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Abstract

This paper adresses the problem of optimizing the useful life of a het-
erogeneous distributed platform which has to produce a given production
service. The purpose is to provide a production scheduling that maximizes
the production horizon. The use of Prognostics and Health Management
(PHM) results in the form of Remaining Useful Life (RUL) allows to adapt
the schedule to the wear and tear of equipment. This work comes within
the scope of Prognostics Decision Making (DM). Each considered machine
is supposed to be able to provide several throughputs corresponding to
di�erent operating conditions. The key point is to select the appropri-
ate pro�le for each machine during the whole useful life of the platform.
Many heuristics are proposed to cope with this decision problem and are
compared through simulation results. Simulations assess the e�ciency of
these heuristics. Distance to the theoretical maximal value comes close to
10% for the most e�cient ones. A repair module performing a revision of
the schedules provided by the heuristics is moreover proposed to enhance
the results. First results are promising.

1 Introduction

The problem tackled in this paper concerns the scheduling of a platform com-
posed of many heterogeneous machines. These are supposed to be of similar
type and to run in parallel. At each time the global throughput provided by the
platform is determined by the sum of each machine throughput that is currently
running. The purpose is to manage the platform and implement a production
schedule which allows to provide at least a given service level requested by con-
sumers. In literature on scheduling theory, machines are commonly assumed to
be continuously available [15]. This assumption may not be valid in a real pro-
duction situation due to wear and tear on machines. In the considered problem,
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as each machine is assumed to be independent, the breakdown of one of them
does not necessarily entail a shutdown of the whole platform. Maintenance is
nevertheless required in the long term and generates signi�cant costs. These
can be minimized by optimizing maintenance strategies [4]. In some cases, one
solution is to group maintenance operations in order to minimize the costs due
to the use of material and human resources or production shutdown periods.
To manage such a grouping, some maintenance actions might need to be post-
poned. Dietl et al. [10] proposed for instance to match the time to failure of
di�erent tools used in each station of a transfer line by derating them in such
a way that a maximum of tools can be maintained at the same time. Grouping
maintenance actions can also be necessary because maintenance is challenging.
For instance, many works have been carried out to optimize the maintenance
of wind farms [13,18]. For the maintenance of such systems, especially o�shore
ones, complex aspects like weather conditions, requirement of non-traditional
resources, skilled technicians, expensive hired services or spare parts have in-
deed to be considered. Kovacs et al. [18] proposed a mixed-integer programming
formulation for the problem of optimizing the scheduling of maintenance actions
for wind farms. Haddad et al. [13] provided an optimization model based on
real options and stochastic dynamic programming to optimize the maintenance
of o�shore wind turbines. Minimization of maintenance costs has been studied
by Besnard et al. [4] who proposed an opportunistic maintenance optimization
model for o�shore wind power systems. Vieira et al. [27] proposed a new vari-
able health threshold that helps to re-schedule and to optimize the maintenance
plan of the assets at a wind farm. The objective was to maximize the wind
turbine component life-cycle. They concluded that optimizing maintenance of
wind turbine components can help achieving a better use of this wind turbine.

The study presented in this paper is close to the one developed in [27]. How-
ever our approach goes further in that not only one machine is considered, but
a set of machines The objective is then to maximize the production horizon
of a whole platform. We assume that the platform can be totally shutdowned
for maintenance and that the needed service is provided by an other platform
during the maintenance period. All the machines can then be maintained in the
same time. The key point is to be able to take the wear and tear of machines into
consideration and to know the time left before occurrence of a failure. Prognos-
tics and Health Management (PHM) can comply with these needs. Prognostics
phase is indeed dedicated to estimate the Remaining Useful Life (RUL) of ma-
chines in service [19,23]. In a PHM context, the production horizon can be seen
as the RUL of the whole platform, which depends on both the RUL of each ma-
chine and the schedule. The use of PHM results is furthermore consistent with
our objectives in that PHM aims at maintaining equipment operational per-
formance over time, improving their usage while minimizing their maintenance
costs [5].

The organisation of the paper is as follows: Section 2 discusses related work.
The tackled problem is detailed in Section 3 and is illustrated through a moti-
vating example in Section 4. Then heuristics are proposed to solve the problem
in Section 5 and are compared through simulation results (Section 6). A way
to enhance the obtained results is described in Section 7. Finally, we conclude
in Section 8.

2



2 Related work

As pointed out by Haddad et al. [13], PHM has been shown to provide many
bene�ts for the health management of systems such as avoiding failures, increas-
ing availability, minimizing loss of remaining life, optimizing resource usage or
reducting no-fault-founds. These bene�ts are strongly tied to the decision part
of PHM process whose main purpose is to determine appropriate maintenance
actions in response to prognostics predictions [1, 14]. The post-prognostics de-
cision process concentrates appropriate decisions onto one equipment whereas
Prognostic Decision Making (PDM) extends decisions to a whole system. Prog-
nostic Decision Making aims also at choosing an appropriate system con�gu-
ration [2]. Our work falls within this latter case. Temporal segmentation for
decision framework has been introduced by Bonissone et al. [5]. They identi�ed
three types of decisions in the segment dealing with multiple and repeated deci-
sions: tactical, operational and strategic. According to the frequency on which
the decisions have to be taken, diagnostics and prognostics �t with tactical level
(seconds, minutes, hours). Decisions for process control in such timeframes suits
with on-line scheduling and rescheduling. The part that concerns frequency from
nanoseconds to seconds describes con�gurations that are encountered in elec-
tronic, electro-mechanical and control domains. Operational level is adapted
to lower frequency decision process as production or maintenance planning and
o�-line scheduling. Our work falls within these two short-term and mid-term
levels of the decision making process, in which many applications are studied.
We can cite the aerospace domain [2,7] and applications on wind turbines [13],
electronic systems [23] or cutting tools [6].

Most of the studies proposed in the literature focus on maintenance plani�-
cation. PHM enables indeed maintenance to be planned on the basis of actual
component or system health state [7]. Many contributions are proposed in the
form of maintenance policies that minimize life cycle costs. Sandborn et al. [23]
endeavor to determine when scheduled maintenance makes sense for electronic
systems. Haddad et al. [13] proposed an optimization consisting in �nding an
optimum subset of o�shore turbines to be maintained, given information on
their degradation, availability requirement and costs constraints. Balaban et
al. [2] developed a prototype algorithm that uses probabilistic methods and
prognostics information in generation of action policies for aerospace applica-
tions. In the same area, a PHM and Maintenance data integration tool that
enables various available diagnostic and prognostics methods to be used in a real
environment has been proposed by Camci et al. [7] for �ghter aircrafts. Asmai et
al. [1] used the data-driven approach to implement an intelligent maintenance
prognosis tool. Incorporated into the maintenance decision process, this tool
can be used to recommend better maintenance planning. In the same paper, it
is pointed out that acknowledging the RUL information can also be very useful
for production scheduling. Indeed, this quantity gives information about the
status of equipment before proceeding with new production jobs. This can help
avoiding material waste and production loss due to equipment breakdown in
the middle of an operation. Decisions could therefore take several forms: imme-
diate machine shutdown in order to avoid further damage, machine operation
modi�cation in such a way as to reduce the load, continuation of normal op-
eration [13], preventive intervention, production rescheduling, etc. The use of
prognostics results in the form of RUL can then be extended to modify opera-
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tional conditions or mission pro�les in order to accomplish the main objectives
of the mission [16, 19]. Balaban et al. [3] proposed such an application on a
hardware testbed based on a planetary rover platform and considering many
fault modes such as mechanical deterioration, electronic faults or low remaining
battery charge. The objective is not only to determine the RUL of a compo-
nent, but also to suggest actions that can optimize vehicle maintenance, ensure
mission safety, or extend mission duration. The idea that is conveyed is the
following: if decisions are made with respect to the system health evolution
over time, the mission e�ectiveness can be maximized before energy and health
budgets are exceeded. In case of a fault occurrence, a new mission plan may
have to be de�ned. Recon�guration of the vehicle can also be considered in
order to extend the RUL of the a�ected component as long as needed to ensure
achievement of the mission objectives.

Such kind of recon�guration that a�ects the system production rate can
be found in scheduling literature. Variable-speed scheduling is for instance a
generalization of standard multiple machine scheduling because not only the
assignment of jobs to machines has to be managed, but also the time used by
jobs on machines [20, 25, 26]. Tooling machines are for example variable-speed
machines, insofar as they can be run at di�erent speeds [10]. The notion of
recon�guration can also be found in the �eld of scienti�c computing and more
precisely in scheduling of multiprocessor tasks. Processors capable of global
Dynamic Voltage and Frequency Scaling (DVFS) have been developed and allow
the manipulation of the voltage and frequency when the computational load is
not perfectly balanced [17, 24]. Many applications have been proposed in the
literature [8, 22, 28]. Three main objectives can be highlighted among these
papers using recon�guration. The �rst one is the makespan, i.e., total length
of the schedule, minimization [20, 22, 26]. The second one is the minimization
of energy consumption [8,17,24,28]. This objective is linked with the third one
that consists in minimizing production costs [24,26].

The objective set in this paper can not be classi�ed in these three categories.
The point is to con�gure a set of machines so as to maximize the production
horizon. A second objective is to use all the considered machines to their full
potential in order to minimize maintenance costs by grouping maintenance op-
erations. Scheduling which is taken into consideration di�ers furthermore from
the general de�nition. We seek indeed to schedule considering prognostics in-
formation. We consider prognostics-based scheduling, which can be de�ned as
a scheduling that takes the wear and tear of equipments into account and that
adapts to remaining useful life (RUL). Scheduling appears then to be part of the
PHM Decision Process, as far as prognostics results are used to determine the
length of time intervals between two maintenance operations. Prognostics-based
scheduling complies with main goal of scheduling that is achieving an optimal
usage of resources. Such a kind of scheduling could furthermore be adaptive, as
it may respond to disruptions or to knowledge of new informations dynamically
over time [9].

3 Problem statement

As developed in previous section, the performance of a machine may vary during
its use and this variation can be controlled, for instance through voltage, power
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or speed scaling. We propose to exploit this characteristic to optimize the use of
the considered platform. Each machine is supposed to be able to provide several
throughputs. In a PHM context, each throughput corresponds to a certain
operating condition. We assume moreover that each machine is monitored and
associated with a prognostics module that gives a RUL value depending on both
its past and its future usage. As highlighted by Elghazel and al. [11], the way
to consider operating conditions, especially future ones in RUL estimation, still
needs deep studying. So we assume in this paper that each needed RUL value
is known and that RUL evolution depends on the operating conditions, that is
on the running pro�le in which the machine is used.

3.1 Controlled running pro�les in a PHM context

We de�ne a running pro�le as a controlled machine pro�le involving a cer-
tain throughput and associated with a certain RUL: Ni = (ρi,RULi), with
i ∈ I = {0, . . . , n−1}. Let N0 be the nominal running pro�le, where immediate
throughput is the most signi�cant. This nominal running pro�le has the mini-
mum RUL. By comparison a sub-nominal pro�le provides a lowest throughput,
but its associated RUL is longer (see Figure 1(a)). Each running pro�le corre-
sponds to an operating condition and impacts di�erently the wear and tear of
the machine and therefore its operational time. Taking several running pro�les
into consideration seems to be interesting in that the combination of two or more
pro�les allows to reach an operational time that is greater than the one obtained
with its nominal running pro�le. As example, the Figure 1(b) shows that the
use of three di�erent running pro�les allows to run the same machine for longer
than the RUL of nominal pro�le. Of course, in counter part, the amount of
work done with this machine is lower than it would be with the nominal pro�le.

We assume that the order in which the running pro�les are selected among
the machine lifespan does not impact the RUL evolution. The second scenario
proposed in Figure 1(b) shows that the machine lifespan can not only exceed the
RUL of the nominal pro�le, but also the one associated to the second de�ned
running pro�le. As showed in the motivating example in Section 4, one can take
advantage of the use of many running pro�les to optimize the scheduling of a
set of machines.

3.2 Application framework

The application that is addressed in this paper is a platform composed of m
independent machines Mj , with j ∈ J = {1, . . . ,m}, performing independent
and identical tasks. All the machines can be used in parallel as a global sys-
tem. Machines are supposed to be always supplied with power or raw material
required for the production. The provided result is a given service level that
is measured as a throughput, i.e., number of pieces performed or amount of
matter (a) treated per unit of time (ut). At each time the global throughput
ρtot provided by the platform is determined by the sum of each throughput ρj of
machines Mj that are currently running. Note that the platform has to deliver
a given global throughput σ = σ(t). This latter one is based on a customer
demand, which can be variable and de�ned as a function of time. The platform
can be seen as a distributed environment where machines that are currently
running ful�ll a shared global task such that ρtot ≥ σ.
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Figure 1: Running pro�les

All the machines are not supposed to be in use at any time because of their
RUL or because the target throughput σ can be achieved by using only a subset
of the available machines within the platform. RUL is assumed to be constant
in time when the machine is not used. Moreover, we assume that overproduc-
tion should be avoided as far as possible. Overproduction leads indeed either
to costly stocks or to losses if the production can not be stored. Allowing over-
production can however allow to extend a platform useful life (see scenario 2 in
Section 4). The key point of the considered problem is then to be able to �nd
the appropriate pro�le for each machine at each period of time, as described in
the next section.

3.3 Decision problem

The problem tackled in this paper is the optimization of the useful life of a
platform such as de�ned in the application framework (see Section 3.2). The
objective is to provide a prognostics-based schedule as de�ned in Section 2 by
con�guring the platform so as to reach the demand as long as possible. One
way to tackle the problem consists in discretizing the time into periods. This
approach is not so far from realistic constraints, since one can imagine that one
period could be one day or one week in a real case. The production horizon
T can then be expressed as follows: T = K × ∆T , with ∆T the length of
one time period and K the number of periods for which the demand level σ is
reached. We assume that, if the demand is a variable function of time σ(t), then
σ(t) = σk is a constant value within the period k for all t and all k such that
(k − 1)∆T < t ≤ k∆T and k ≤ K.
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Considering discretized time, the problem consists in choosing, for each pe-
riod of time k, a subset of machines to be used and an associated running pro�le
for each of them. Using the notations de�ned in this section, the problem that is
tackled here can be described by a notational form: maxK(σk | ρi,j | RULi,j).
This general notation stands for the problem of �nding an optimal schedule,
that is maximizing the production horizon K∆T , considering a variable needed
service level σk in terms of throughput for each time period k (1 ≤ k ≤ K}) and
several machines Mj (1 ≤ j ≤ m) with many running pro�les Ni (0 ≤ i < n),
di�erent throughputs ρi,j and di�erent states of health RULi,j at time 0 (time
0 refers to the schedule at starting time). Many alternatives can be used to
represent sub-problems by adapting the subscripts of the di�erent parameters.

In the following, for the readability of the resolution methods developed in
Section 5 and without loss of generality, the demand σ(t) = σk is assumed
to be constant in time and equal to σ. The problem is then the following:
maxK(σ | ρi,j | RULi,j). The proposed methods could nevertheless easily be
adapted for a variable demand, provided that this demand is known in advance
for the whole production horizon.

4 Motivating example

To illustrate our purpose let us describe a small example. Consider four ma-
chines, each of them being able to provide a given throughput during only one
period (∆T ). Let's assume that a given global throughput σ has to be reached.
A �rst scenario, where overproduction is not allowed, consists in using each
machine one after another. One can see in Figure 2(a) that in this case the
platform runs for four periods but the targeted throughput is achieved only for
one period. Considering the objective, the scheduling horizon T is then one
period (T = ∆T ).
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Figure 2: Motivating example

When overproduction is allowed, two machines can be used in parallel and
the scheduling horizon is increased to two periods (see Figure 2(b) with T =
2∆T ). If the production is stopped after two periods, some potential still re-
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mains. The machine M4 has indeed never been used and does not need mainte-
nance yet. The schedule proposed in Figure 2(b) is optimal under the previous
assumptions.

Machines should then be used in another pro�le to extend the production
horizon. One can see in Figure 2(c) that using the machine M1 with a lower
throughput allows to reach the targeted throughput for three periods. This
example shows that using machines with di�erent running pro�les allows to
extend the useful life of the set of machines while respecting a given targeted
global throughput.

5 Resolution methods

An optimal approach based on an exact resolution method has been proposed
to cope with the problem de�ned in Section 3.3 by Nicod et al. in [21]. The
decision problem has been described as follows: does a schedule exist to ful�ll
a given constant demand σ during a given number of periods K, considering
the machines health states? An Integer Linear Program (ILP) using binary
variables has been proposed. A binary solver [12] has been used in parallel
with a dichotomic search to �nd the maximal value of K. As solving such a
Binary Integer Linear Program (BILP) is NP-complete, solutions can be found
in limited time only for small size instances of the problem.

In order to deal with large scale problems, we propose here �ve polynomial
time heuristics that allocate for each period of time enough machines to reach the
targeted throughput as long as possible. Each heuristics follows its own strategy
to select the machines and a running pro�le for each of them so as to de�ne its
contribution to the global production within the current period. A �rst strategy
consists in de�ning the schedule period by period. A new selection of machines is
performed for each period and is applied only for one period. An other strategy
consists in applying the same selection on many periods. The number of periods
on which a solution can be applied is limited by the selected machine having the
smallest RUL. One can see that the strategy working by group of periods cannot
be used as it is when a variable demand σk is considered. It could nevertheless
easily be adapted by applying each selection on the minimum of the two values:
smallest RUL of the selected machines and length of the time interval in which
the targetted demand remains constant. Regardless of the two strategies, three
di�erent types of heuristics can be distinguished. First heuristics provides a
random schedule. Second type of heuristics are greedy ones and last one uses a
dynamic programming based algorithm. An illustration based on the initial set
of machines described in Figure 3 is given for each heuristics in the following
sections.

5.1 H�RAND: Random assignment heuristics

The �rst heuristics works period by period. The following process is iterated as
long as a solution is found:

1. Choose randomly a machine and an associated running pro�le among these
that are available
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Figure 3: Initial set of machines

2. Go to the �rst step as long as the global throughput does not reach the
demand σ

3. Use the selected machines for one period of time

4. Update the RUL of the selected machines to take their usage into account

The process is stopped as soon as a period can not be completed. This can
happen even if there is enough potential left. In each period, the remaining
machines depends indeed on the �rst choices made by the heuristics.

time
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Figure 4: Schedule obtained with H�RAND

5.2 H�LRF: Largest RUL First heuristics

This second heuristics works by group of periods and aims at considering each
machine Mj using its pro�le associated to the largest RUL, that is the pro�le
providing the lowest throughput: pn−1,j = (ρmin,j ,RULmax,j). The following
process (see illustration in Figure 5) is iterated as long as there is enough po-
tential left to reach the demand for minimum one time period:

1. Select all available machines in their running pro�le providing the lowest
throughput
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2. While the global throughput ρtot is less than the demand σ, increase the
contribution of the machine having the maximal RUL by modifying its
running pro�le from the chosen one Ni to the previous one providing a
higher throughput Ni−1

3. While the global throughput ρtot exceeds the demand σ, erase the machine
providing the maximal throughput ρmax from the solution such that ρmax

is lower or equal to the overproduction (i.e., ρmax < ρtot − σ)

4. Use the selected machines for a number of periods equal to the smallest
RUL of the solution

5. Update the RUL of the selected machines to take their usage into account

Step 3

time
M1 N1

M3 N1

M2 N1

M4 N1

M4 N1

M3 N1

M1 N1
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Figure 5: H�LRF operating principle
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Figure 6: Schedule obtained with H�LRF

5.3 H�HOF: Highest Output First heuristics

The heuristics H�HOF is based on the same principle as H�LRF but each ma-
chine Mj is con�gured with its most e�cient pro�le p0,j = (ρmax,j ,RULmin,j).
Two options can be considered. First one, H�HOFlt (Highest Output First, low-
est throughput �rst), selects the machines having the lowest throughput �rst
and second one, H�HOFht (Highest Output First, highest throughput �rst),
these having the highest throughput. The following process (see illustration in
Figure7) is iterated as long as there is enough potential left to reach the demand
for a minimum of one period:

1. Select the smallest subset of machines providing the smallest (resp. the
highest) throughputs in their most e�cient pro�le such that ρtot reaches
at least σ for the �rst option H�HOFlt (resp. second option H�HOFht)
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2. While the global throughput ρtot exceeds the demand σ, decrease the
contribution of the machine having the minimal RUL by modifying its
running pro�le from the chosen one Ni to the following one providing a
lowest throughput Ni+1, only if ρtot remains greater or equal to σ

3. Use the selected machines as long as possible (corresponds to the smallest
RUL of the solution)

4. Update the RUL of the selected machines to take their usage into account
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Figure 7: H�HOFht operating principle
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Figure 8: Schedule obtained with H�HOFht

5.4 H�DP: Dynamic Programming based heuristics

H�DP is a more sophisticated heuristics. It aims at minimizing the production
loss. If one period is considered, the problem is to �nd a subset of couples
machine/running pro�le that is able to reach at least the production demand
with the smallest overproduction. A Knapsack-like algorithm is proposed so as
to make the choice between all the available couples within the current period.
The di�erences with the classical Knapsack problem is �rst that the sum of the
value (ρi,j) of the selected objects (subset of couples machine/running pro�le)
should be greater or equal to the knapsack weight (σ). Secondly, each object
(Mj) can have several values (ρi,j , 0 ≤ i ≤ n − 1) and at most one could be
selected. The objective of this Knapsack-like problem is to minimize the sum of
the machine values in the case where this sum exceeds the knapsack weight σ.

The algorithm developed to implement H�DP is the classical dynamic pro-
gramming based approach. Each available machine is successively considered,
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following an ascending order of their throughput. This sorting allows to mini-
mize the number of recorded solutions and therefore minimizes both the memory
needed and the processing time. Machines with the same throughput are also
sorted in descending order of their RUL. Each running pro�le of each machine
is successively considered, from the last one providing the minimal throughput
to the most nominal one. Performing this sorting before each search for solution
allows to wear out the set of machines homogeneously. Due to this turnover in
the use of machines, a maximum of di�erent machines are kept available for the
last periods and the production horizon is extended.

For each machine Mj , the targeted throughput σ′ is iterated from 1 to σ.
For each value of σ′, each available pro�le pi,j = (ρi,j ,RULi,j) (0 ≤ i ≤ n − 1)
of Mj is considered to select or not the current machine with its better con-
�guration regarding the objective. To de�ne the objective value let's introduce
some notations: let ovi(σ

′, j) be the overall throughput obtained by the j �rst
machines using both the jth machine with its ith pro�le and the optimal con�g-
uration considering the j− 1 �rst machines obtained for a target throughput of
σ′− ρi,j ; let OVi(σ, j) be a valide overall throughput and +∞ otherwise; �nally
let OV (σ′, j) be the optimal (minimal) throughput that exceeds the target de-
mand σ′ using a subset of the j �rst machines. The expression of the optimal
value is the following:

ovi(σ
′, j) = OV (σ′ − ρi,j , j − 1) + ρi,j with 1 ≤ i ≤ n

OVi(σ
′, j) =

{
ovi(σ

′, j) if ovi(σ
′, j) ≥ σ′

+∞ otherwise

OV (σ′, j) = min
(
OV (σ′, j − 1), min

1≤i≤n
OVi(σ

′, j)
)

The minimal throughput for the current period is given at the position OV (σ,m)
of the 2D matrix OV used by the algorithm. Thanks to the storage of each
choice that is made for every couple (σ′, j) when the algorithm is running, the
algorithm is able to reconstruct the way to obtain the optimal schedule. Should
two or more equivalent schedules be found, the algorithm chooses the solution
with fewer machines.
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Figure 9: Schedule obtained with H�DP

As illustrated in Figure 9, H�DP minimizes the overproduction as long as
possible. While the schedule found for each time period is optimal, the global
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schedule is not necessary optimal. This can be seen in Section 6, in which all
the proposed heuristics are compared to upper bounds and among themselves
through their reached production horizon.

6 Simulation results

6.1 Benchmark generation

Both proposed approaches previously described (optimal and heuristics ones)
have been validated on random problem instances. These have been gener-
ated using a simulator and con�gured with many parameters. First one is
the number of machines constituting the platform: M ∈ {10, 25, 50}. Second
one sets the number of running pro�les with which each machine can be used:
N ∈ {1, 2, 5, 10}. As pointed out in Section 3.3, the demand σ is considered
to be constant during the whole scheduling process. Only one demand value is
then associated to each problem instance. Many demand values corresponding
to di�erent problem instances have however been tested. These values have
been de�ned as follows: σ = α × ρtot,max, with ρtot,max =

∑
1≤j≤m ρmax,j the

maximal total throughput available with the considered set of machines and α
a load varying between 30% and 90%.

The protocol used to run the experiments consists in generating 20 problem
instances with the same parameters values. Each instance corresponds to a
di�erent platform.

In the next sections, we present the results obtained with this benchmark
generation. On the basis on many tests on di�erent sets of machines, it appears
that one version of H�HOF is as e�cient as the other one. For the rest of the
study, only the version selecting the machines having the highest throughputs
�rst, H�HOFht, will then be considered.

6.2 Comparison to the optimal

As developed in Section 5 and in [21], results obtained with the heuristics can
be compared to optimal ones only for small size instances of the problem. Tests
have been performed for cases with N ≤ 2, M ≤ 5 and K ≤ 20. Solutions
obtained with H�DP are on average at 5% from the optimal one.

6.3 Comparison of heuristics

In the following �gures, the production horizon K is represented as a function
of the load α = σ/ρtot,max varying between 30% and 90%.

It appears that the random assignment heuristics provides results that are
not so bad when only one running pro�le is considered. One can see in Figure 10
that H�RAND provides the greater K value for loads between 40% to 80%. This
can be explained by the fact that this heuristics does not select useless machine.
The maximal overproduction is then equal to the maximal available throughput
ρmax minus 1. H�RAND is however not reliable for high loads (α ≥ 50%) when
the number of running pro�les is increased. The number of possibilities for the
choice of couples machine/pro�le increases with the number of pro�les. If many
machines are selected in pro�les providing to low throughputs, the remaining
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Figure 10: Average
number of periods com-
pleted (K) depending
on the load - N = 1
running pro�le, M = 10
machines

machines may not be su�cient to reach the demand, even in their nominal
pro�le. Results already decrease when taking into account two running pro�les
(see Figure 11). The heuristics H�RAND will then not be considered in next
simulation results.

Figure 11: Average
number of periods com-
pleted (K) depending
on the load - N = 2
runnnig pro�les, M =
10 machines

Considering many running pro�les can however be interesting. One can
indeed see in Figure 12 that the production horizon K increases with N when
H�LRF is used.

Variation of the number of running pro�les and of the number of machines
seems to have no signi�cant e�ect on the results provided by H�HOF (see Fig-
ures 12, 13 and14). This heuristics favours indeed the nominal running pro�les.
Considering the same machine, the nominal running pro�le provides the same
throughput and is associated with the same RUL whatever the number of run-
ning pro�les considered.

H�DP appears to give the best results for low loads α varying between 30%
and 50% (see Figures 13 and 14). For high loads (α > 50%), the highest
production horizons are obtained with H�LRF (see Figures 13 and 14).
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Figure 12: Average
number of periods com-
pleted (K) depending on
the number of running
pro�les (N) - M = 10
machines, load = 60%

Figure 13: Average
number of periods com-
pleted (K) depending
on the load - N = 5
running pro�les, M =
10 machines

Figure 14: Average
number of periods com-
pleted (K) depending
on the load - N = 5
running pro�les, M =
25 machines
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6.4 Comparison to an upper bound

An upper bound Kmax can be provided as de�ned in Equation 1. If all the
machines are used with their running pro�le that provides the best output
(Q = ρ × RUL) and if the total required throughput σ is constant over time,
then Kmax is the theoretical longest duration for which the demand σ can
be reached (see Equation (1)). This upper bound is only reachable under a
very restrictive condition, if no overproduction is performed during the whole
scheduling horizon.

Kmax =

⌊∑
1≤j≤m max0≤i<n (ρi,j × RULi,j)

σ

⌋
(1)

In the following �gures, distance of the production horizon K to the the-
oretical maximal horizon Kmax is represented as a function of the load α =
σ/ρtot,max varying between 30% and 90%.

One can see in Figures 15, 16 and 17 that all the heuristics excepting H�
RAND are at least at 50% from Kmax, 30% for H�DP. This is promising since
the upper bound Kmax is reasonably not reachable. In the best cases, H�DP is
at 10% from the maximal value. With high loads and a great number of running
pro�les, H�LRF gets also close to 10%.

Figure 15: Distance to
the theoretical maximal
value (KMAX) depend-
ing on the load - N = 1
running pro�le, M = 10
machines
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Figure 16: Distance to
the theoretical maximal
value (KMAX) depend-
ing on the load - N = 2
running pro�les, M = 10
machines

Figure 17: Distance to
the theoretical maximal
value (KMAX) depend-
ing on the load - N = 5
running pro�les, M = 10
machines
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7 Enhancement: Repair module

According to the results presented in Section 6, optimal solutions can not be
found using the sub-optimal approaches proposed in Section 5. The distance to
the optimum is indeed always positive, which means that there is a scope for
improvement. There is also usually remaining potential, i.e., many machines can
still be used as their RUL is greater than 0 at the end of most of the schedules
obtained with sub-optimal approaches. The corresponding production horizons
could then be extended by using this remaining potential.

7.1 Strategy

We propose to enhance the results obtained with the previous heuristics by per-
forming a revision of the schedules. This can be done because the schedules are
built up o�ine. Repair will be performed on the results of the H�DP as it gives
globally the best results in terms of production horizon. There is furthermore
less remaining potential at the end of H�DP schedules, so less to repair. We saw
that the random strategy achieved good results even if it allows overproduction.
The idea here is then to relax the �rst criterion of the dynamic programming
by allowing overproduction. In concrete terms, some remaining machines are
exchanged for other machines used in the initial schedule. The recovery of these
machines allows to increase the number of machines that can be used in parallel
and allows potentially to reach the demand for one or more additional period(s).

The repair process can be seen on the following very simple example. Let's
consider three machines with one running pro�le and the caracteristics showed
in Figure 18. The schedule obtained with H�DP can be seen in Figure 19(a).
One can see that the machine M3 is never used. There is a remaining potential,
but no additional period can be completed because the remaining machine is
not powerful enough to reach the demand alone. The machine M3 is not used
in the �rst period of the schedule, so it can be exchanged with machine M2 for
one period. There is now an overproduction in the �rst period of the schedule,
but also two di�erent machines available. The demand can then be reached for
one more period by using machines M3 et M2 in parallel (see Figure 19(b)).
The same exchange can be done in the second scheduled period. This allows to
get the machine M2 back for one period and to increase anew the production
horizon K by one (see Figure 19(c)). On this example, applying the repair on
the H�DP schedule allows to use all the machines entirely and to extend the
horizon production from 4 to 6 time periods.

use

100%

use

100%

use

100%

time time time

M1
N0

M2
N0

M3

N0

RUL0,1 = 4

ρ0,1 = 200 ρ0,2 = 200

RUL0,2 = 4

ρ0,3 = 300

RUL0,3 = 4

Figure 18: Set of machines for repair illustration

7.2 Results

The repair e�ciency has been studied on small problem instances, with 5 ma-
chines and 1 running pro�le. Figure 20 compares the repair results to the initial
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(a) H�DP schedule
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(b) H�DPR - Step 1
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(c) H�DPR - Step 2

Figure 19: Repair strategy

ones provided by H�DP. One can see that the repair module allows to increase
the number of completed periods K. The repair is more e�cient for low loads.
In case of high loads, more machines have to be used in parallel to reach the
demand. Even if the remaining potential is high, only few remaining machines
can then be exchanged.

The �rst results showed in Figure 21 are promising. Results obtained by
the dynamic programming based heuristics are indeed improved and brought
closer to the theoretical maximal value. The new results are between 5% and
25% from this maximal bound. We recall that the optimal solution Kopt is less
than Kmax. Repair results are then actually better than showed in Figure 21.
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Figure 20: Average
number of periods com-
pleted (K) depending
on the load - N = 1
running pro�le, M = 5
machines

Figure 21: Distance to
the theoretical maximal
value (KMAX) depend-
ing on the load - N = 1
running pro�le, M = 5
machines
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8 Conclusion and future work

A new approach of scheduling using prognostics results has been investigated
in this paper. We have proposed scheduling algorithms using several operating
conditions for each machine of a heterogeneous platform so as to extend the
global operational time. We have shown that we are able to prolong as long as
possible the production horizon by managing the usage of the resource thanks
to the knowledge of each machine remaining useful life.

Prognostics-based scheduling has been proposed to con�gure sets of ma-
chines in compliance with the objective. This particular scheduling makes use
of prognostics results in the form of RUL to adapt the provided schedule to the
real state of the machines. It is part of the last step of the PHM process, i.e.,
decision making. Since the optimal solution can only be reached by running
a time consuming Binary Integer Linear Program, several sub-optimal heuris-
tics have been presented to solve the considered decision problem in polynomial
time. E�ciency of these heuristics has been assessed by numerous exhaustive
simulations.

As future work, we plan to explore continuous use of machines. None of the
proposed solutions guarantees that a machine will be used during its whole op-
erational time without a planned shutdown. Taking this constraint into account
is challenging in some production context. When some machines are running, as
fuel cells, shutting down their production for a short period incurs extra costs.

Taking maintenance tasks into account within prognostics-based schedules
is also a very interesting issue. In the best case scenario, optimization of the
maintenance policy could allow to provide a steady-state scheduling.
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