most adaptable case among the cases the most similar to
the problem to be solved, while DR serves to qualify the type of the existing relations between
the problem and the solution of the most adaptable case. This is done to select the category of
adaptation.

4.1.2 ldentification of DR.

There are three way to determine the relationship between the problem and the class.
1°- The expert determines this relation.
2°- The relevant descriptors leading to a class of failure can be identified thanks to the causal
model and by the use of a fault tree which defines the relation between the symptom and the
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cause. The causal model is easily built by using the tools recommended by Rasovska’s
methodology.

3°- The learning algorithm: To identify this type of relationship, we can apply a variables
filtering algorithm such as Reporting Strong Algorithm for Subset Selection (STRASS)
(Senoussi and Morello, 2008), which selects descriptors with high relevance and low
relevance descriptors on a set of examples.

4.2  Adaptation Algorithm

The algorithm (algorithm 1) relies on the context model, the descriptors hierarchical
model and the dependency relations. This algorithm checks descriptors one by one. The
substitution’s adaptation, by generalization and by specialization, will be taken into account in
the algorithm.

Three possible scenarios are treated differently by the algorithm:
* DR = high and same class of problem and solution descriptors.
* DR = high and different class of problem and solution descriptors
= DR=Low
This algorithm deals with the adaptation of one descriptor at a time. It is conditioned
by the solution descriptor class found at retrieval step. After the retrieval phase which makes

it possible to select a retrieved case (dSiret l Ds" %) thanks to both RM and AM measures, the

adaptation phase is launched. The initialization step creates a list of couples having a relation
either high or low. According to the nature of the relation, the treatment differs.
Consequently, the second step will depend on the DR values and the classes of the
descriptors.

Imput: retrieval case (dsi(ret), Daj{ret))
Output: descriptors scluticn of the adapted case Dtj

For each D3j(ret) do // j = 1L.m.
Create a liat [DRij, Dsi] - Select the pair (DRij, Daj{ret))
EndFor

For set of paira (DRij, Dsj{ret)) do
If (DR = high) then
If Daj{ret) and dsi(ret) are the same class then
Dtj < daid{ret)
ElseIf
Select / "“drt*” bkelonging to the game class as “remj Da”™
Affect the scluticn wvalue of the “dg*”
Dtj 4 scluticn of dc*
GoTo EndFor
EndIf
EndIf
If (DR = low) then
Find the scurce prcblem descriptor asscciated with the problem
target descriptor corresponding to the same class a3 the
socluticn scurce descriptor substituticon
Substitute the new walue of scurce scluticn descriptor by the
corresponding valus according to its class

Dtj < sclution of dto*
EndIf

If (DR = ncne) then
Mothing to make
EndIf

EndFor

! Retrieval descriptors problem.
? Retrieval descriptors solution.
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If by browsing through the list, a value of “DR = high” is found then the couple is
selected and classes of * Ds;et” and “ds™” are compared. If they have the same parent
class, the influence of this substitution will be considered in “Ds” and the algorithm
will assign this new value topt}", otherwise, the algorithm looks at the context list

descriptors and selects the “dt;”” descriptor which belongs to the same parent class as “
Ds;et”. The target descriptor is denoted “dt*”. Then, the value of the reminders will be

determined and will be thereafter affected to “Dtj”.
If in the list there is only DR = low then the algorithm selects the parent class of DS

ret
j

descriptor. Then, it identifies the dt; descriptor belonging to the same parent class as
Ds{" which will change status (dt; 2 dt*). After that, the relationship dt* will influence

the transformation of the DSJret solution which will be affected thereafter to “Dtj”.

Finally, when all DR values are equal to “no relation” then there is no adaptation.

Retrieval and Adaptation Illustration

The diagnostic cases modeling took a specific form, described in Table 3. The three

kind of adaptation which will be approached are illustrated in this Section.

Kind 1: DR = High and same functional class

Suppose a failure occurred in the D9 detector. The retrieved source cases closest to this target
case 1 (noted “T;”) provide two sources cases: the source case 4 S4 and the source case 9 Sy
(see Table 3).
Table 3: 3 kinds of adaptation.
Kind 1 d1 dz d3 d4 ds ds dr
T1 Puller Zone exit Do 1 [an STPS | top [nor| DS 0 (nor] BaN 1 [nor
54 | Internal Ring exit Da 1 | an ] Puller |down |noer] STPE | top |nor Bali 1 |nor
59 Puller Zone exit D& 1 |nor STRS | top |nor| D& 0 |nor] Bal 1 |nor
Kind 2 d1 dz d3 d4 d5 ds d¥
T2 Post Zone Ind 01 1 |nerjPusher| top | an| STP4 | top (nor] DS 0 |an] Bald | 1 [nor
53 Post Zone Ball 1 |nor] Ind top [an| STP4 | top [nor
56 Post Zone Ind STPE | bot [ an| D& 0 [nor
S8 Robot Zone Ind Bald 1 |ner] Ind top |(an| STP4 | top |nor|] D& 0 |nor
Kind 3 d1 dz d3 d4 d5 ds d¥
T3 | External Ring | Ext conv D4 0 |nor STP3 | bot |nor] DS 0 |nor] Ball 1 |naor
SE | External Ring | Ext conv D& 1 |nor STPS | top |nor] DS 0 |nor] Bal 1 |nor
57 | External Ring | Ext conv | Ball 0 |nerjPusher|down|nor] STPS | top | an| OF 0 |nor] Ball 1 |nor

15



The applied similarity threshold is 60%.
Similarity Measure Ry and adaptation measure Calculation Ay are shown in Table 4.

We observe at the same time that the similar source cases are S4 and S9 and they have the
similar value of Ry, but differ in the Ay value

It is important to note that the DR value of the pair (Ds;, ds3) is “DR = high” and that the D8
detector which is shifted of the Ds, descriptor as well as the D9 detector of the descriptor dt3
belong to the same class “presence sensor” (Table 4 bis).

Table 4: AM and RM calculation of case 1.

T1S4 T1S9
RM (0+1+0,8*1+1+1)/5=0,76 (1+1+0+1+0,8+1)/6 =0,8
AM (0,8*4+1+1)/3=1,73 (0,8*2+1+0,8*1+1)/4=1,1

Table 4bis: Context of the case.

case 4 | Ds, Identification of the failure component
ds; ds; ds, dss ds;
subst. ds3 by | value S4 D8 Puller STP6 Ball
dt3 value T1 D9 STP6 Ball
DR(Ds2;dsi) | high low low low
Presence Actionner Electrical magnetic
Result=D9 DS;( Class) | sensor pneumatic | actuator sensor
DT]': Presence
DSz(Tl) D9 (Class) sensor

Consequently:
= Substitution of the dS;" by “dt;= D9”.

= The new value of ds;* will affect the value of DSft which will get the value Ds® =
shifted D8.
= Assignment of the new value of DS£et to the target solution Dt;.

By applying the adaptation algorithm the solution is as follows:
The failed component is: the detector D9, which is located in the entry of the external ring
The repair action is: Replacement of the failed component.

Kind 2: DR = High and different functional class
Suppose a failure occurred in the “post zone” and represented by target case 2, denoted

“T2”in Table 5. The results of the calculation of retrieval and adaptation measures are the
following:
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According to the results of the adaptation measure(s), the selected source case for the

adaptation phase is case 6, S6.

The DRs values of the source case 6 are as follows :(Table 5bis)

Ds4: Indexer of the post zone = Ft(ds;: post zone, ds;: indexer).

Ds2: Baloghl (strong magnetic fields) = Ft(dss: STP4; DRs, = high, dss: D6; DRg; = low).

We note that the DR value of pair (Ds,, dsg) is “DR = High” and “D6” and “Baloghl”
components do not belong to the same family. This confirms that we are in the scenario of:

“DR = High and different functional classes”.

Table 5: AM and RM calculation of case

T2S3 T2 S6 T2 S8
RM 1+0+0,6+0,8+1)/4 =0,85 (1+1+0+0,8*0)/4=0,5 (1+1+0,6+0,8+1+0,8*0)/6=0,733
AM (0,6+4*0,8+1)/3=1,6 (1+0,8*4)/2=2,1 (0,8+4*0,8+1+2*0,8)/4=1,65

Table 5bis: Context of the case.

Identification of the failure
case 6 | Ds, component

descriptor | dss dse
subst. ds3 |value S6 SPT4 D6
by dt3 value T2 SPT4 D5

DR low high
Result= Electrical
Bal0 D1(56) actuator Presence sensor
i magnetic
D4(T1): detector DS,: T1 Balo

By applying the adaptation algorithm, we obtain:

The class of source solution descriptor “ ds;“ ” 1s “Magnetic detector”

The “STP4" component of the target descriptor “dc5” (which corresponds to the
descriptor “ds5” which is in abnormal mode) is in the context of the “Indexer of the post
zone". However, in this zone there are other components: “D1, pusher, D5 and Bal0”

The “Bal0” component belongs to the same class of Dsret2 which is “Magnetic detector”

dS ret
Substitute the “Ball” value of the “ 72

ret
Thus, ds,” _ BalO (strong magnetic fields)
Assign this value to “Dc,”: Dc, = Bal0 (strong magnetic fields)

” descriptor by the “Bal0” value of “dc7”.

The solution is as follows:

By applying the adaptation algorithm the solution is as follows:

17




The failed component is: The Balogh: BalO, belonging to the “Magnetic detector” class,
which is located at the indexer of the post zone.
The repair action is: Clean the Balogh: BalO.

Kind 3: DR = Low
Suppose a failure occurred in the “external ring” and represented by target case 3, denoted by
T3 in the Table 6. The results of the calculation of retrieval and adaptation measures are the

following:

Table 6: AM and RM calculation of case 3.

T3 S5 T3S7

RM | (1+1+0+0+1+1)/6=0,667 |(1+1+0,6+0,8*0+0,8+1)/6=0,733
AM (0,8+0,8+1+1)/4=0,9 (0,6+0,8*2+0,8+1)/4=1

Table6bis: Context of the case

Identification
of the failure
Ds, component
case 7 descriptor ds3 dss dse ds;
value T3 D4 STP3 D5 Ball
DR(Ds2;dsi) low low low low
magnetic Electrical Presence Magnetic
subst. ds3 by dt3 D1(57) detector Actuator sensor Sensor
. Pneumatic
Result=Pusher D,(T3): dt3 Pusher D4(T3) e

The DRs values of the source case 7 are as follows (Table 6 bis)
Ds4: External conveyor of exit external ring = Ft (ds;: exit of external ring, ds,: external

conveyor).
Ds;: Blocked puller = Ft(dss: Ball; DR3; = low, dss: STPs; DRs; = low, dse: D7; DRg,; = low,

ds7: Ball; DR, = low).

We note that all couples (Ds,, ds3), (Dsa, dss), (Dsa, dse) and (Ds,, ds;) have values of “DR =

Low”
By applying the adaptation algorithm, we obtain the following steps:

ret | .
= The solution descriptor “ Ds,"» is from “pneumatic actuator” class.
* The context of the target case components “D4, STP3, D5 and Ball” is located at the

external conveyor of the secondary ring.
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» In this context, the component pertaining to the same context and which belongs to the
same class of P52 (pneumatic actuator) is the component: “pusher”.
= Substitution of the “puller” value by “pusher” value in the descriptor Ds, Ds)" =

blocked pusher.
* Assign this new value to the “Dc2” descriptor.

By applying the adaptation algorithm the solution is as follows:
The failed component is: The pusher in the external conveyor of the exit external ring
The repair action is: Unblock the pusher.
Furthermore, we have found through these three examples that the source case which is the
most similar to the target is not necessarily the case chosen for the adaptation phase

We applied this method for a car system with a diesel motor 1.5 dCi K9K 105ch of from
Renault (Chebel-Morello et al 2009). In order to validate the results obtained by using our
method and to compare it with a traditional one that uses simple retrieval and adaptation
phases, we will conduct a validation method. This method will be described in the next
section.

6 Validation & Discussion

In this section we present three experiments concerning our case based reasoning system:
The first one concerns the need for the adaptation phase in our system. Accuracy of the
diagnostics system with and without adaptation phases is compared.

The second one compares the computational speed of the system in the adaptation guided
retrieval AGR phase with the retrieval classical phase.

The second one evaluates the computational speed of diagnosis reasoning (retrieve+ reuse
phases) and compares it in the adaptation guided retrieval AGR phase with the classical
retrieval phase.

And the third one studies the performance of the adaptation algorithm.

The main goal of these experiments is to prove the feasibility of the proposed method of
diagnostics composed of a case base, knowledge model, AGR and adaptation method. We
used a leave-one-out cross-validation method for the first two parts to assess SISTRE's ability
to accurately adapt retrieved cases for a case base containing 125 cases.

6.1  Accuracy of the adaptation phase

In this part, the accuracy rate with and without adaptation will be calculated. The results
show that the proposed method with the adaptation selects the cases which are the best
adaptable ones and thus it gives an accuracy rate of 88% (See Fig.5 and Fig.6). If the
adaptation algorithm is powerful, one can get a good performance concerning the CBR
system applied to a limited number of cases.
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However, we find bad results without the adaptation, an accuracy rate of only58.1%
with the retrieval step. These results show that the case base is not complete and gives without
adaptation a bad recognition rate. The adaptation phase and models of knowledge on which it
relies are essential. Our diagnostic system gives a good recognition rate.

6.2 AGR method

This experiment is designed

To evaluate the solving time of the help diagnostics system which use knowledge
model and to compare it to the help diagnostics system with two types of the retrieval phase.

We start with the comparative study of our adaptation-guided retrieval method.
Initially, we apply the adaptation algorithm after a retrieval step exploiting the two RM and
AM measures. Then we apply the algorithm after a retrieval stage exploiting only the
similarity measure RM.

Fig. 7 shows the obtained results compared to the computational speed of the
adaptation algorithm in 10 seconds. The adaptation algorithm is executed on a computer
with a microprocessor Intel (R) Core (TM)2 Duo CPU “2.66GHz”.
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The algorithm of adaptation, which is in relation to the knowledge of the system
SISTRE through the models of knowledge, reacts differently depending on the AGR
principle.

Computational speed of reasoning
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Fig.7: Analysis of the adaptation-guided retrieval method

According to Fig.7 which shows the elapsed adaptation time in ms, we note that the
adaptation effort is less important when the AM adaptation measure is employed (in the AGR
case). In fact, the larger the case base it, the more important the variation of the adaptation
effort is. Consequently, the adaptation measure which is resulting from the AGR principle
decreases considerably the adaptation effort. Moreover, this principle allows selecting the
good case that will lead easily and correctly to the given final solution according to the
equipment knowledge context. Moreover, retrieval using only the similarity measure without
adaptation does not select the cases which are the best adaptable ones (in particular
concerning their classes). These results also show that the most adaptable is not necessarily
the most similar.

6.3  Adaptation phase

This experiment is designed to study the accuracy of the help diagnostics system,;
overall accuracy, and more precisely the accuracy of only retrieval cases. The results of this
study are shown in Table 7

Table 7: Results of the adaptation.

Accvracy of]
Total Svcesssful |Failzd Fail=d Crverall only
cases adaptation |adaptation |ratrisval |accuracy  |retrizved

Cases

38% 91.66%

125 110 10

Ln

We note that the accuracy rate 88% reflects that 110 cases were adapted correctly to
the set of 125 cases. This accuracy is computed using “Ds;” as the component responsible for
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the failure. By analysing the results, one can find that there are 5 retrieval failure cases. These
cases are considered as generic cases that are covered by no other case of the case-base. Thus,
their adaptation is impossible.

To evaluate the performance of the adaptation algorithm, these 5 cases are not
considered in the accuracy calculation. For this subset of cases the accuracy rate is 91.66%.
These algorithms can be applied to any type of discrete event systems (transfer systems). To
prove the genericity of this method on any type of industrial plant, we applied these
algorithms to another type of equipment, a diesel engine, but on a limited number of cases
(Haouchine, 2009).

6.4  Comparison with other in industrial diagnosis system.

6.4.1 State of art in industrial diagnostic.

Concerning the reasoning process in the industrial diagnosis system, Gas Turbine, IRACUS
and NodalCBR systems do not use adaptation: they offer directly the solution of the retrieved
case. These systems are not effective because the retrieved case is not necessarily the chosen
case for adaptation. As for Cassiopee, Pad’im (Mille et al, 1999) and Patdex systems, they
propose simple adaptation rules and cannot ensure an accurate solutions’ result of the adapted
cases. FormTool (Cheetham et Graf, 1997) exploits the relation between the retrieval and the
adaptation phases. However, even if FormTool relies on this relation, the technique used is
strictly dedicated to the treatment of plastic colors following a specific function.
Consequently, it is not easily exploitable in other fields and cannot adapt other cases outside
the characteristics of plastic colors.

Finally, the Creek system is the most effective among them because it proposes an
explanation oriented retrieval and it exploits more complex and more complete relations in its
adaptation phase thanks to models. In the retrieval step, the Creek system uses a similarity
measure combined with measures related to the computation path in a semantic network.
Concerning the adaptation step, it does not give any algorithm and it does not show how this
step is carried out. The adaptation begins by activating a set of cases that are matches, and the
step that refines the selection of a subset of cases by exploiting the non-identical explanation
characteristics of each case. Lastly, the final focusing step is based on the solution and that’s
by selecting the best case corresponding to the request and by copying or modifying the
solution of this case. The adaptation phase is complex and is usually designed for a specific
application.

6.4.2 Comparison methodology

To compare our diagnostic method to other CBR diagnostic method, we define three
indicators linked to the elicitation and reusing knowledge in the new application.

CBR systems differ from each other in the development tool, the formalization of the
case, the use of knowledge models, the different phases of the CBR cycle and the different
algorithms and methods used in each step. Table 8 summarizes these points associated with
the effort of creating the knowledge models the cost of adaptation and the cost of re-use.
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Table 8. Comparison of the CBR diagnostic system.

CER creation | development system . |adaptabili| . Reuse ;
Svstems effort tool oriented Retrieval v cost Adaptation cost Knowledge | Global cost
. ) . Bayesi
Gas Turbine 8 Tool circel knowledge | normal 10 No adaptation| 10 ayesian 28
network
IRACUS 10 classification | normal 10 No adaptation| 10 no model 30
_ _ . classification
Nodalegg 8 ICEE knowledge 10 No adaptation| 10 ree 28
. _ Transformati rersati
Cassiopee 8 Kate Kaidara | knowledge | Normal 3 ransiorma 5 |comversanonn 18
onnel el
Graphs of
Patdex 5 knowledge | Normal 5 ap. =0 5 15
experiments
Specifi
FormTool 10 classification | AGR 1] pec1. © 10 no model 20
function
T f i
Creek 2 knowledge | AGR 0 race o 7 | emame 9
reasoming network
. _ Transformati
Caseline 8 Kate Kaidara | knowledge | Normal 10 ranoznogna 5 no model 23
Our method 2 knowledge AGR 0 method 3 5

1°- The effort of creating the knowledge models can be quantified by a development cost.
To use development systems one needs to buy the system, to understand it and

develop models. This requires expert availability. We will identify a cost of 8 on a scale of 0
to 10. However, representing expert knowledge from scratch will cost 10.

The creation of the knowledge model without the development system relies on the analysis
of functional and dysfunctional models like Creek and our method requires less effort to
model the creation. We can estimates the cost of this complex model to be 3

2°- To estimate the capacity to reuse the cases in the retrieval phase, we define the easiness of
the adaptation by a cost of adaptation.
Adaptation guided retrieval method takes into accounts the cost of adaptation to select the

most suitable course. The adaptation cost will be minimized (= 0) in this case. When there is
an adaptation in the CBR system, the cost of adaptation is equal to 5

When there is no adaptation in the CBR system, the cost of adaptation is equal to 10.

Creek system is the most effective among the other diagnostic methods because it proposes an
explanation oriented retrieval and it exploits more complex and more complete relations in its
adaptation phase thanks to models.

3 °-For the re-use of the program of adaptation in the new application, the cost of re-use will
depend on the generality of Adaptation methods.

If there is no algorithm of adaptation or there is a specific algorithm of adaptation the
cost is maximal because a new algorithm must be developed. The cost of re-use is maximal, it
is equal to 10.

If the application takes support on specific rules or models of knowledge the cost can
be averaged, and it is equal to 5

When a method is independent of the application, as it is the case for our method, the
cost is minimal and it is equal to 0.

Applying these criteria to the methods we obtain Table 8:
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We can see that our method was implemented to minimize the cost of designing a knowledge
system and therefore it gives better results than other methods.

7 Conclusion

A knowledge oriented diagnostics system integrated in the e-maintenance platform is
proposed in this paper. The case based reasoning system is well adapted to solve fault
diagnostics issues because problems are recurrent and cases can be reused. A state of the art in
the frame of case based reasoning for technical diagnostics highlighted that there is no
common method to build a diagnostic support system. To conceive this system, we have
followed the method of Rasovska which is to develop the two processes of Lamontagne
model (offline and online processes):

1. Firstly we developed the following knowledge containers: (i) vocabulary that takes into

account the definition of diagnostics.(ii)case base that formalizes the experience;(iii)two
similarity metrics (one for the retrieval phase and one for the adaptation phase) and
knowledge adaptation with two models.
We set up a formalization of the cases and we associated to the descriptors a hierarchical
model. This model is common to problem and solution descriptors of the case-base cases
and a model relating to the application context. All steps depend on the cases
formalization and the associated knowledge models. The elaboration of this expert
knowledge has a cost, but this cost is minimized because the first model which is the
component taxonomy model is well known by the maintenance users. However, the
second model requires a minimum of work. This modeling has influenced the proposed
similarity measure as well as the adaptation measure. The latter is directly related to the
functional mode of the supervised components (an attribute specific to the descriptor).

2. Secondly, concerning the reasoning process, an adaptation-guided retrieval method has
been proposed.
The retrieval phase is related to the adaptation phase using the conjunction of similarity
and adaptation measures. This conjunction makes it possible to select among the retrieved
cases the most adaptable. The adaptation phase will exploit the dependency relations
between the problem and the solution. These dependency relations will be given either by
the selection of a relevant descriptor or by the use of a context model between the various
failures which can appear in an industrial plant. And the results depend on this relation.
One difficulty to overcome in this method is to define these relationships in the case base.
The adaptation algorithm detects three scenarios and proposes associated actions to each
case. We detailed one scenario where the most similar case is not necessarily the one
selected for the adaptation.

Our previous studies have enabled us to formalize the case of a supervised industrial

system of pallets transfer (SISTRE) in this paper and in a diesel engine, but on a limited
number of cases. The proposed adaptation-guided retrieval and adaptation methods for a
diagnostic application have been validated on a set of 125 cases resulting from the study
carried out on SISTRE.

We have proved the feasibility of this diagnostic support system. To build it in any
type of industrial equipment, two knowledge models need to be elaborated. To avoid the cost
of the development of knowledge models, we are currently working on the use these
algorithms with models (functional events and components models) developed in a web-
maintenance platform. This model is defined in the domain ontology of maintenance, in the
context of Semantic-maintenance and life cycle (SMAC) Project.
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This method needs to be applied on a large scale that would attest its applicability for
any type of equipment. We will apply this method to more complex equipments, where we
select different levels of granularity in the equipment, and this will affect the formalization of

the case.
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APPENDIX A: THE SUPERVISED INDUSTRIAL SYSTEM FOR PALLET TO
DIAGNOSTIC.

To illustrate each notion of this study, the industrial application to be developed is
described in this section. This application is a supervised industrial system for pallets transfer
(SISTRE).A description of the system is given in Fig. 8a and Fig.8b.
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The latter represents a flexible production system, composed of five robotized working
stations which are served by a transfer system of pallets organized into double rings (internal

and external).

As shown in Fig 8b, each station is equipped with pneumatic actuators (pushers, pullers and
indexers) and electric actuators (stopper) as well as a certain number of inductive sensors
(proximity sensors). An inductive read/write module allows to identify and locate each pallet
and to provide information relative to the required operation in a concrete station. The motion
of the pallets is ensured by the friction on belts that are powered by electric motors. Each
pallet has a magnetic label that is used like an embedded memory. This memory can be read
in each working station thanks to magnetic read/write modules (Balogh) and allows the
memorization of the product assembly sequence. These labels thus enable to track the pallet
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path through the system. The feasibility of our approach was studied in Section 6 through 125
generic cases q.

Functional analysis of the system has identified main, additional (compelmentary) and
secondary functions. Main functions are as follows: transfer assembly parts between stations;
identify pallet and product lines; store product information; transform Content of the pallet.
Secondary functions secure the transfer system; provide pneumatic energy and electrical
energy. Secondary functions are concerned with adding/removing pieces of pallets, and
managing assembly lines.

The base case is studied in relation to the functional analysis of the level 2 on a station which
is shown in Figure 9.

The studied case base is in relation with the internal functional analysis of level 2 relative to
the working station that is represented in figure 9.

FP1: Detect the presence of a pallet

Post FP4

Stoppers

EP3 FP1

FP5
Principal

Conveyor
P5
Secondary
Fp1 Conveyor Fp2
/ Reader/Writer Plot

FP8

FP2: Read and write labels for pallets

FP3: Read labels pallets

P4: Stop pallets

FR5: Move pallet between jobs

FP7 FPAQ: Move to the main conveyor pallet

Fig. 9: Functional Analysis Internal Level 2 (Post)
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