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Résumé

We deduce from Monomode Modal Method the analytical expressions of transmission and re-

flexion Jones matrices of an infinitely conducting metallic screen periodically pierced by subwave-

length holes. The study is restricted to normal incidence and to the case of neglected evanescent

fields (far-field) which covers many common cases. When only one non-degenerate mode propagates

in cavities, they take identical forms to those of a polarizer, with Fabry-Perot-like spectral resonant

factors depending on bigrating parameters. The isotropic or birefringent properties are then obtai-

ned when holes support two orthogonal polarization modes. This basic formalism is finally applied

to design compact and efficient metallic half-wave plates.

1 Introduction

Metallic metamaterials made of subwavelength holes are now designed to exhibit new polarization

properties [1]. Single periodically pierced metallic screen provides a compact linear polarizer [2], double-

layer fishnet metamaterials reveal optical activities [3], and multi-layer structures allow polarization

conversion [4]. One topical issue consists in developping efficient theoretical tools to describe with accu-

racy polarization properties of stacked subwavelength metallic bigrating (SMBG).
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In this paper, we extract from the well-known Momonode Modal Method (MMM) [5, 6, 7, 8, 9]

the analytical expressions of reflexion and transmission Jones matrices in far-field approximation of one

SMBG pierced by subwavelength holes with arbitrary cross section (see fig. 1). The working wavelengths

are chosen higher than the first Rayleigh-Wood wavelength in order to consider only one propagative

diffracted wave (0th-order) in incidence and transmission regions. In accordance with the Jones forma-

lism, we assume that an incident planewave falls on the SMBG in normal incidence. We show that these

Jones matrices can be basically expressed in this way :

JT,R = α̃T,RJ
(pol,ex)
θ − ξT,RId (1)

where the superscripts (T,R) refer to transmission and reflection respectively, Id is the identity matrix,

ξT = 0 and ξR = 1. The terms α̃T,R are Fabry-Perot-like spectral resonant scalar factors and

J
(pol,ex)
θ =




cos2 θ cos θ sin θ

cos θ sin θ sin2 θ


 (2)

is the Jones matrix of a x-axis linear polarizer rotated to θ (ex being one transverse unit vector of the

SMBG and θ depending on SMBG and pattern rotations, see fig. 1). The exact expressions and meanings

of α̃T,R and θ will be given in Section 2 (see eq. (14)) which deals with the theoretical background of

this work. The eq. (1) clearly reveals that such a SMBG is equivalent to a spectral resonant linear

polarizer in transmission mounting [10, 11]. Note that this efficient formalism may be used to accurately

analyse the important role of the reflected waves via the reflection Jones matrix in multilayer polarizing

systems as polarization converters [12, 3, 4]. The case of rectangular apertures and particularly the

role of the pattern rotation in resonance properties are then discussed in Section 3. In Section 4, we

extend these equations to study polarization properties of SMBG supporting two modes in holes. We

show that the transmission Jones matrix reduces to a sum of two monomode metallic polarizer’s Jones

matrices when two modes propagates in apertures without mode coupling via evanescent diffracted

waves. Consequently, the SMBG behaves as spectral resonant isotropic layer for degenerate modes
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in one cavity, or reveals birefringence otherwise (two monomode cavities in patterns). Finally, we take

advantage of this formalism to design thin half-wave plates with optimized transmission when the SMBG

is patterned with two orthogonal rectangular holes [13, 14].

2 Analytical expressions of Jones matrices

2.1 Presentation of the problem

We consider a metallic screen with thickness h periodically pierced by subwavelength holes described

in Cartesian coordinate system Oxyz with (ex, ey) as unit vectors in transverse plane (determined by

bigrating interfaces) and ez as longitudinal unit vector (see fig. 1). We restrict our analyze to biperiodic

structures as depicted in fig. 1 with Ox and Oy as periodic axes, then with dx and dy as periods respec-

tively. The metal is assumed perfectly conducting and the refractive index of hole medium is denoted n2.

The planar object is surrounded by two semi-infinite homogenenous regions (j) with refractive indices

nj , j ∈ {1, 3}. An incident plane wave falls on the SMBG from region (1) or (3) in normal incidence

and with ϕinc as polarization incident angle. We introduce the rotation angle ϕG with the x-axis of the

SMBG in Oxy plane. The far-field approximation consists to neglect evanescent waves in electromagne-

tic field description sufficiently distant from the SMBG (half-wavelength about). This hypothesis allows

the equivalence between ϕinc and ϕG = −ϕinc since the light polarization far from the SMBG is given

by polarizations of the specular diffracted waves. That is why only the angle ϕG is used in the following

theory (and not ϕinc) in order to respect the independence of Jones matrices to the incident wave. It is

worth noticing that the present theory may easily be used for monoperiodic objects as subwavelength

metallic gratings [7] and objects under in oblique incidence.

The present theory is derived from the MMM’s basic equations [7] extended to biperiodic structures.

The electromagnetic fields are described as Fourier-Rayleigh (FR) expansions in homogenenous regions

(j), i.e. as sums of Floquet modes. To simplify notations of FR-orders, p-orders stands for (n,m)-orders

with n ∈ [−N,N ], m ∈ [−N,N ] and N is the truncation order of FR expansions. p = 0 refers to

(0, 0)-order. Then, we assume that only the non-degenerate fundamental mode (q = 1) can propagate in
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cavities (monomode approximation). This hypothesis restricts the spectral validity domain to [λc,2, λc,1]

with λc,q the cut-off wavelength of the qth mode. Futhermore, this conditions deals with apertures with

Ci (i ∈ N), C1v or C2v cross section symmetry [15]. Figure 2 depicts common examples gathered in

E1-set as rectangular [16, 2], ellipsoidal [3], split-ring [17] or chiral [18] hole profiles.

The Jones matrices are now denoted JTj and JRj when the incident wave is placed in region (j). In

the present case of biperiodic objects, the well-known polarizations (te, tm) or (p, s) are used to describe

electric field of diffracted FR-waves. Thus, the analytical terms of JT,Rj directly identify to the zero-

order (far-field approximation) transmitted and reflected amplitudes given by eqs. (41) and (42) in ref.

[7] extended to biperiodic metallic gratings :

JT,Rj = f̃T,Rj




g̃0,tmg̃
∗
0,tm g̃0,tmg̃

∗
0,te

g̃0,teg̃
∗
0,tm g̃0,teg̃

∗
0,te


 − ξT,R




1 0

0 1


 , (3)

where g̃p,σ are the overlap integrals between FR-waves and the cavity modes (expressed below), and

σ = {te, tm} denotes the polarization of the transverse basis-vectors of Floquet mode wavevectors. The

factors f̃T,Rj are spectral resonant Airy-like functions :

f̃Tj =
4uη

(j)
0 η̃[

C̃(1) + η̃
] [
C̃(3) + η̃

]
− u2

[
C̃(1) − η̃

] [
C̃(3) − η̃

] , (4)

and

f̃Rj =
2η

(j)
0

{[
C̃(j′) + η̃

]
+ u2

[
η̃ − C̃(j′)

]}

[
C̃(1) + η̃

] [
C̃(3) + η̃

]
− u2

[
C̃(1) − η̃

] [
C̃(3) − η̃

] , (5)

where

C̃(j) =
∑

p

h̃
(j)

p · g̃p, (6)

and j′ = 1 if j = 3 and j′ = 3 if j = 1. η
(j)
p,σ and η̃ are the relative admittances of the pth FR-order in

region (j) and of the cavity mode respectively. We use the following notations : η
(j)
0 = η

(j)
0,te = η

(j)
0,tm = nj

and u = exp(iγ̃h) where γ̃ are the propagation constant of the cavity mode. The terms g̃p,σ and
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h̃
(j)
p,σ = η

(j)
p,σ g̃∗p,σ for σ ∈ {te, tm} are components of vectors g̃p and h̃

(j)

p , respectively. It is worth noticing

that coefficients C̃(j) are computed for n ∈ [−N,N ] and m ∈ [−N,N ], and so it takes into account

coupling between cavity mode and evanescent diffracted waves.

2.2 Overlap integrals between FR-waves and the cavity modes

A detailed analysis of g̃p,σ expressions provides the basic and analytic formulation of JT,Rj given in

eq. (1) from the eq. (3). In this aim, we have first to pose transverse (in (ex, ey)-plane) field expressions

of Floquet modes and the ones of cavity modes.

The transverse field profiles of the well-known Floquet modes in homogenenous regions are given by





Ep,σ(x, y) = eikp.ρ

√
S

ep,σ,

Hp,σ(x, y) = η0η
(j)
p,σez ∧ Ep,σ(x, y),

(7)

where ρ = xex + yey, η0 =
√
ǫ0/µ0 is vaccum admittance, S the transverse surface area of the periodic

cell, kp = n2π/dxex + m2π/dyey the transverse component of pth FR-wavevector. The polarization

vectors ep,σ is

ep,tm =





kp

‖kp‖ if |kp| 6= 0,

cosϕGex + sinϕGey if |kp| = 0,
(8)

and

ep,te =





ez ∧ kp

‖kp‖ if |kp| 6= 0,

− sinϕGex + cosϕGey if |kp| = 0.
(9)

Note that |kp| = 0 is equivalent to p = 0.

Concerning field expressions inside apertures, we note Ẽ(x, y) the transverse electric field profiles of

the fundamental mode. The corresponding transverse magnetic field H̃(x, y) is expressed as in eq. (7)

substituting η
(j)
p,σ by η̃ and Ep,σ(x, y) by Ẽ(x, y).

5



Thus, the overlap integrals between FR-orders and the cavity mode are defined by

g̃p,σ =

∫∫

S

E∗
p,σ(x, y) · Ẽ(x, y)ds = ep,σ · g̃p. (10)

The integration is only computed on the surface S of cavity cross section since the fields in bigrating

are different to zero only on S. The g̃p-vector is

g̃p =

∫∫

S

Ẽ(x, y)
e−ikp.ρ

√
S

ds = g̃pvp, (11)

vp is the unit polarization vector of the overlap integrals g̃p. These overlap vectors cause the linear pola-

rization filtering of the metallic screen which is described in detail below. We introduce the polarization

angle ψp such as vp = cos(ψp)ex + sin(ψp)ey. We easily obtain that

ep,te · vp =





mdx cos(ψp)−ndy sin(ψp)√
n2d2y+m2d2x

if |kp| 6= 0,

− sin(ϕG − ψp) if |kp| = 0,

(12)

and

ep,tm · vp =





ndy cos(ψp)+mdx sin(ψp)√
n2d2y+m2d2x

if |kp| 6= 0,

cos(ϕG − ψp) if |kp| = 0,

(13)

which is required in eq. (10) to compute g̃p,σ.

2.3 Final expressions of Jones matrices

Making explicit the 0th orders overlap integrals finally leads to eq. (1) where

α̃T,R(λ, ψ) = f̃T,Rj (λ, ψ) |g̃0|2 . (14)

The 0th orders overlap integrals are obtained from eq. (10) in which ep,σ are expressed in eqs. (8) and

(9) for |kp| = 0 (p = 0). The square matrix in eq. (1) is the Jones matrix after |g̃0|2 being factored out

and with θ = ψ0 − ϕG. To simplify writing, we introduce the row matrix ψ = (· · · , ψp, · · · ) containing
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all ψp-values. The notations highlight here the dependencies of f̃T,Rj and α̃T,R on λ and ψ. Note that

coefficients α̃T,R(λ, ψ) don’t depend on ϕG since the coupling coefficients C̃(j) don’t (but still vary with

ψ, see eqs. (12) and (13)). In fact, coefficients C̃(j) also take the form

C̃(j) = nj |g̃0|2 +
∑

p6=0

h̃
(j)

p · g̃p, (15)

knowing that |g̃0|2 and the summation for p 6= 0 don’t depend on ϕG.

It is interesting to remark that the determinant of JTj given by eq. (3) is equal to zero meaning that

the metallic array behaves in transmission as a linear polarizer. This result is confirmed by the final

expressions of JTj given by eq. (1). We can also remark that the resonant factor α̃T (λ, ψ) depends on

bigrating parameters (via kp-vectors) but polarization properties given by a polarizer’s Jones matrix

J
(pol,ex)
ψ0−ϕG

don’t. Indeed, the expressions of J
(pol,ex)
ψ0−ϕG

terms are obtained from eqs. (12) and (13) for p = 0

(|k0| = 0). They are thus only depending on ψ0 and ϕG.

3 Case of rectangular apertures : Role of pattern rotation

As shown in fig. 2 (E1-set), many hole shapes can be considered. The shape of the apertures first

changes the cut-off of each mode and thus causes wavelength shifts of resonance peaks related to cut-off.

Secondly, the effective indices of modes (or their admittances particularly required in calculation of over-

lap integrals) are also affected which equally provokes shifts of Fabry-Perot-like resonance wavelengths.

Besides, the radiative losses are changed due to different reflection and transmission conditions at each

interface of the bigrating. Consequently, the quality factors are different for each hole shape. We analyse

here the influence of the pattern rotation on transmission behaviour of one basic sample. We consider

that the SMBG pattern is made of one rectangular hole (first profile of E1-set, see fig. 2). In this case,

analytical expressions of overlap integrals can be easily obtained. For the most other cases (except for

the ones for which a pertubtive process may be used), overlap integral calculations directly depending

on the transverse field profile require a numerical treatment.

We let d = dx = dy. The width and length are ax/d = 0.2 and ay/d = 0.7 respectively. ψ identifies
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here to the angle between the length side and the ey-axis. Other parameters are h/d = 0.8 and N = 5.

The geometrical parameters are chosen such that resonant peaks appears for λ/d ∈ [1.0, 2.0]. In this

λ-range, the cavities can be effectively assumed monomode and the polarization angles of g̃p is given

by the linearly polarized electric field direction of the TE01-mode (∀p, ψp = ψ). The fig. 3 depict the

spectra of α̃T,R(λ, ψ) for SMBG patterns rotated by ψ = 0o, 15o, 30o and 45o. The spectra of the

terms of the reflexion Jones matrices are directly deduced from those of α̃R(λ, ψ) in eq. (1). Their

analysis reveal interesting properties due to the identity matrix. The fig. 3 shows two peaks for α̃R(λ, ψ)

at resonances. This induces common deep peaks (reflexion-like) for diagonal terms of JRj , whereas the

extra-diagonal terms behaves as transmission ones (peaks at resonances). This property may cause some

special polarization and transmission effects when several SMBG are piled up.

The peak close to λ/d = 1.41 is related to the resonance at TE01-mode cut-off whereas the peak close

to λ/d = 1.18 refers to the first Fabry-Perot-like resonance [14]. The resonant functions α̃T,R(λ, ψ) little

depend on SMBG pattern rotation angle ψ. The variation of ψ does not affect maxima values but causes

wavelength shifts of peaks. The variations of λmax/d at each peak maxima of α̃T,R(λ, ψ) according to

ψ are plotted in fig. 4. We remark that small blueshifts (< 2.10−2) occurs when the angle ψ increases

from 0o to 45o and redshifts from 45o to 90o. The dephasing between diffracted waves and the incident

one given by arg
[
α̃T,R(λmax, ψ)

]
(see fig. 3) is close to −π for first resonant peak (λ/d ≈ 1.18) and

−2π for the second one (λ/d ≈ 1.41), whereas it remains equal to zero for reflected waves. In view of

α̃T,R(λ, ψ) spectra, we equally show that transmitted and reflected waves don’t resonate exactly at the

same wavelengths. This may causes special resonance properties of stacks of metallic polarizers.

4 Extension to bimodal systems

For some cavity cross sections and/or frequency-ranges, two modes have to be considered in cavities

of the SMBG pattern. The first case deals with one cavity allowing two modes (any cross section a

priori). We highlight the particular case of one degenerate mode (two modes with the same effective

index). Knowing that the mode field symmetries are independent of the bigrating lattice’s ones only

for the studied case of perfectly conducting metals, the degeneracy can be obtained for holes with Civ
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(i > 2) cross section symmetry [15] as circular [19, 20], square [21, 22] and annular [23, 24] hole cross

sections (E2-set in fig. 2), or can accidentally occur. The second case deals with two monomode cavities

as for any combinaison of geometries in E1-set as example. The working spectral range determines the

monomode or bimode regime of apertures. However, we focus on the particular case of non-coupled

modes via evanescent waves which implies basic expressions of Jones matrices.

Similarly to eq. (3) for monomode SMBG exposed in Section 2, the eqs.(30), (31), (33) and (34) in ref.

[7] applied to bimode holes (q ∈ {1, 2}) lead to semi-analytical Jones matrices after tedious calculations :





JT1 = 2 [(ug̃)tM11 + g̃tM21] g̃
∗η(1),

JR1 = 2 [g̃tM11 + (ug̃)tM21] g̃
∗η(1) − Id,

JT3 = 2 [(ug̃)tM12 + g̃tM22] g̃
∗η(3),

JR3 = 2 [g̃tM21 + (ug̃)tM22] g̃
∗η(3) − Id,

(16)

where the superscript t stands for transpose, u is a 2 × 2-matrix such as (u)q,q′ = uqδq,q′ with uq =

exp(iγ̃qh) (q and q′ ∈ {1, 2}), then (η(j))σ,σ′ = η
(j)
σ δσ,σ′ and (g̃)q,σ = g̃q,σ with g̃q,σ the overlap integral

between FR (0, σ)-order and the qth mode. To simplify notations, we consider here that σ ∈ {tm, te}

(and σ′) stands for the subscript (0, σ), i.e. for p = 0 (and (0, σ′) respectively). The 2×2-matrices Mχ,χ′ ,

with χ and χ′ ∈ {1, 2}, are 2 × 2-blocks of the 4 × 4-matrix M = M−1 with

M =




C̃
(1)
1,1 + η̃1 C̃

(1)
1,2

[
C̃

(1)
1,1 − η̃1

]
u1 C̃

(1)
1,2u2

C̃
(1)
2,1 C̃

(1)
2,2 + η̃2 C̃

(1)
2,1u1

[
C̃

(1)
2,2 − η̃2

]
u2

[
C̃

(3)
1,1 − η̃1

]
u1 C̃

(3)
1,2u2 C̃

(3)
1,1 + η̃1 C̃

(3)
1,2

C̃
(3)
2,1u1

[
C̃

(3)
2,2 − η̃2

]
u2 C̃

(3)
2,1 C̃

(3)
2,2 + η̃2




. (17)

This matrix linking field amplitudes of both cavity modes depends on the cross-coupling coefficients C̃
(j)
q,q′

between qth-mode and q′th-mode via FR-orders in (j) region. These coefficients are similarly defined as

in eq. (6) :

C̃
(j)
q,q′ =

∑

p

h̃
(j)

p,q · g̃p,q′ , (18)
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with p = (n,m), n ∈ [−N,N ] and m ∈ [−N,N ], then q and q′ ∈ {1, 2}. The numerical inversion of M

makes the theory semi-analytical for most cases.

Nevertheless, we are specially interested in the basic form of the Jones matrices in the case of non-

coupled modes. Indeed, both modes are not coupled via evanescent waves when their cross-coupling

coefficients C̃
(j)
1,2 and C̃

(j)
2,1 nullify. Consequently, the matrices M and so M become block-diagonalizable,

and M can be analytically inverted. In this case (C̃
(j)
1,2 = C̃

(j)
2,1 = 0), the eqs. (16) and (17) lead to the

following analytical expressions of Jones matrices :

JT,Rj =

2∑

q=1

α̃T,R(λ, ψ(q))J
(pol,ex)
ψ0,q−ϕG

− ξT,RId, (19)

with ψ(q) = (· · · , ψp,q, · · · ). To resume, the transmission Jones matrices of bimode system with non-

coupled modes is simply written as the sum of those related to each mode (see eq. (1)).

We have now to clarify non-coupling conditions of modes. A tedious analysis of C̃
(j)
q,q′ terms from eqs.

(12) and (13) shows that two modes are not coupled via evanescent diffracted waves when vp,1 ·vp,2 = 0

∀p, and when vp,1 and vp,2 vectors coincide with ex and ey respectively. Moreover, the SMBG pattern’s

cross section must respect C1v symmetry (E3-set in fig. 2). These assertions reduce to ψ0,1 = 0 and

ψ0,2 = π/2 when the mode fields are linearly polarized for which ψ(p) ≡ ψ ∀p (rectangular or square

apertures as example). Other geometries inducing C̃
(j)
q,q′ = 0 may exist but remain difficult to obtain.

We thus deduce from the eq. (19) that JT,Rj is a diagonal matrix for ϕG = 0 :

JT,Rj =




α̃R,T (λ, ψ(1)) − ξT,R 0

0 α̃R,T (λ, ψ(2)) − ξT,R


 . (20)

Thus, such metallic plates are divided into two sets :

i. α̃R,T (λ, ψ(1)) = α̃R,T (λ, ψ(2)) for the case of one cavity in SMBG pattern with one degenerate

mode (E2-set). Consequently, the SMBG behaves as an Fabry-Perot-like isotropic resonator in

transmission.

ii. α̃R,T (λ, ψ(1)) 6= α̃R,T (λ, ψ(2)) for other cases, i.e. for patterns made of one cavity allowing two non-

10



degenerate modes (E1-set) or two monomode cavities (E3-set). Consequently, the SMBG behaves

as an Fabry-Perot-like birenfringent resonator in transmission.

5 Application to metallic half-wave plate

According to the results obtained in the last section, we know that one SMBG with periodic cells

made of two orthogonal monomode cavities behaves as an metallic birenfringent plates in transmission

which allows design of compact waveplates [13, 14]. In order to valid our formalism, we consider quasi-

identical metallic plates studied in [13] but with C1v-pattern made of two orthogonal rectangular holes

as depicted in fig. 2 (first pattern of E3-set). Actually, the geometry proposed in [13, 14] including

both rectangular profiles does not respect C1v-symmetry (but respects L-shape) which induces non-nil

coupling between modes. We thus introduce the following ratios

τ
(j)
q,q′|q′′ =

∣∣∣C̃(j)
q,q′/C̃

(j)
q′′,q′′

∣∣∣ , (21)

with q′ 6= q to evaluate the significance of these couplings. As shown in Fig. 5 (calculus made with

the complete bimode theory, see eq. (17)), they are τ
(1)
1,2|1 = τ

(1)
2,1|1 = 13% and τ

(1)
1,2|2 = τ

(1)
2,1|2 = 25.8%

for the case studied in [13] at the transmission peak maxima with λmax/d close to 1.186. The values

of geometrical parameters are h/d = 0.83, ax/d = 0.73, cx/d = 0.067, ay/d = 0.58, by/d = 0.2 and

cy/d = 0.45. All media are filled with air. As in [13], the transmission (T ) is computed for an incident

light with ϕG = 45o (and n1 = n3) :

T =
1

2

(
|txx + txy|2 + |tyx + tyy|2

)
, (22)

using the same notations introduced in [13]. In our theory, tρ,ρ′ , ρ and ρ′ ∈ {x, y}, are JTj -terms (given

in eq. (16)). The structure behaves as a quasi half-wave plate such as the transmission maxima (Tmax)

reaches 92% and the phase difference (PD) between txx and tyy is approximatively equal to 3.15 radians

at λmax. The transmission Jones matrix is indeed not exactly the same as the one of a perfect half-wave
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plate knowing that txy 6= 0 and tyx 6= 0 since C̃
(j)
1,2 6= 0 and C̃

(j)
2,1 6= 0 (see Fig. 3 in [14]). But for our

proposed structure, txy and tyx exactly nullifies when pattern respect C1v-symmetry (cy = (ax− by)/2).

For this case, the Fig. 6 depicts the argument of α̃T (λ, 0o)/α̃T (λ, 90o) versus λ/d and ay/d where

α̃T (λ, 0o) and α̃T (λ, 90o) identify to txx and tyy respectively (identical parameters as the previous ones).

We remark that the figure is similar to Fig. 3 in [13]. Point A defines values of λ and ay to achieve one

half-wave plate : arg (txx/tyy) ≈ π and |txx| ≈ |tyy|. The other geometrical parameters have been chosen

to maximize transmission maxima (red lines related to |txx| maxima).

We propose now to take the advantage of our very efficient analytical model to improve performances

of such metallic waveplates. Our goal is to achieve a more compact system (lower thickness) with

better transmission. In this aim, the designed object must satisfy to the three following conditions

simultaneously :





L1 = arg(txx/tyy)/π − 1 = 0 : PD condition,

L2 = |txx| − |tyy| = 0 : identical transmission moduli condition,

L3 = |txx| − 1 = 0 : total transmission condition,

(23)

which are gathered in the global following condition :

L =

3∑

l=1

|Ll| . (24)

The value of h/d is changed from 0.5 to 0.85. For each value of h, we determine the point A (and

so the values of λmax/d and ay/d) as in fig. 6. The variations of L and L1 to L3 according to h/d are

shown in Fig. 7. We see that conditions are satisfied for many values of h/d (hollow peaks). Then, the

discontinuities close to h/d = 0.55 correspond to ay/d = 0.5, i.e. when the cut-off wavelength of one

cavity mode (position of the first |tyy| peak) is equal to the Rayleigh wavelengths. Thus, half-wave plate

cannot be designed for h/d < 0.55 about. We also remark that L1 = 0 and L2 = 0 cannot occur for

the same value of h/d (see subfigure), and L3 = 0 never occurs. We so deduce that perfect half-wave

plates cannot be obtained in general with metallic plates made of subwavelength rectangular holes. The

variations of ay/d, Tmax, λmax/d and PD at each minimum of L are plotted in Fig. 8. In order to
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achieve our goal, we have chosen the most compact system : h/d = 0.5484 for one minimum of L such

as L1 ≈ 0 and L3 reaches one of minima. Finally, the transmission of the retained metallic plate is

Tmax = 96.16% at λmax/d = 1.073 and with PD = 3.1324 rad and ay/d = 0.5008. To complete the

analysis, the corresponding transmission and PD spectra are plotted in Fig. 9.

6 Conclusion

We provide an efficient theoretical tool to analyse polarization features of subwavelength metallic

bigratings in monomode and different bimode regimes. The considered geometries cover a wide part of

applications studied in litterature. This model has especially been used to optimize thin metallic half-

wave plates with high transmission (patterns with two orthogonal rectangular apertures). The analytical

Jones matrices for one metallic plate and the scattering-matrix propagation algorithm can be combined

in an analytical reccurence way. This basic process allows the computation of the global Jones matrices

of stacked structures and forms an extended Jones-like formalism for metallic plates. Futher works are

in progress to show with the help of this new formalism that an efficient polarization conversion with

total transmission occurs for stacked twisted metallic polarizers.
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Fig. 1 – Metallic screen periodically pierced by subwavelength holes.
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Fig. 2 – Some examples of common SMBG pattern cross sections considered in the present work. E1-
set : one hole with one non-degenerate mode. E2-set : one hole with two degenerate modes. E3-set : two
holes, each having a non-degenerate mode.
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Fig. 3 – Resonant coefficients α̃T,R(λ, ψ) versus wavelength for different values of ψ. The width of the
rectangular hole is ax = 0.2 and its length is ay = 0.7. Other parameters are dx = dy = 1, h/d = 0.8,
n1 = n2 = n3 = 1 and N = 5.
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Fig. 4 – (Color online) Variation of λmax at
∣∣α̃T,R(λ, ψ)

∣∣ maxima according to ψ. See fig. 3 for parameter
values.
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Fig. 5 – Coupling analysis between modes of each cavities for L-shape pattern made of two orthogonal

rectangular apertures : τ
(1)
q,q′|q′′ and

∣∣∣C̃q,q′
∣∣∣ versus λ/d. The transmission spectrum is plotted in grey color

(scale not mentioned).
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Fig. 6 – Phase difference PD between txx and tyy versus λ/d and ay/d for SMBG with C1v-pattern
made of two orthogonal rectangular apertures. The white contour plots give the couples (λ,ay) that
correspond to |txx| = |tyy|. The black line corresponds to PD = π, the blue line to PD = π/2 and
the red lines to |txx| maxima. The point A answers the case of a half-wave plate. The parameter are
h/d = 0.83, ax/d = 0.73, cx/d = 0.067, ay/d = 0.58, by/d = 0.2 and cy/d = 0.45.
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one (h/d = 0.5484).
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