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a b s t r a c t

This paper presents an incremental learning algorithm for feed-forward neural networks used as approx-
imators of real world data. This algorithm allows neural networks of limited size to be obtained, provid-
ing better performances. The algorithm is compared to two of the main incremental algorithms (Dunkin
and cascade correlation) in the respective contexts of synthetic data and of real data consisting of radi-
ation doses in homogeneous environments.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

It has already been proved that a neural network can be used as
a universal approximator [2,7]. However, the way to obtain a good
neural network architecture is not given. The two most important
problems about the use of a neural network as a function approx-
imator are the choice of the network architecture and the learning
algorithm. The higher the number of hidden units in the neural
network, the longer the computation time of every epoch in the
learning process. Moreover, if the size of the network is too small,
the learning is impossible and if the training is too important, the
network may over learn and loose its generalization capability.
This problem is intensified when the function to interpolate is a
high frequency function containing very sharp variations. The main
objective of our work is to use a neural network as a universal
approximator in the context of radiotherapy. The work presented
in this paper takes place in the context of a larger project in collab-
oration with the IRMA team, directed by Makovicka, of the FEMTO-
ST institute. The goal of that project, called Neurad [1], is to rapidly
and accurately evaluate radiation doses in heterogeneous environ-
ments in order to be able to optimize the treatment planning of
cancerous tumors. Thus, this work deals with a better way to per-
form the learning of a neural network in order to obtain a high
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accuracy level with a smaller number of neurons. Therefore,
requiring shorter computation times during the exploitation phase.

In the following section, a brief state of the art of incremental
algorithms is presented and two representative algorithms are de-
tailed, the cascade correlation algorithm and the algorithm de-
scribed in [3]. Then, our incremental learning algorithm is
presented in Section 3. Finally, our algorithm is qualitatively and
quantitatively compared in Section 4 to the two existing learning
algorithms detailed in Section 2.

2. Classical incremental learning algorithms

Since the first developments of neural networks [10], one of the
major problems has been their building and learning. Some algo-
rithms have had an important success such as the very well-known
back-propagation algorithm [9,13]. However, they present impor-
tant drawbacks as they are quite slow at learning and they do
not give any information on the optimal number of hidden units
to be used. In order to overcome those problems, new learning
techniques have emerged such as the incremental ones
[11,3,8,5,4]. The main idea is to begin the learning with very few
neurons (typically one), and to add new neurons (one by one)
when the learning does not evolve any longer, until the whole pro-
cess stabilizes. This method tends to produce networks with fewer
hidden units and thus with shorter learning times. Nonetheless,
most of the incremental algorithms have been developed for clas-
sification problems and not for function approximation ones. This
may induce important differences since the constraints on these
two kinds of networks are not the same. We describe in the follow-
ing paragraphs two representative incremental learning tech-
niques for multilayer approximator networks.
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2.1. Cascade correlation

One of the most popular incremental algorithms is the Cas-
cade correlation architecture proposed by Fahlman and Lebiere
[4]. This algorithm combines two rules. The former is the cas-
cade architecture, in which a new hidden neuron is added in a
new hidden layer after its own learning. Once a new hidden
neuron has been added to the network, its weights do not
change any more. The latter is the learning algorithm which cre-
ates and installs new hidden neurons. For each new node, the
algorithm tries to maximize the magnitude of the correlation be-
tween the output of the new node and the residual error signal
of the network. The particular architecture of this technique is
presented in Fig. 1.

2.2. Incremental algorithm proposed by Dunkin et al.

As in the cascade correlation learning technique, this algorithm
tries to minimize the number of nodes to train at each step of the
learning process. However, it does not generate multiple hidden
layers but conserves only one hidden layer. At the beginning, a
minimal network architecture with only one hidden node on the
hidden layer is trained. That training is stopped when the reduc-
tion of the squared error is lower than a given threshold. Then,
the algorithm successively adds new nodes to the hidden layer as
long as needed. At each addition of a new node, the previously
added neurons are unchanged and only the new neuron is trained
to match the difference between the objective output and the out-
put of the previous network. That construction principle is de-
picted in Fig. 2.

The main problem with these algorithms is that, although they
give good results in approximating synthetic data such as analytic
functions, they do not always give satisfactory results with real
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Fig. 1. The cascade correlation network architecture.
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Fig. 2. The incremental algorithm by Dunkin et al.
world data obtained from physical phenomena, as shown in Sec-
tion 4. Effectively, such real data may contain variable noise and
very high frequency variations. In the context of the Neurad pro-
ject, the radiation doses sharply vary according to the position in
the environment and are perturbed by noise increasing with the
distance from the surface of the environment. However, all that
information is necessary to accurately evaluate the doses in heter-
ogeneous environments. Furthermore, since the neural network
we construct with our incremental method is to be used in an opti-
mization process, its activation time must be as fast as possible.
Thus, it is necessary to design a learning algorithm allowing to
accurately approximate those real data while minimizing its learn-
ing process and its activation time, implying a minimal number of
hidden neurons. This is why we decided to design a generic incre-
mental learning algorithm.
3. Incremental learning algorithm used in Neurad

This section details our new incremental learning algorithm. A
first part is devoted to the presentation of the network structure,
we have chosen in order to get an efficient approximator and the
second part details our learning algorithm.

3.1. Network structure

Many results have shown that a multilayer neural network can
be used as a universal approximator [2,7]. Generally, three layers
(input, hidden and output) are sufficient to obtain the desired re-
sults. The number of neurons in the input layer is determined by
the number of parameters of the objective function. In the same
way, the number of neurons in the output layer is directly dictated
by the number of outputs of the objective function. In the case of
radiation doses evaluation, the number of neurons in the output
layer is reduced to one neuron which delivers the dose. Finally,
the number of neurons in the hidden layer is the most difficult
one to determine. It does not directly depend on the number of in-
puts and outputs of the problem and there is no precise rule to
compute it. In fact, this number of neurons rather influences the
ability of the network to approximate high degree functions. How-
ever, it is not a good idea to coarsely overestimate that number
since that sharply increases the learning time and may thus make
the network unusable. Thus, to bypass that problem, we have de-
signed an incremental learning method which automatically sets
up the number of hidden neurons.

In addition to the learning algorithm, some slight modifications
of the classical structure of the network can enhance its capacity to
approximate high degree functions with fewer neurons, and thus,
to be trained faster. In our context of accurate approximation,
the HPU (Higher-order Processing Unit) structure [6] allows us to
obtain better results by artificially increasing the number of inputs
of the network. In fact, an HPU neural network has additional in-
puts which are polynomial combinations of the original inputs
up to a maximal degree (referred to as the order of the network).
For example, the inputs of an HPU network of order 3 correspond-
ing to an original network with two inputs ðx1; x2Þ are
(x1; x2; x2

1; x1x2; x2
2; x

3
1; x

2
1x2; x1x2

2; x
3
2Þ.

This modification of the original network tends to facilitate the
approximation of high order areas in the original function, such as
sharp variations, and thus to speed up the learning phase. How-
ever, although it is strongly suggested to use this HPU structure
to enhance the approximation efficiency, it is not indispensable.

Another structural modification which can enhance the results
of our neural network for some specific data sets is to replace
the linear output neurons by sigmoid ones. That is the case with
the sets of radiation doses.
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Fig. 4. Addition of a new unit in the hidden layer.
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3.2. Learning

The classical learning method used with multilayer networks is
the back-propagation. Nevertheless, although this method gives
good results, the learning process remains slow, even with HPU
networks. Among all the possible optimizations of that process
(see [14] for a survey of the existing optimizations), the Resilient
back-propagation (RPROP) [12] is one of the most efficient ones.

Contrary to the classical back-propagation, the RPROP algo-
rithm only uses the sign of the error derivative to update the
weights and the updatings are performed, for each weight, with
a distinct value independent from the error. That modification va-
lue is respectively increased or decreased, similarly to an accelera-
tion or a deceleration, whether the error evolves in the same
direction or not.

However, even if the combination of the HPU structure and the
RPROP learning gives better results than the classical approaches, it
does not avoid the problem of fixing the number of hidden neu-
rons. Effectively, there is no a priori information which may indi-
cate what is the best suited number of hidden neurons to
accurately approximate a given function. Thus, we have designed
an incremental learning algorithm which starts with a given num-
ber of hidden neurons and which automatically adds hidden neu-
rons when needed during the learning process.

The principle of our algorithm is to perform a RPROP learning
over the current HPU neural network until the error either reaches
the required accuracy or does not sensibly evolve anymore accord-
ing to a given threshold (Fig. 3).

In the first case, the neural network has the desired accuracy
and the learning process stops. In the second case, the learning lim-
it of the current neural network is considered to be reached. Then,
a neuron is added to the hidden layer in order to increase the
approximation ability of the network. So that the initial network
does not deviate from its optimization path, the addition of the
new hidden neuron is performed without modifying the other neu-
rons and links and the added neuron is initialized with null
weights and threshold. After that, the learning process is resumed
with that new configuration of neural network while allowing the
modification of any weight and threshold in the network.

That fact of allowing the modification of any component in the
network after the addition of a new neuron is quite different from
the previous incremental algorithms. Most of the previous ap-
proaches tend to apply the learning phases to only one neuron in
order to converge faster. Unfortunately, that gain of time is
achieved at the cost of an important loss of accuracy as it is far
more difficult to adapt only one neuron to a residual signal than
the whole set of neurons.

So, once the new neuron is added, the learning process starts
again and the links and threshold of all the neurons (including
the new one) automatically evolve to reduce the error of the net-
work (see Fig. 4). Then, the incremental process repeats itself until
the desired accuracy is reached or the evolution of the error be-
tween two consecutive configurations of the network becomes
too small (under a given threshold). In that last case, it is assumed
that the overall limit of the network has been reached and that
adding hidden neurons will not improve the results.
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RPROPHPU build learning error

> threshold

< threshold

learning

Fig. 3. The incremental learning building rule.
As in other learning algorithms, the specification of a validation
data set is possible in order to control the learning process and
avoid over-learning. Additionally, the possibility of specifying an
upper bound to the number of hidden neurons has also been in-
cluded in the learning process in order to limit the size of the net-
work and, as a consequence, the learning time in case of extremely
slow convergence. Such slow convergence mostly happens with
very high required accuracies.

Finally, this incremental learning process allows us to build and
train efficient and accurate neural networks for function approxi-
mation while limiting their number of neurons. Moreover, even if
this algorithm has been designed for a particular need in the Neu-
rad project, it is usable for any kind of data, real or synthetic. More-
over, this learning algorithm is not limited to a given feed-forward
network architecture since it can be applied to any kind of neurons
(linear or sigmoid) which is not the case of Dunkin et al.’s algo-
rithm [3] which can only be applied to linear outputs.

The efficiency and accuracy of our algorithm is compared in the
next section against two other existing incremental algorithms for
function approximation.

4. Testing and evaluation

In this section, we compare our new incremental algorithm
with two other popular algorithms: the cascade correlation [4]
and the incremental learning technique of Dunkin et al. [3], in dif-
ferent contexts. Our algorithm has been implemented in standard
C++ and used on a classical workstation.

In order to give a pertinent comparative basis, we begin our
comparison with one of the analytic functions used in [3]. Then,
real data containing radiation doses in two homogeneous environ-
ments are used.

4.1. A classical function

The first function used in our tests is the function two of paper
[3]. It is a classical two dimensional function of the form:

f ðx; yÞ ¼ ðexpðcosð4 � ðxþ yÞÞÞ=2Þ

whose representation is given in Fig. 5.
Ten training sets respectively containing 20, 30, 40, 50, 60, 70,

80, 90, 100 and 125 points distributed on the ½0;1�2 range were
used in order to study the influence of the size on the results. In or-
der to get relevant information about the function to approximate
on the domain of interest, most of the points in each set were uni-
formly distributed in a square mapped onto the domain, using the
square root of the number of points. For the sets whose the size
was not a perfect square, the few additional points were randomly
distributed on the domain.
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Fig. 5. Aspect of the classical test function.
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Table 1
Results of the training with radiation dose distributions from two homogeneous
environments.

Dunkin et al. Our algorithm

Mean error (%) 4.03 1.38
Mean bias (%) 0.66 0.032
Min error (%) 2.7e�4 1.3e�5
Max error (%) 429.9 179.9
# Hidden neurons 37 50
Learning time (s) 64,446 69,209
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For each complete learning, the error threshold used to stop the
process is set to 1e� 4. Once each network is trained, the Total
Squared Error is computed for a set of 25 points randomly chosen
on the considered domain of the approximated function. Random
points are taken in place of the points in the training set in order
to see if the generalization of the neural network is efficient. The
results are given in Fig. 6 in which the TSE is plotted as a function
of the size of the training set for each learning method. The results
presented are the average of ten successive learnings for each algo-
rithm. It can be seen that Dunkin et al.’s algorithm and ours have a
rather similar behavior which is far better than the cascade corre-
lation one. Our algorithm tends to oscillate slightly more than Dun-
kin et al.’s one but its TSE follows the same general decrease. This is
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Fig. 7. Location of the plane of interest in the environment (left) and dose dis
quite important since our algorithm is to be used with large train-
ing sets.

4.2. Real world data

The most difficult case which may occur in function approxima-
tion is when dealing with real world data obtained, for example,
from a physical phenomenon. The major difference with the previ-
ous kind of data is that they usually contain some noise with un-
known properties.

In our context, we consider the radiation dose distribution lo-
cated on a plane in the middle of the tridimensional environment
and aligned with the axis of the accelerator as shown in Fig. 7 (left).
The data structure used to represent the plane of interest is a two
dimensional discrete grid in which the absorbed dose is given at
each discrete position in that grid. An example of dose distribution
on that plane is given in Fig. 7 (right) for an environment of water.
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tribution on that plane in a homogeneous environment of water (right).
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Such dose distribution can be obtained either by physical measures
or by Monte-Carlo simulation. The former is quite difficult to per-
form and not very accurate since it requires the introduction of
sondes in the environment which themselves interfere on the mea-
sures. The latter is far more accurate but very slow as it requires a
large amount of computation.

The training set used in our comparison is composed of two
distinct dose distributions in homogeneous environments respec-
tively of water and titanium as illustrated in Fig. 8. The two dose
distributions can be distinguished in the shallower depths. The
total size of the training set is 40,000 points (20,000 points for
each dose distribution) uniformly distributed on the plane of
interest.

The results obtained with Dunkin et al.’s algorithm and ours are
presented in Table 1. The results of the cascade algorithm are not
presented here since its convergence was so long that we have con-
sidered it was not reasonably usable in such a context. In fact,
based on the results obtained with that algorithm on the classical
function described above, it could not be expected for that algo-
rithm to perform better with the doses set considering the higher
complexity involved in this problem.

It can be seen that our learning time and size of network are lar-
ger than those of Dunkin et al.’s algorithm. The increase of the
learning time comes from the fact that in our algorithm, all the
weights of the neurons can be modified at each learning step. This
implies a larger number of computations at each step and a larger
overall learning time. Concerning the size of the network, our algo-
rithm does not seem to be optimal. However, it is quite difficult to
precisely interpret such results since they are directly linked to the
final accuracy of the network, which is better with our method. So,
if Dunkin et al.’s algorithm had been able to attain the same accu-
racy as our method, it can be expected that the size of the network
obtained would have been closer to the one produced with our
method.

In terms of accuracy of the results, our algorithm outperforms
Dunkin et al.’s algorithm. Better results are obtained on the mean
bias, mean and maximum error. This is important since the mean
error alone does not ensure an overall good quality of the approx-
imation. So, those results indicate that our learning algorithm pro-
duces a network which better approximates the dose distributions.
This is confirmed by the overall aspect of the approximations ob-
tained by the two networks produced, as presented in Fig. 9. It
can be seen that the result of Dunkin et al.’s network contains
undesired oscillations on the surface of the curve which are not
present with our network.

5. Conclusion

An incremental learning algorithm for feed-forward neural net-
works for function approximation problems has been presented.
This algorithm is decomposed in learning phases in which the
neural network is trained using any classical learning algorithm.
Between each learning phase, if the network has not reached the
desired accuracy, a new neuron is added to the hidden layer and
a new learning phase is started. The main difference between this
algorithm and previous ones such as Dunkin et al.’s algorithm is
that all the neurons are adjusted at each learning phase. This im-
plies a slightly larger learning time but produces far better accurate
networks.

The experimental comparison with two other well-known
incremental algorithms has pointed out the good behavior of our
algorithm with synthetic data as well as with real data. Better lev-
els of accuracy are critical in numerous applications and especially
in the medical context. In the case of radiation dose evaluation,
since the neural network is used to evaluate dose distributions in
human body environments, the error must be under 3% in some
particular locations in the radiated environment and must never
be over 5%. As presented in [1], the results obtained with our learn-
ing method have an error under 1%. With such accurate networks
and a particular algorithm to evaluate radiation dose in any kind of
complex environment (human body), it becomes possible to design
an optimization process allowing the treatment planning of can-
cerous tumors to be enhanced.

Finally, even if our incremental algorithm gives good results,
some aspects could be further investigated. The two main points
which seem interesting are the speed up of the learning process
using, for example, a parallel approach with domain decomposi-
tion, and the possibility for an existing neural network to learn
new data using our incremental algorithm.
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