
TUGboat, Volume 0 (2060), No. 0 1001

Managing languages within MlBibTEX

Jean-Michel Hufflen

Abstract

We explain how the information about natural lan-
guages used throughout documents is managed in
MlBibTEX, our multilingual reimplementation of
BibTEX. That allows us to show how the interface
between MlBibTEX and LATEX or ConTEXt’s tools for
multilinguism—e.g., the babel package— is organ-
ised, by means of a powerful data structure. We also
show how the generated texts for LATEX are built. In
fact, they take as much advantage as possible of the
multilingual packages of LATEX’s recent versions.
Keywords MlBibTEX, multilingual features, mul-
tilingual LATEX packages, ConTEXt, tries, multilin-
gual method, Scheme.

1 Introduction

The bibliography of a printed document, that is,
the list of its bibliographical references, can be pre-
pared manually, in which case its items may not be
directly reusable elsewhere. The layout of bibliogra-
phies is ruled by styles that are influenced by cultural
background. As a consequence, it can vary from a
document to another: for example, the bibliography
of some documents1 use plain styles where items are
labelled with numbers, some use alpha styles based
on keys built from authors’ last names and publica-
tion’s years, e.g., ‘[Robeson 1965]’ or ‘[Rob65]’— see
[34, § 13.5.1] for a survey of available styles and cor-
responding layouts. In addition, some information
may depend on the printed document’s language: let
us consider the date of a publication, a publisher may
require that month names are printed in English for
the bibliography of a document written in English, in
French (resp. German, . . . ) for a document written
in French (resp. German, . . . ). So managing biblio-
graphical references already typeset for a particular
document is tedious, and it is better for such refer-
ences to be automatically generated from a database
containing bibliographical entries.2 In particular,
this allows us to put as much information as we want
within entries, even if some parts of information do
not appear within generated texts.

As an accurate example, the bibliography pro-
gram BibTEX [36] is often used to build ‘Refer-
ences’ sections for documents suitable for LATEX [34,
§ 12.1.3]. BibTEX searches bibliography (.bib) files

1 This article, for example.
2 Within MlBibTEX (‘MultiLingual BibTEX’), we use pre-

cise terminology: bibliographical entries are specified in bibli-
ography (.bib) files, and bibliographical references —in .bbl
files for use with LATEX—are what a word processor typesets.

for keys cited throughout a document: to do that,
it uses information put in auxiliary (.aux) files pro-
duced by LATEX [34, Fig. 12.1]. BibTEX’s bibliog-
raphy styles3 are programmed using a stack-based
language [34, § 13.6]. By means of such a bibliogra-
phy program, we should be able to fill in all the fields
of a bibliographical entry once, and derive as many
references as we want, according to layouts expressed
by bibliography styles. This is true in most cases,
but not always, depending on the expressive power
of bibliography styles. For example, let us consider
annotated bibliographies: the annotations should be
expressed in the document’s language. If we wish
to avoid the duplication of bibliographical entries
according to the language of an added annotation,
such annotations can be given different field names:
english-ANNOTE = ..., french-ANNOTE = ...,
...

but in this case, we have to generate several bibliog-
raphy styles differing only by the name of the chosen
annotation. This example shows that BibTEX was
not ideally designed for multilingual applications.
There have been some attempts to insert multilin-
gual features into texts generated by BibTEX—e.g.,
in the jurabib package [34, pp. 733–735] and the
custom-bib tool (usable by applying LATEX to the
makebst.tex program) [34, § 13.5.2]—but BibTEX
itself does not take enough advantage of multilingual
features of LATEX’s recent versions. In addition, we
think that the language BibTEX uses for bibliography
styles leads to non-modular programs, monolithic
and hard to maintain, as we explained in [17].

MlBibTEX aims to ease the development of mul-
tilingual bibliographies, without giving any privilege
to a particular language, as the babel package does for
documents written with LATEX’s modern versions [34,
Ch. 9]. MlBibTEX’s current version (1.3), described
in [18] and developed in Scheme [25], is usable to
generate bibliographies for LATEX documents. This
bibliography processor also opens a window towards
the world of XML,4 which has become a central for-
malism for document interchange. Since parsing a
.bib file results in a tree that can be viewed as an
XML tree, this choice more easily allows us to build
other output files than thebibliography environ-
ments for LATEX [34, § 12.1.2]. In particular, we can
generate (X)HTML5 pages for bibliographies to be

3 A representative selection of bibliography styles usable
with BibTEX is given in [34, Table 13.4].

4 EXtensible Markup Language. Readers interested in an
introduction to this metalanguage can refer to [39].

5 (EXtensible) HyperText Markup Language. XHTML
is a reformulation of HTML using XML conventions. [35] is a
good introduction to these languages.

Managing languages within MlBibTEX



1002 TUGboat, Volume 0 (2060), No. 0

@BOOK{robeson1965,
AUTHOR = {first => Kenneth, last => Robeson},
TITLE = {The Polar Treasure},
PUBLISHER = {Bantam},
SERIES = {Doc Savage},
NUMBER = 4,
NOTE = {[Titre de la traduction française : “Le trésor polaire”] ! french

[Titel der deutschen \"{U}bersetzung: “Das Wrack im Eis”] ! german
[T\’{i}tulo de la traducci\’{o}n al Espa\~{n}ol: “El tesoro del Polo”] ! spanish}

YEAR = 1965,
MONTH = apr,
LANGUAGE = english}

Figure 1: Example of an entry using MlBibTEX’s features.

displayed on the Web, or XML files written according
to the rules of XSL-FO6 [43]. In fact, bibliography
styles are now programmed using a new language,
called nbst,7 close to XSLT8 [41], the language of
transformations for XML documents.

We have already written some documents about
MlBibTEX’s implementation. In [19], we explain why
we have started a new implementation using Scheme
[25], after a first project in C [26]. We have also be-
gun to describe the broad outlines of this implemen-
tation using Scheme in [22]. Here9 we explain how
the information about the natural languages used
throughout bibliographies—and LATEX documents—
is organised. In next section, we show the drawbacks
of deferring the generation of multilingual bibliogra-
phies to LATEX. Then Section 3 exposes the notion of
language identifiers, introduced in MlBibTEX. Sec-
tion 4, explains how our data structure for handling
language identifiers is built and how it allows us
to generate multilingual bibliographies. We do not
describe this data structure in Scheme directly, but
using an abstract way, so that we can see that it could
be implemented in any programming language.10 Fi-
nally, we show that this data structure should be
able to evolve for MlBibTEX’s future versions.

We assume that readers are familiar with the
multilingual babel package of LATEX2ε, developed

6 EXtensible Stylesheet Language—Formatting Objects:
this language aims to describe high-quality print outputs.
There are some XSL-FO processors, in order to get printable
files; an example from the TEX world is Passive TEX [37,
p. 180]: it gets .dvi or .pdf files. An introductory reference
to XSL-FO suitable for LATEX users is [24].

7 New Bibliography STyles.
8 EXtensible Stylesheet Language Transformations.
9 The present article is a renewed and updated version of

previous material. A first version was initially designed for the
PracTEX 2005 conference. Later, this presentation was given
at a conference of the German-speaking TEX user group—at
Berlin, in 2006—and was entitled Sprachen in MlBIBTEX .

10 Besides, the implementation used within our preliminary
project in C [19] was quite close to the current one.

by Johannes Braams and described in [34, Ch. 9].
We also assume that readers can understand some
simple macros, expressed using TEX’s language [28,
Ch. 20]. About BibTEX, XML, and Scheme, basic
knowledge is sufficient to read this article, as well as
basic notions about the use of trees in programming.
Some notions related to specialised structures for
searching strings are recalled in footnotes.

2 Difficulty related to languages

2.1 Accents and other diacritical signs

Let us consider the robeson1965 entry given in Fig-
ure 1. It looks like a BibTEX entry, but some syn-
tactic features indisputably belonging to MlBibTEX
can be noticed: more user-friendly syntax for person
names (AUTHOR and EDITOR fields), the use of multi-
lingual switches (‘[...] ! ...’) within the value of
the NOTE field. These notations are detailed in [18].

As mentioned in the introduction, such an entry
is viewed as an XML tree in the sense that we can
address its parts by using the XPath language [42].
As an example, Figure 2 gives the representation of
the value associated with the NOTE field.11 We can re-
mark that quotations are uniformly expressed by us-
ing the American quotation marks (‘ “...” ’) within
a .bib file (see Figure 1), but each quotation is trans-
formed into an XML element—an occurrence of the
emph element with accurate attributes12 —so putting
quotation marks belonging to other languages is
eased: ‘ « . . . » ’ in French, ‘ „ . . . “ ’ in German, etc.
More exactly, bibliography stylesheets are in charge
of this. Likewise, we can remark that some accented
letters can be typed directly by end-users (see the
group expressed in the French language in Figure 1)

11 In fact, MlBibTEX internally uses the conventions of
SXML (Scheme implementation of XML) [27]. See [22] for
more details.

12 Readers interested in a description of elements and at-
tributes used throughout the XML versions of .bib files can
refer to [16]: that is an earlier version, but changes are slight.

Jean-Michel Hufflen



TUGboat, Volume 0 (2060), No. 0 1003

<note>
<group language="french">

Titre de la traduction française :
<emph emf="no" quotedbf="yes">
Le trésor polaire

</emph>
</group>
<group language="german">

Titel der deutschen Übersetzung:
<emph emf="no" quotedbf="yes">
Das Wrack im Eis

</emph>
</group>
<group language="spanish">

Título de la traducción al Español:
<emph emf="no" quotedbf="yes">
El tesoro del Polo

</emph>
</group>

</note>

Figure 2: Multilingual note as an XML tree.

or by using TEX commands (see the group written
in Spanish), but as shown in Figure 2, the charac-
ters resulting from these commands are directly put
within text nodes.13

Letters with accents and other diacritical signs
illustrate some deficiency of the information put into
.aux files. As a consequence, we have to parse the
preamble of .tex source files14 to get this informa-
tion. When we generate texts, we cannot know if we
can insert such letters directly, or if we have to write
TEX commands to produce them. This last solution
works in any case, provided that such commands be-
long to LATEX’s basic set. That is true for commands
that produce most accents (acute, grave, circum-
flex, . . . ) but there is a simple counter-example: the
French guillemets.

Concerto comique no 25 en sol mineur « Les
Sauvages et la Furstenberg ».

Such a French title may be mentioned within a
book written in any language. In other words, we
may have to write French guillemets even within
a document written in English. The LATEX com-
mands to produce them depend on the package
used to write French fragments: either ‘\og’ and
‘\fg’ for the frenchb option15 [5] of the babel pack-
age, or ‘\guillemets’ and ‘\endguillemets’ for

13 Although this behaviour only holds about the Latin 1
encoding (ISO-8859-1) presently. Future versions will probably
extend it to the other encodings summarised in [13, Table C.4].

14 That is, the commands located before the document
itself, introduced by ‘\begin{document}’.

15 This option has two aliases: french and francais. We
will come back to this point later.

the frenchpro package16 [11]. There are other com-
mands to get these guillemets, but they depend on
other packages: if the fontenc package [34, § 7.5.3]
has been loaded with the OT1 option,17 the com-
mands \guillemotleft and \guillemotright pro-
duce opening and closing guillemets as single charac-
ters. If LATEX uses its default encoding (OT1), these
commands are not provided and using them causes
errors. However, getting French guillemets by com-
bination of several characters is possible as shown in
[21, Fig. 3]. Besides, a more immediate way exists if
your keyboard allows you to type these guillemets,
in which case using the inputenc package [34, § 7.5.2]
with the latin1 option allows LATEX to process them
directly. If these characters are unavailable on your
keyboard, you can use the sequences ‘<<’ and ‘>>’
with the frenchb option [5] of the babel package.18

These details may seem to be anecdotal, never-
theless they show how difficult the automatic genera-
tion of such texts is, especially if we wish to generate
‘nice’ texts, that is, readable by human agents. An
end-user can solve this problem by typing LATEX
commands directly within .bib files, but as a conse-
quence, such bibliography files become difficult to be
shared among several users, unless they make sure
that the same packages with compatible options will
be loaded when texts are processed. In addition,
some files can be unusable for building other output
files than those suitable for LATEX:19 in particular,
this point can obstruct the generation of bibliogra-
phies suitable for ConTEXt, another format built on
TEX, created by Hans Hagen [14].

2.2 Using advanced LATEX commands

Let us consider again the value of the NOTE field
within the robeson1965 entry of Figure 1. This
multilingual text could be transformed for use with
LATEX by means of the \iflanguage command of
the babel package [34, § 9.2.1] as follows:
NOTE 7→ \iflanguage{frenchb}{...}{%

\iflanguage{germanb}{...}{%
\iflanguage{spanish}{...}{}}}

16 This is a successor of the french package described in
[7]. For reasons explained in [8, 9, 10], it has been re-
placed by a freeware version frenchle—‘french alLÉgé’ (for
‘lightened’)— [12] and a shareware version frenchpro—‘french
PROfessional’— [11]. The development of the freeware ver-
sion seems to have stopped since B. Gaulle’s death, in August
2007. Coming back to the French guillemets, the frenchle
package provides only some compatibility with the commands
‘\og’ and ‘\fg’ of the babel package’s frenchb option [12, § 7].

17 That is, if the Cork encoding is used, with a range of
256 characters.

18 . . . or the frenchpro package [11].
19 . . . although MlBibTEX’s next version will probably be

able to solve this problem: cf. [20].

Managing languages within MlBibTEX



1004 TUGboat, Volume 0 (2060), No. 0

provided that this entry is cited only by documents
written with the babel package, loaded with at least
the options frenchb, germanb,20 and spanish. How-
ever, if a user writes only in French by means of the
frenchle package, this source text is unusable.21 In
addition, let us consider that we are building a bib-
liography for a document whose main language is
French. Therefore, the bibliographical reference for
robeson1965 is surrounded as follows:
\bibitem[...]{robeson1965}
\begin{otherlanguage*}{english}Robeson
(Kenneth)...

\end{otherlanguage*}

[34, § 9.2.1]. Besides, MlBibTEX offers a choice [18]
between two kinds of bibliography styles:
• a language-dependent style, that is, each biblio-
graphical item is expressed only in the entry’s
language,
• a document-dependent style, that is, each bibli-
ographical item is expressed in the document’s
language, as far as possible.

In the first case, nothing need be done because the
robeson1965 entry characterises a book in English.
In the second case, the French version of the NOTE
field should be put and the previous text of this note
should be surrounded as follows:
NOTE 7→ \begin{otherlanguage*}{frenchb}%

\iflanguage{frenchb}{...}{%
\iflanguage{germanb}{...}{%
\iflanguage{spanish}{...}{}}}%

\end{otherlanguage*}

Even if such texts are generated automatically, we
can see that they are quite complicated.

Now let us consider the entry given in Figure 3:
it concerns the English translation of a French book,
so most information is given in English, except for
the author’s name and the original title, given in
French. We wish these French fragments to be hy-
phenated correctly if need be, but if there is no way
to typeset French fragments, we accept them to be
typeset according to the rules of the language in use
at this point. So we can write a robust version of the
\foreignlanguage command provided by the babel
package [34, § 9.1.2], here called \putwrtlanguage:22

20 Like the babel package’s option for French (cf. foot-
note 15), ‘german’ is an alias and the option’s actual name is
germanb.

21 In fact, frenchle may be used as an option of babel [12,
§ 6.5]. However, frenchle has been developed to be loaded as
a package, in which case babel’s commands are unknown.

22 Let us recall that the commands giving access to lan-
guages are defined by natural numbers, thus we can use \ifnum
to compare them.

@ARTICLE{ayerdhal2001,
AUTHOR = {[last => Ayerdhal] : french}
TITLE = {Flickering},
JOURNAL = {Interzone},
NUMBER = 167,
PAGES = {6--13},
NOTE = {English translation of

“[Scintillements] : french”, by
Sheryl Curtis},

YEAR = 2001,
MONTH = may,
LANGUAGE = english}

Figure 3: English translation of a French writer’s
book.

\def\putwrtlanguage#1#2{%
\expandafter%
\ifx\csname l@#1\endcsname\relax%
\typeout{Language #1 unusable.}#2\else%
\ifnum\csname l@#1\endcsname=\language%
#2\else%
\foreignlanguage{#1}{#2}%
\fi%
\fi}

This command could be used to process the two
French fragments of the bibliographical reference for
ayerdhal2001:
\putwrtlanguage{frenchb}{Ayerdhal}
\putwrtlanguage{frenchb}{Scintillements}

So this command is used twice when this bibliograph-
ical reference is processed. That is, checking whether
the frenchb language is known is performed twice,
although the answer is always the same. Either the
\l@frenchb command is available for the whole of
the document, or it is not at all. However, this repli-
cation does not result in great loss of efficiency: we
can imagine that TEX can check a command’s exis-
tence quickly. But in this first version, we assumed
that the multilingual tool used was the babel package.
If we take LATEX’s other multilingual packages into
account— frenchle, german [38], ngerman and polski
[4, § F.7]—our command looks like:23

\def\putwrtlanguage#1#2{%
\@ifpackageloaded{babel}{\expandafter...

... % (As previously.)
}{\@ifpackageloaded{frenchle}{%

\ifthenelse{\equal{#1}{french}}{%
\french#2}{\english#2}}{%

23 The frenchle package is not wholly multilingual in the
sense that it deals with the French language, and can revert
to LATEX’s original configuration—by means of the \english
command [12, § 6.5]— in which case texts are supposed to be in
English, as we do in the second version of the \putwrtlanguage
command.

Jean-Michel Hufflen



TUGboat, Volume 0 (2060), No. 0 1005

\@ifpackageloaded{german}{...}{%
\@ifpackageloaded{ngerman}{...}{%
\@ifpackageloaded{polski}{...}{%
#2}}}}}}

The waterfall of tests makes the command slower,
and as many times as it is called, the corresponding
results will be retrieved more and more slowly.24

These two examples show that implementing
multilingual bibliographies by means of LATEX com-
mands only results in complicated texts. In addition,
these texts are suitable for LATEX only. If we wish
to derive bibliographies for another word processor—
e.g., ConTEXt—we have to put the same basic algo-
rithms into action, but with the library of another
language. So it seems to be better for such algo-
rithms to be put into action by the bibliography
processor itself.

3 Language identifiers

If we consider the results of working groups related to
XML, natural languages throughout bibliographical
data bases should be specified using the two-letter
language, optionally followed by a two-letter country
code,25 described in [1] and [13, § C.1]. This conven-
tion allows the general reference to a language as well
as a more precise reference to a local variant of it. For
example, ‘en’ is for the English language in general,
whereas ‘en-UK’ (resp. ‘en-US’) is for British (resp.
American) English only. In particular, using this
convention would simplify an interface with the Con-
TEXt format, which also uses these codes. For exam-
ple, ConTEXt uses the statement ‘\language[fr]’ to
change the document’s current language into French
[14, Ch. 7]. When MlBibTEX’s first version was
designed [15], it aimed at being a ‘better BibTEX’,
mainly usable in cooperation with LATEX; we did not
relate this to XML features. Besides, we knew that
many users of BibTEX put LATEX commands within
values of BibTEX fields. For example, it seemed to
be interesting to process differently the texts writ-
ten in French by using the successors of the french
package and those using the frenchb option of the
babel package. The compromise we have settled is:
• a language identifier of MlBibTEX is a non-

ambiguous prefix of:
– either an option of the babel package,
– or a multilingual ad hoc package;

the multilingual ad hoc packages we recognise
are frenchle, german, ngerman, and polski;

24 Also, any TEXnician will have noticed that this new
version requires the ifthen package [34, § A.3.2].

25 For a fragment of a document, such codes are used by the
predefined xml:lang attribute [39, p. 276]. Within DocBook
documents, this attribute is named lang [45, p. 81].

• by ‘non-ambiguous’, we mean that a language
identifier can denote several ways to get access
to the same language.
As examples:26

• ‘po’ is ambiguous because that it may start ‘Pol-
ish’ or ‘Portuguese’, two different languages;
• ‘frenchb’ is a language identifier that gets ac-
cess to only the frenchb option of the babel
package;
• “fr’ and fre’ are not ambiguous and get access
to either babel’s option or the frenchle package.
The ‘french’ identifier has the same property.
Since it can get access to the frenchb option of
babel, do not confuse this feature with aliases
handled by the babel package. The language def-
inition file for French is frenchb.ldf,27 but this
option may be loaded by ‘frenchb’, ‘french’ or
‘francais’ (see footnote 15). This last identi-
fier is unusable with MlBibTEX, because it only
recognises the names of the .ldf files located
at babel’s directory.28

4 Implementation issues

4.1 Implementing language identifiers

The language identifiers handled by MlBibTEX obvi-
ously form a dictionary. As we show in the previous
section, we have to look into this dictionary not
only for complete language identifiers but also for
non-ambiguous prefixes. So this dictionary’s imple-
mentation must be efficient. Tries29 are the best
implementation to put into action such information
retrieval. Such a trie implementing our dictionary is
pictured in Figure 4. The root is an array indexed
by all the letters of the alphabet. Each component is
either a null pointer, in which case the word does not
exist within the dictionary, or an access to another
letter-indexed array if there are words beginning with
the recognised prefix, or a pointer to a resource if a

26 In the following we assume that the available packages
and options are those of TEX Live 2008.

27 ‘.ldf’ is for ‘Language Definition File’, see [34, § 9.5.3].
28 In the directory .../texmf-dist/tex/generic/babel if

we consider the TEX Live implementation.
29 Here is some terminology about trees implementing dic-

tionaries:

• a digital tree is a tree for storing strings in which
nodes are organised by substrings common to two or
more strings;

• a trie is a particular case of a digital tree: there is only
one node for every common prefix.

The name ‘trie’ originates from the central letters of the word
‘reTRIEval’ [6]. A good but old-fashioned description of this
structure has been given by Donald E. Knuth: cf. [31, § 6.3]
& [30, Ch. 6, §§ 17–31]. Tries are used within TEX’s program
[29, §§ 920–924].

Managing languages within MlBibTEX



1006 TUGboat, Volume 0 (2060), No. 0

a b c d e f g ...

???? ?

...

...
...

...
... 









�

...

XXXXXXXXXXXXXXz

... n ... s ...
888. . .

?

888. . .
?

888. . .

...
(-glish)

...
(-peranto)
(-tonian)

a ... e ... r ...

?

888. . .
?

888. . .
?

888. . .

...
(-lician)

...
(-rman[b])

...
(-eek)

Figure 4: Searching for language identifiers by means of a trie.

word’s end has been reached. In the trie in Figure 4,
we see that the only language identifiers beginning
with ‘e’ are those whose second letter is ‘n’ (for ‘en-
glish’) or ‘s’ (for ‘estonian’). Likewise, we can see
that the language identifiers beginning with ‘g’ are
the non-ambiguous prefixes of galician, german[b]
and greek.

As the authors of [2] noticed, such an imple-
mentation by means of an array can be very space-
consuming since there is many empty locations in
the arrays of a trie. That is particularly true in our
case, since there is only a few words denoting natural
languages’ names, in comparison with the whole of a
dictionary for a complete language. So we decided to
implement such tries by ternary search trees,30 as
shown in Figure 5, where the trie of MlBibTEX’s lan-
guage identifiers is sketched. Such a ternary search
tree either is a leaf, or has three branches. Left and
right branches—pictured in Figure 5 by a double-
headed arrow—give access to letters less and greater
than the current one. A middle branch gets access to
the following letter of a word. A boxed character31
means that this character comes last in the shortest
non-ambiguous prefix of a language identifier.

At MlBibTEX’s installation, we consider the ad
hoc packages’ names and the .ldf files located in the
babel’s package directory. These names are used to
build a height-balanced ternary search tree.32 In our

30 Another solution could have used a compact implemen-
tation of maps, as provided by Python [32, pp. 49–51]. Often
hash tables —associating keys with values by means of a hash
code —are used for such search. They are directly provided
by Common Lisp [40], Perl [44, Ch. 2], and Ruby [33], but are
not as efficient as ternary search trees, as shown in [3].

31 The ‘#\...’ notation for a character comes from Scheme
[25, § 6.3.4].

32 The height of a tree is the maximum distance of any leaf
from the root of a tree. In a height-balanced ternary tree,
left and right branches differ in height by no more than one

case, this property means that if we are located at
any node within our ternary search tree, the numbers
of the letters left and right to the current one differ
by one at most.

4.2 Multilingual method information

When MlBibTEX searches language identifier’ trie
for a non-existing or ambiguous identifier, the result
is #f, the ‘false’ value in Scheme [25, § 6.3.1]. Oth-
erwise, the result is a linear list whose elements—
called multilingual methods w.r.t. MlBibTEX’s
terminology—are organised this way:

(〈marker〉 〈opening〉 . 〈closing〉)
where:
〈marker〉 specifies a method used to switch to the

language denoted by the identifier, e.g., an op-
tion of the babel package or an ad-hoc package;

〈opening〉 is a thunk33 that results in a string put
before a fragment written in the corresponding
natural language;

〈closing〉 the same, but the string result is put
after a fragment in the corresponding language.
Figure 6 shows how the language identifiers for

French allow us to get access to the different ways
to surround a fragment written in French. Given
a character within our trie, a dashed arrows points
to the result of the function searching for a string
ending with this character.34 There exist default
multilingual methods, e.g.:

and each of these two branches is recursively height-balanced,
too. Searching balanced trees is more efficient on average. See
[31] for more details about this notion.

33 In functional programming, this word denotes a zero-
argument function.

34 In fact, the actual implementation—more efficient— is
slightly different, due to some advanced features of Scheme.
But our functions behave exactly as shown in Figure 6.

Jean-Michel Hufflen



TUGboat, Volume 0 (2060), No. 0 1007

\#g
<

wwwwoooooooooooooo

��

>

,, ,,YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

\#f

<

wwwwnnnnnnnnnnnnnnnn

��

\#e

<

�������������

��

>

�� ��========= \#p

<

ttttiiiiiiiiiiiiiiiiiiiiiiii

��

>

�� ��========

\#e

<

�������������

��

\#r

<

��������������

��

... \#r

��

... \#n

��

\#o

��

...

... \#n

��

>

�� ��>>>>>>>>>>
... \#e

��

\#m

��

\#g

��

>

�� ��>>>>>>>>>> \#r

<

�������������

��
\#g

��

... \#n

��

\#a

��

\#e

��

... \#l

��

\#t

��
\#l

��

\#c

��

\#n

��

\#r

��

\#s
<

}}}}zzzzzzzz

��

\#u

��
\#i

��

\#h

��

\#b \#m

��

\#i

��

\#k

��

\#g

��
\#s

��

\#l
<

||||zzzzzzzz

��

\#a

��

\#s

��

\#i \#e

��
\#h \#b \#e \#n

��

\#h \#s

\#b

Figure 5: Implementing a trie by means of a ternary search tree.

((*frenchle*) (lambda () "{\english") .
(lambda () "}"))

being used for natural languages other than French
if the frenchle package has been loaded when the
document is processed.35

In Figure 6, we can remark that the approach
used in ConTEXt is included in such lists, except if the
language identifier gets access to one method suitable
for LATEX even though other methods for the same
language exist. So the identifiers fr, fre, . . . french
can be used when a bibliography for ConTEXt is
derived, but neither frenchb nor frenchle.

5 Conclusion

This article is an introduction to MlBibTEX’s im-
plementation core. We have tried to be precise as
far as possible and avoid low-level details. Our goal

35 But the language identifier must be recognised. If not,
any multilingual method, even a default one, cannot be used.

was to show our realisation as a compromise between
user-friendliness and a high-performing implementa-
tion. At the time of writing, the available backends
are LATEX and ConTEXt. As we wrote in [23], ‘when
we began [our adaptation of MlBibTEX to ConTEXt]
(. . . ), we were afraid we would have to reprogram
some important parts of MlBibTEX’. As shown by
our examples, the management of language identifiers
did not need a major revision when we integrated
a backend for ConTEXt. So we think that our im-
plementation is robust. Other adaptations to other
backends—e.g., for (X)HTML—should confirm that.
We are confident.

6 Acknowledgements

After discussion with some people, I realised that
tries were not very well-known. Implementing them
is not a small exercise, but is very worthwhile. . . and
actually useful within natural language processing. I

Managing languages within MlBibTEX



1008 TUGboat, Volume 0 (2060), No. 0

\#f

��

//____ #f

\#r

<

~~~~}}}}}}}}}

��

//___ (Ê Ë Ì)

... \#e

��

//___ (Ê Ë Ì)

\#n

��

//___ (Ê Ë Ì)

\#c

��

//___ (Ê Ë Ì)

\#h
<

||||zzzzzzzz

��

//___ (Ê Ë Ì)

(Ë) \#boo_ _ _ \#l

��

//____ (Ì)

\#e //____ (Ì)

where:
Ê ≡ ((*context*) (lambda () "{\language[fr]") .

(lambda () "}"))
Ë ≡ ((*babel-option*)

(lambda ()
(if ((l-available-languages ’check?) ’frenchb)

"\begin{otherlanguage*}{frenchb}"
"")) .

(lambda ()
(if ((l-available-languages ’check?) ’frenchb)

"\end{otherlanguage*}"
"")))

Ì ≡ ((*frenchle*) (lambda () "{\french ") .
(lambda () "}"))

Figure 6: Multilingual methods associated with a language identifier.

hope that this article will contribute to demystifying
this structure. Thanks to Karl Berry and Barbara
Beeton, who kindly proofread this article.

References
[1] Harald Tveit Alvestrand: Request for Com-

ments: 1766. Tags for the Identification of Lan-
guages. UNINETT, Network Working Group. March
1995. http://www.cis.ohio-state.edu/cgi-bin/
rfc/rfc1766.html.

[2] Jun-Ichi Aoe, Katsuhi Morimoto and Takashi
Sato: “An Efficient Implementation of Trie Struc-
tures”. Software—Practice and Experience, Vol. 22,
no. 9, pp. 695–721. September 1992.

[3] Jon L. Bentley and Robert Sedgewick: “Algo-
rithms for Sorting and Searching Strings”. In: Proc.
8th Annual ACM-SIAM Symposium on Discrete Al-
gorithms, pp. 360–369. January 1997.

[4] Antoni Diller: LATEX wiersz po wierszu. Wydawnic-
two Helio, Gliwice. Polish translation of LATEX Line
by Line with an additional annex by Jan Jelowicki.
2001.

[5] Daniel Flipo: Documentation sur le module
frenchb de babel. Version 2.3c. February
2009. http://daniel.flipo.free.fr/frenchb/
frenchb2-doc.pdf.

[6] Edward Fredkin: “Trie Memory”. Communications
of the ACM, Vol. 3, no. 9, pp. 490–499. September
1960.

[7] Bernard Gaulle : « Comment peut-on personnaliser
l’extension french de LATEX? ». Cahiers GUTenberg,
Vol. 28–29, p. 143–157. Actes de la xe conférence
TEX européenne. Saint-Malo, France. Mars 1998.

[8] Bernard Gaulle : « À propos de french ». Lettre
GUTenberg, Vol. 15, p. 16–17. Juillet 1999.

[9] Bernard Gaulle : « Nouvelles french ». Lettre GU-
Tenberg, Vol. 16, p. 11–12. Décembre 1999.

[10] Bernard Gaulle : « À propos de french ». La lettre
GUTenberg, Vol. 20, p. 5–7. Octobre 2001.

[11] Bernard Gaulle : Notice d’utilisation de l’exten-
sion frenchpro pour LATEX. Version V5,995. Avril
2005. http://www.frenchpro6.com/frenchpro/
french/ALIRE.pdf.

[12] Bernard Gaulle : L’extension frenchle pour LATEX.
Notice d’utilisation. Version V5,9993. Février 2007.
http://www.tug.org/texlive/Contents/live/
texmf-dist/doc/latex/frenchle/frenchle.pdf.

[13] Michel Goossens and Sebastian Rahtz, with Ei-
tan M. Gurari, Ross Moore and Robert S. Sutor:
The LATEX Web Companion. Addison-Wesley Long-
mann, Inc., Reading, Massachusetts. May 1999.

[14] Hans Hagen: ConTEXt, the Manual. Novem-
ber 2001. http://www.pragma-ade.com/general/
manuals/cont-enp.pdf.

[15] Jean-Michel Hufflen: “MlBibTEX: a New Imple-
mentation of BibTEX”. In: Simon Pepping, ed.,
EuroTEX 2001, pp. 74–94. Kerkrade, The Nether-
lands. September 2001.

Jean-Michel Hufflen



TUGboat, Volume 0 (2060), No. 0 1009

[16] Jean-Michel Hufflen: “Multilingual Features for
Bibliography Programs: From XML to MlBibTEX”.
In: EuroTEX 2002, pp. 46–59. Bachotek, Poland.
April 2002.

[17] Jean-Michel Hufflen: “European Bibliography
Styles and MlBibTEX”. TUGboat, Vol. 24, no. 3,
pp. 489–498. EuroTEX 2003, Brest, France. June
2003.

[18] Jean-Michel Hufflen: “MlBibTEX’s Version 1.3”.
TUGboat, Vol. 24, no. 2, pp. 249–262. July 2003.

[19] Jean-Michel Hufflen: “A Tour around MlBibTEX
and Its Implementation(s)”. Biuletyn GUST, Vol. 20,
pp. 21–28. In BachoTEX 2004 conference. April
2004.

[20] Jean-Michel Hufflen: “MlBibTEX: beyond LATEX”.
In: Apostolos Syropoulos, Karl Berry, Yannis
Haralambous, Baden Hugues, Steven Peter and
John Plaice, eds., International Conference on TEX,
XML, and Digital Typography, Vol. 3130 of LNCS,
pp. 203–215. Springer, Xanthi, Greece. August 2004.

[21] Jean-Michel Hufflen: “Making MlBibTEX Fit for
a Particular Language. Example of the Polish Lan-
guage”. Biuletyn GUST, Vol. 21, pp. 14–26. 2004.

[22] Jean-Michel Hufflen: “MlBibTEX in Scheme (First
Part)”. Biuletyn GUST, Vol. 22, pp. 17–22. In
BachoTEX 2005 conference. April 2005.

[23] Jean-Michel Hufflen: “MlBibTEX Meets ConTEXt”.
TUGboat, Vol. 27, no. 1, pp. 76–82. EuroTEX 2006
proceedings, Debrecen, Hungary. July 2006.

[24] Jean-Michel Hufflen: “Introducing LATEX users to
XSL-FO”. TUGboat, Vol. 29, no. 1, pp. 118–124.
EuroBachoTEX 2007 proceedings. 2007.

[25] Richard Kelsey, William D. Clinger, Jonathan A.
Rees, Harold Abelson, Norman I. Adams iv,
David H. Bartley, Gary Brooks, R. Kent Dyb-
vig, Daniel P. Friedman, Robert Halstead, Chris
Hanson, Christopher T. Haynes, Eugene Edmund
Kohlbecker, Jr, Donald Oxley, Kent M. Pit-
man, Guillermo J. Rozas, Guy Lewis Steele, Jr,
Gerald Jay Sussman and Mitchell Wand: “Revised5

Report on the Algorithmic Language Scheme”.
HOSC, Vol. 11, no. 1, pp. 7–105. August 1998.

[26] Brian W. Kernighan and Denis M. Ritchie: The
C Programming Language. 2nd edition. Prentice
Hall. 1988.

[27] Oleg E. Kiselyov and Kirill Lisovsky: “XML,
XPath, XSLT Implementations as SXML, SXPath,
and SXSLT”. In: International Lisp Conference 2002.
San Francisco, California. October 2002.

[28] Donald Ervin Knuth: Computers & Typesetting.
Vol. A: The TEXbook. Addison-Wesley Publishing
Company, Reading, Massachusetts. 1984.

[29] Donald Ervin Knuth: Computers & Typesetting.
Vol. B: The Program. Addison-Wesley Publishing
Company, Reading, Massachusetts. 1986.

[30] Donald Ervin Knuth: Literate Programming. No. 27
in Lecture Notes. Center for the Study of Language
of Information. 1992.

[31] Donald Ervin Knuth: Sorting and Searching, Vol. 3
of The Art of Comuter Programming. 2nd edition.
Addison-Wesley, Reading, Massachusetts. 1998.

[32] Alex Martelli: Python in a Nutshell. O’Reilly.
March 2003.

[33] Yukihiro Matsumoto: Ruby in a Nutshell. O’Reilly.
English translation by David L. Reynolds, Jr.
November 2001.

[34] Frank Mittelbach and Michel Goossens, with
Johannes Braams, David Carlisle, Chris A. Row-
ley, Christine Detig and Joachim Schrod: The
LATEX Companion. 2nd edition. Addison-Wesley Pub-
lishing Company, Reading, Massachusetts. August
2004.

[35] Chuck Musciano and Bill Kennedy: HTML &
XHTML: The Definitive Guide. 5th edition. O’Reilly
& Associates, Inc. August 2002.

[36] Oren Patashnik: BIBTEXing. February 1988. Part
of the BibTEX distribution.

[37] Dave Pawson: XSL-FO. O’Reilly & Associates, Inc.
August 2002.

[38] Bernd Raichle: Die Makropakete „german“ und
„ngerman“ für LATEX2ε, LATEX 2.09, Plain-TEX and
andere darauf Basierende Formate. Version 2.5. Juli
1998. Im Software LATEX.

[39] Erik T. Ray: Learning XML. O’Reilly & Associates,
Inc. January 2001.

[40] Guy Lewis Steele, Jr., Scott E. Fahlman, Rich-
ard P. Gabriel, David A. Moon, Daniel L.
Weinreb, Daniel Gureasko Bobrow, Linda G.
DeMichiel, Sonya E. Keene, Gregor Kiczales,
Crispin Perdue, Kent M. Pitman, Richard Wa-
ters and Jon L White: Common Lisp. The Lan-
guage. Second Edition. Digital Press. 1990.

[41] W3C: XML Names. W3C document. Edited
by Tim Bray, Dave Hollander, and Andrew Lay-
man. January 1999. http://www.w3.org/TR/1999/
REC-xml-names-19990114/.

[42] W3C: XSL Transformations (XSLT). Version 1.0.
W3C Recommendation. Edited by James Clark.
November 1999. http://www.w3.org/TR/1999/
REC-xslt-19991116.

[43] W3C: Extensible Stylesheet Language (XSL). Ver-
sion 1.0. W3C Recommendation. Edited by James
Clark. October 2001. http://www.w3.org/TR/2001/
REC-xsl-20011015/.

[44] Larry Wall, Tom Christiansen and Jon Orwant:
Programming Perl. 3rd edition. O’Reilly & Asso-
ciates, Inc. July 2000.

[45] Norman Walsh and Leonard Muellner: DocBook:
The Definitive Guide. O’Reilly & Associates, Inc.
October 1999.

Managing languages within MlBibTEX


