
An Approach Combining Simulation and Verification for
SysML using SystemC and Uppaal

Abbas Abdulhameed
Université de Franche-Comté

FEMTO-ST/DISC UFR ST
abbas.abdulhameed@femtost.fr

Ahmed Hammad
Université de Franche-Comté

FEMTO-ST/DISC UFR ST
ahammad@femto-st.fr

Hassan Mountassir
Université de Franche-Comté

FEMTO-ST/DISC UFR ST
hmountas@femto-st.fr

Bruno Tatibouet
Université de Franche-Comté

FEMTO-ST/DISC UFR ST
btatibou@femto-st.fr

ABSTRACT
Ensuring the correction of heterogeneous and complex sys-
tems is an essential stage in the process of engineering sys-
tems. In this paper we propose a methodology to verify and
validate complex systems specified with SysML language us-
ing a combination of the two techniques of simulation and
verification. We translate SysML specifications into Sys-
temC models to validate the designed systems by simulation,
then we propose to verify the derived SystemC models by
using the Uppaal model checker. A case study is presented
to demonstrate the effectiveness of our approach.

Keywords
SysML, SystemC, Simulation, Model checking, Acceleo, ATL,
Uppaal.

1. INTRODUCTION
Over the last decade, the complexity of systems has con-
siderably grown since these systems integrate an increasing
number of components and a variety of technologies. At the
same time, system engineers always have to reach the fol-
lowing main objectives; building the right systems, correctly
and on time, while reducing costs.

The correct design of complex systems continues to chal-
lenge engineers. Bugs in a design that are not uncovered
in early design stages can be extremely expensive. Simula-
tion is a predominantly used techniques supported by tool to
validate a design in the industry. Formal verification over-
comes the weakness of exhaustive simulation by applying
mathematical methodologies to validate a design. The work
described here focuses upon a technique that integrates the
best characteristics of both simulation and formal verifica-
tion methods to provide an effective design, building them
correctly and on time, while reducing costs. One purpose

of modeling is to enable the analyst to predict the effect of
changes to the system. Models may describe requirements,
the behavior and/or the structure of the designed system, it
may be used to validate the characteristics of some part or
of the whole of the designed system, e.g. Its functionality or
its performance. Thus, the model-based systems engineer-
ing approach using SysML[24] can be used to specify graph-
ically all aspects of complex systems consisting of compo-
nents from heterogeneous domains, in particular hardware
and software. SysML is a modeling language that permits to
easily obtain a specification of a complex system including
structural and behavioural aspects.

An important issue in modeling is model validity. Model
validation techniques include simulating the model under
known input conditions and comparing model output with
system output. Generally, a model intended for a simulation
study is a mathematical model developed with the help of
simulation software. SysML lacks formality for the required
validation. Translating SysML-based specification into Sys-
temC [9] environments allows to enable rigorous static, and
dynamic system analysis. The joint use of languages SysML
and SystemC is a good way sees to satisfy the requirements
of the specification and simulation. SystemC is a language
with C++ - like syntax that enables the description of con-
current systems in an event-based way. It is able to describe
systems from the executable specification level.

Interestingly the question of how simulation and verifica-
tion can be combined to validate the characteristics of some
part or of the whole of the designed system, e.g. Its func-
tionality or its performance. We think that performance
requirements can be validated by simulation, but validation
of system functionalities requires the use of the formal meth-
ods of check. To combine SysML and SystemC is not enough
for validating these systems, Sometimes, it is necessary to
validate functional requirements by using techniques of the
formal methods checking, yet SysML and SystemC do not
supply tools for the check. The integration of the model
checker Uppaal[5] in this approach would allow to complete
the process of validation. Uppaal is an integrated tool en-
vironment for modeling, validation and verification of real-
time systems modeled as networks of timed automata.

The main objective of this paper is to describe a methodol-

ogy of modelling, simulation and validation of complex sys-
tems. This one uses the techniques of MDE(Model Driven
Engineering) for the transformation of models (SysML and
SystemC). We use the works presented in [3] for the extrac-
tion of Uppaal timed automata from SystemC. The second
section of this paper addresses the state of the art of the com-
bination of language (eg SysML) and a code environment
simulation same as SystemC. The third section, describing
the example of controls of traffic lights, is used to illustrate
our approach and serves as an experience feed-back. The
process of validation as well as thus the proposed approach
are presented in the section 4, two requirements(functional
and performance) are taken into account to validate them.
Finally, in Section 5, we conclude and we outline some ideas
for future works.

2. RELATED WORKS
We present works related to combining SysML with Sys-
temC for validating and verifying systems. In [8] and [29],
the authors defined a design methodology and a develop-
ment flow for the hardware, based on a UML4SystemC pro-
file and encompassing different levels of abstraction. Both
SystemC and C profiles are consistent groups of modelling
constructs designed to lift the programming features include
structural and behavioral of the two coding languages to the
UML modeling level. In [19], the paper describes a SystemC
profile which is a consistent set of modeling constructs de-
signed to lift both structural and behavioral attributes, of
the SystemC language to SysML level. It provides means
for software and hardware engineers to improve the current
industrial(SoC), design methodology joining the capabilities
of SysML and SystemC to operate at system-level by include
events and time attributes. In [27], the integration is based
on a mapping from the SysML to the SystemC for the struc-
tural and behavioral aspects. The refined co-design flowing
starts from a SysML description at a high abstraction level.
Then, it proceeds through a series of refined SystemC mod-
els, to lower abstraction levels of design. The more complex
last-level SystemC coding is left to automation. An imple-
mentation allows to efficiently simulate the behaviors of the
system. Before synthesizing hardware description, the ver-
ification of SystemC designs is important, to reveal errors
in early stages of the development flow. In [9], an approach
was developed to introduce SysML as UML profile for the
co-modeling of SystemC and C with code generation sup-
port. It was implemented in the context of Artisan Studio
[18]. Many implementations that consider the transforma-
tion of SysML designs into SystemC code generation, such
as the Altova UModel [28], that designs application mod-
els and generate code and project documentation, then re-
fines designs and completes the round trip by regenerating
code, that makes visual software design practical for any
project. The Enterprise Architect software [23]. Supports
advanced MDA transformations using easy to edit trans-
form templates, with generation and reverse engineering of
source code for SystemC language, this can quickly develop
detailed solutions from abstract models.

Formal verification of SystemC has recently gained signifi-
cant interests [16]. Compared to simulations, formal verifi-
cation provides full coverage, and then may improve the re-
liability and the robustness of the design. In[30],[15] the for-
mal verification of SystemC designs was including assertion-

based dynamic validation, symbolic simulation, explicit-state
model checking, and symbolic model checking. There are
more than software tools are presented that encapsulate the
scope of SystemC design to formal verification approaches,
such as the KRATOS [12],[13] verifies safety properties, in
the form of program assertions, by allowing users to explore
two directions in the verification. First, by relying on the
translation from SystemC designs to sequential C programs,
is capable of model checking the resulting C programs using
the symbolic lazy predicate abstraction technique. Second,
are implements a novel algorithms, called ESST (Explicit-
Scheduler/Symbolic-Threads) and S3ST that combines ex-
plicit state techniques to deal with the SystemC scheduler,
with symbolic techniques to deal with the threads, which are
is built on top of NUSMV and MATHSAT, and uses state-
of-the-art SMT-based techniques for program abstractions
and refinements. In [11],[21] the authors proposed Promela
encoding of SystemC to analysis, the kinds of property and
search behaviors during the verification. The technique is
effective and efficient in finding bugs, describe the encoding
of the SystemC scheduler into an asynchronous formalism,
the input language for (”SPIN”). In [20] IVL (”Intermediate
Verification Language”) combine and adapt POR (Partial
Order Reduction) and symbolic execution techniques to al-
low the verification and the simulation of SystemC designs.
IVL presents some limitations. It does not implement loop
detection in the proposed symbolic simulator. In our paper,
a methodology that combines SysML with SystemC and Up-
paal is proposed to validate requirements of complex system.
A first translation from SysML to SystemC is done to vali-
date non functional properties by simulation. Then, a sec-
ond translation from SystemC models to Uppaal is achieved
to provide a formal verification of functional properties.

3. BACKGROUND
3.1 SysML
SysML is a language of modelling specified by the OMG.
It is a language of graphic modelling with semi-formal se-
mantics, availability scopes are to improve UML-based [17],
complex systems development processes with the successful
experiences from the system engineering discipline.

3.1.1 BDD and IBD
The Block Definition Diagram”BDD”, is specified by its parts,
and its flow ports. The physical components of the block
is referred to Parts and the interfaces of block is referred
to Flow ports [27]. Internal Block Diagram ”IBD” includes
properties so that its values, parts, and references to other
blocks can be specified. However, created for a block (as
an inner element) will only display the inner elements of a
classifier (parts, ports, and connectors).

3.1.2 SMD
The State Machine Diagram ”SMD” facilitates the specifi-
cation of a state-based behaviour of any component whose
behaviour can be thus expressed; some components will ad-
ditionally require other mechanisms to define their nonstate-
based behaviour [31]. The SMD defines a set of concepts
that can be used for modeling discrete behaviour through fi-
nite state transition systems. The state machine represents
behaviour as the state history of an object in terms of its
transitions and states.

A block includes operations so that its values, parts, and ref-
erences execution blocks can be specified. However, whereas
an SMD created from a block will display the inner ele-
ments of a classifier, through the transition, entry, and exit,
the states are specified along with the associated event and
guard conditions. The state can be active or inactive, state
has incoming transitions and outgoing transition; when an
outgoing transition is fired, the state is exited and becomes
inactive. When an incoming transition is fired, the state is
entered and it becomes active. Activities that are invoked
while in the state are specified asdo Activities, and can be
either continuous or discrete. A composite state has nested
states that can be sequential or concurrent[24].

3.2 SystemC
SystemC[2], is an open-source system-level design language
based on C++ that has its own simulation kernel. The Sys-
temC is a run-time scheduler that handles both the syn-
chronization and scheduling of concurrent processes. The
designers can apply object-oriented capabilities to hardware
design. SystemC allows to work at a higher level of ab-
straction, enabling extremely faster, more productive ar-
chitectural trade-off analysis, design functional level mod-
eling describes modeling done at levels above Transaction
Level Modeling (TLM) and encompasses System Architec-
tural Models(SAM)with System Performance Models[10].

Modeling at this level is algorithmic in nature and may be
timed or untimed. Models may represent software, hard-
ware or both the typical behavior is described as generators
and consumers of data. Processes may be assigned time
for performance analysis purposes, this timing does not cy-
cle accurate but rather describes the time to generate or
consume data or to model buffering or data access. The
behavior of the interfaces between modules is described us-
ing communication protocols. These types of models are
used to explore architectures, for proof of algorithms and
for performance modeling and analysis. SystemC processes
execute concurrently and may suspend on “wait()” state-
ments. Such processes require their own independent exe-
cution stack which called “SC THREADs”, when the only
signal triggering a process is the clock signal “clk” we obtain
what we call“SC CTHREADs” (clocked thread process) cer-
tain processes do not actually require an independent exe-
cution stack and cannot suspended on “wait()” statement,
such processes are termed “SC METHODs”. Processes are
executing in zero simulation time and returns control back
to the simulation kernel.

Simulation Semantics of SystemC
A high-level executable design allows to efficiently simulate
the behaviours of the complex system before synthesizing
the RTL hardware description. The verification of SystemC
designs is of fundamental importance, to detect errors in
early stages of the development flow, and prevent expensive
propagation down to the hardware.

Formal verification of SystemC is lately winning significant
interests. Compared to simulations, formal verification pro-
vides full coverage, and thus may enhance the reliability and
the robustness of the design.

The controller of SystemC design is scheduled when exe-

cution. It controls the simulation time, the execution of
processes, manages event notifications and updates primi-
tive channels. SystemC supports the notion of delta-cycles,
the delta cycle is not clock cycle and no time having ad-
vanced. Delta-cycles are used to simulate new updates and
event triggered processes to be simulated from the current
execution phase of current time. A brief simulation steps
are as follows:

1. Initialization phase: each process is executed once,

2. Evaluation phase: execute all schedule processes in
current run queue.

3. Update phase: update value and add new triggered
runnable processes to waiting queue or queue of t + n.

4. If the queue (t+0) is not empty, move queue (t+0) to
run queue and go to step 2.

5. If waiting queue (t+0) is empty, advance time to clos-
est time step, and move queue (t+x) to run queue and
go to step 2.

6. If queue is empty, it means no event needs to be sim-
ulated, then simulation ends.

Which is using delta notification, the event and its triggered
processes are scheduled to be run immediately after current
execution and update phase.

3.3 Uppaal Timed Automata
Timed Automata[7] is a Finite-State Machine extended with
clock variables. The concept of model time-dependent be-
havior of clock variables, which are used as clock constraints.
Systems comprising multiple concurrent processes are mod-
eled by networks of timed automata, which are executed
with interleaving semantics and synchronize on channels.
Uppaal [5],[6] is a toolset for the modeling, simulation, ani-
mation and verification of networks of timed automata. The
Uppaal model checker enables the verification of temporal
properties. The simulator can be used to visualize feed-back
produced by the model checker.

Uppaal Model Checking Tool
The Uppaal modeling language extends timed automata by
introducing parameterized timed automata templates, bounded
integer variables, binary and broadcast channels, and urgent
and committed location. Timed automata templates pro-
vide the possibility to model similar timed automata only
once and to instantiate them arbitrary often with different
parameters.

A Uppaal model comprises three parts: “global declarations”,
“parameterized timed automata” and a “system declaration”.
In the global declarations section, global variables, constants,
channels and clocks are declared. The timed automata tem-
plates describe timed automata that can be instantiated
with different parameters to model similar process. In the
system declaration, the templates are instantiated and the
system to be composed is given as a list of timed automata.
To enable the implementation of formal verification tech-
niques, the dynamic requirements are formalized into TCTL

properties “Time Computation Tree Logic” [25], TCTL is an
extension of CTL “Computation Tree Logic” which allows
considering several possible future from a state of system.
The model checker Uppaal has four TCTL quantifiers [14]

3.4 Metamodels
MDE recommends the use of models at different levels of
abstraction. The model is an abstract view of reality and
conforms to a metamodel that precisely defines the concepts
present at this level of abstraction and the relationships be-
tween the concepts, therefore the metamodel allows of rep-
resenting complex mechanisms involving multiple concepts,
a written report in a given metamodel will be said according
to the metamodel. The metamodeling approach means that
“a metamodel is used to specify the model that comprises
(SysML, SystemC)”.

Model transformation
Model transformation represents the heart which becomes
an MDE predominant activity in the development process.
To the principle of model transformations has attracted much
attention by becoming a subject of research for the academy
and industry. The transformation term models remain quite
broad as a consequence of studies have been done order to
define categories and criteria for model transformation by
allowing developers to choose an approach as needed.

Several conditions were adopted order to define the trans-
formation process that generally describes by the conversion
of a certain level of model abstraction complies to a meta-
model to a target at a certain level of abstraction compli-
ance with its metamodel whose passage is described by of
the rules of transformation,

4. OVERALL APPROACH
This section introduces the set of activities related to the
specification and the verification approach used to assess the
correction of complex systems designed with SysML, simu-
lated by SystemC, and verified using Uppaal. Figure 1 sum-
marises the main steps of the proposed approach. First, we
have to create the SysML diagrams “BDD, IBD, SMD”, for
specifying the system structure and behaviour. Then, the
SysML diagrams are mapped into SystemC modules. Then,
the derived SystemC specification is mapped into Uppaal
automata. Properties to verify by uppaal are derived from
SysML Requirements Diagram “RD”.

5. THE MAPPING TECHNIQUE
5.1 Mapping SysML to SystemC
In this section, we will focus on how to implement (and what
are the parameters used to affect the implementation), and
learn the structure and behaviour modeling and generate a
SystemC specification. The mapping methodology is used to
create SystemC code from SysML diagrams will focus over
the next subsections.

5.1.1 Design SysML Diagrams
The SysML diagrams are modeled using the TOPCASED
tool. Topcased is a graphical tool that capture SysML dia-
grams, with our combination the SysML and SystemC pro-
files start from a system description given as the input con-
ditions of

Figure 1: Methodology of the global approach

1. structural view by a SysML BDD and an IBD of the
top-level block used to encapsulate the overall hier-
archical design. In addition, the IBDs for the design
of each compound block with the associated BDDs for
the block types definition. The basic mapping between
SysML and SystemC is
A. SysML Blocks → SystemC Modules
B. SysML Flow Ports → SystemC ports

2. behavioral view by a SysML SMD of the overall sys-
tem functionality associated with the top-level block
to model input, output, sequences, and conditions, for
coordinating the inner blocks behaviors.
A.SysML Operations → SystemC Processes

5.1.2 From SMD to SystemC
The aim of extending the model with state machine diagram
is to introduce and translate behavioral information about
the system to the target language, in this case SystemC.
There are different possible translations of the considered
semantics with the behavioral concepts of SystemC[4]. The
following translation rules were chosen

1. A SMD is mapped into SystemC process.

2. A SystemCThreads are used to allow parallel states
activation semantics.

3. The activation of each state is represented by a boolean
signal, more than one state can be active at the same
time.

4. A SystemCThreads are sensitive each one to another
by notification to represent every event trigger which
can possibly fire transition from the associated state.

5. In SystemCThreads, condition statements are used to
represent the guards used in SMD.

By applying this rules, the basic mappings of SMD elements
into SystemC Processes are as follows:
A. State → State of the process(case statement)

B. Peudostate → State of the process(condition statement)
C. Transition → Action of the process(event statement)
D. Do activity → Action of the process(action statement)

5.1.3 Description of the implementation approach
The general process of our approach consists of several stages,
in the first place the modeling with SysML diagrams which
will be the source models for the transformation. Our pur-
pose in this work is the transformation of three diagrams:
BDD, IBD and SMD diagrams. With model transformation
“Model2Model”, was chosen ATL language, such as language
and the transformation method allowing passing a SysML
model to a model SystemC. The application of the method-
ology with ATL is based primarily on

1. The definition of the source and target metamodel.

2. The definition of the style of transformation.

3. The definition of the source model that conforms to
source metamodel.

The source metamode represent the SysML metamodel and
the metamodel target will SystemC. Both are carried out
under the metamodel formalizes of Eclipse EMF Ecore, the
different stages of implementation are shown in Figure 2.

Figure 2: Approach Transformations

5.1.4 Transformation with ATL
After the definition the metamodel of SysML, SystemC and
models sources of SysML diagrams, we use ATL as trans-
formation language models. With the aim of achieving the
previously defined rules ATL declarative “rule” is used. ATL
rule is characterized by two mandatory elements:

1. A pattern on the source model “from” with a possible
constraint.

2. One or more grounds of the target model “to” that
explain how target elements are initialized from the
corresponding source element.

When creating a target item from a source element, ATL
retains a traceability link between the two elements. This
link is used to initialize a target item in the “to” match as
seen in Listing 1.

The ATL following code shows an example of the rules used
in the ATL model transformation

Listing 1: rule model to model

r u l e Model2SCModel{
from sysml : MMUML!Model (

sysml . oclIsTypeOf (MMUML!Model)
)
to scModel : MMSystemC! SCModel (

name <− sysml . name
)

}
r u l e Package BDD2SystemC Main {

from
BDD :MMUML! Package (

BDD. oclIsTypeOf (MMUML! Package)
)

to
Top : MMSystemC! SC object (
name <− BDD. name ,
ownerScModel <− BDD. getModel ()
)

}

5.1.5 Code Generation
Acceleo is a language code generator which allows generating
structured file from an Eclipse Modeling Framework(EMF)
[22] model, the output is a text that can be a programming
language or other formalism. Acceleo requires defining an
EMF metamodel and a model conforming to metamodel that
will result into text.

Once this definition is done, then we can execute the code
generator, in this example, have the metamodel and model
of SystemC for code generation, we need to create an Ac-
celeo project and configure the workflow necessary to code
generation specifying the link between the generator, the
metamodel and model.

After it is needed to define the Template code using the
keywords of SystemC language and attributing information
from the SystemC model of transformation. In the first line
of Acceleo code we are importing the metamodel so that the
generator knows the structure of our model. The impor-
tant concept to define Acceleo is also called Template, it is
the smallest unit identified in a template file, and allows to
define the main reference for the workflow order to collect
information from the necessary to model code generation.
Figure 3,4 illustrates the SysML2SystemC code.

5.2 Mapping SytemC to Uppaal
To provide a formal verification of SystemC designs, we use
existing tools to transform, by sequence of refinement steps,
a systemC design into an Uppaal automata. Our objective
is to analyse a SystemC design with model-checking tech-
niques. As shown in Figure 5, the tool STATE (SystemC
to Timed Automata Transformation Engine)[26] is used to
translate an abstract SystemC design into a Uppaal model
and the Uppaal model-checker is used to check properties

Figure 3: Code generation BDD, IBD To SystemC

Figure 4: Code generation SMD To SystemC

expressed as temporal logic formulas. Verification results ex-
press satisfaction or no satisfaction of properties. If a prop-
erty is not satisfied, the Uppaal model checker additionally
generates a feed-back, which can be used for debugging pur-
poses. The feed-back can also be visualized and animated
in the Uppaal tool to understand where the problem appear
from.

Figure 5: Methodology Model Transformation

6. CASE STUDY

This section discusses a case study with the aim to present
the effectiveness of our approach to specify, validate and
verify the behavior of road intersection signals. The state
sequence of the car flow in the crossroad is the base of the
traffic behavior. Some additional features have been added
to make this workbench complex enough to measure mean-
ingful evaluations of development system properties. They
are managed by a system that synchronizes the color changes
of the different junction lights. The traffic-light colors are
managed by a controller which depends on the number of
cars waiting to cross the junction. The methodology and
code generator presented were used, for example, to show it,
BDD with six blocks. The first block is the most abstract
level of the modeling Crossroads block named CrossRoad
represents the system as a whole, it is composed of three
sub-blocks(“Controller System, NorthandSouthLights, Eas-
tandWestLights”)and sub-sub blocks (“Timer, Road Sensor
, Camera”). Figure 6 illustrates the crossroads top level
modeling.

To represent the internal structure of the Crossroads block
by IBD. The diagram shows the flow ports, the port man-
agement allow continuous moving the direction of Controller
System and the port of other parts (i.e. “NorthandSouth-
Lights, EastandWestLights”). Figure 7 shows the IBD di-

Figure 6: Top level modeling

agram. To represent the behavior of the“Controller Sys-

Figure 7: IBD of Crossroads

tem” block by SMD. The diagram shows the state of opera-
tion“TrafficLightController”. Default state is made the next
state if no transition line condition is satisfied as shown in
state “Initialize”. If the state has any unconditional Transi-
tion Line, then assigning default state to next state is omit-
ted as shown in case “State0”, we see that the next state
conditions appear in the generated SystemC code according
to the assigned priority. Consider the following situation
where,“NS” and“WE” are two inputs for a state machine.
“if (NS==1) and (WE==0) NextState = State1”
“else if (NS==1) NextState = STate2”
If both “NS and EW are 0”, then NextState is dependent
on the order of the appearance of the conditions in the
code. Figure 8 shows the SMD diagram. The timer for
the crossfires is managed by a controller system which at
each start up, initializes a clock that measures the duration
for each crossfire color: red (38 Sec.), yellow (5 Sec.), and
green (33 Sec.), then it sends the value to NorthandSouth-
Lights and EastandWestLights, based on the given entries
“NorthRed, North Yellow,...WestGreen”. Figure 10
show the results of validation of the Crossroades system.

Figure 8: SMD of Controller System block

6.1 Simulation
When SystemC code is successfully generated from the SysML
representation of the Crossroades system (Figure 6, 7 and
8), the subsequent step is to simulate the generated Sys-
temC design. In Figure 9, we show the simulation results.
The simulator shows the state of each light as true and false
values through the time. There we can verify that no green
light on North and South lights is turned on when there is
also a green light on the East and West lights.

Figure 9: Graph from code simulation

6.2 Verification
To verify requirements of the Crossroades system, the Sys-
temC design is translated into Uppaal automata. Require-
ments are expressed as temporal logic properties expressed
in TCTL. First, we verify that the system is deadlock free.
we express this property in TCTL by the formula: “AG not
deadlock” . Then, we verify time properties. As example,
we verify that both NorthandSouth Lights and EastandWest
Lights can not stay in yellow color more than 5 second, which
is expressed in TCTL as:
A. AG(NorthSouth.NY imply NorthSouth.cn<5).
B. AG(EastWest.SY imply EastWest.cs<5)).
Then, we verify that both NorthandSouth Lights and Ea-
standWest Lights can not stay in red color more than 38,
which we express in TCTL as:
A. EG(NorthSouth.cn>38).
B. EG(EastWest.cs>38).
In Figure 10, we present Uppaal environment, where Up-
paal automata, properties and their verification results are
shown.

7. CONCLUSION AND FUTURE WORK
In this paper we proposed a methodology for verifying and
validating complex systems designed with SysML. We have

Figure 10: Uppaal environment

proposed a model transformation from BBD, IBD and SMD
SysML diagrams to SystemC. SystemC code is generated
as text files and can be used for simulation to validate the
designed systems. Then, based on STATE tools, the de-
rived SystemC specifications were translated into Uppaal
automata for verifying SysMl requirements by using Up-
paal model checking. We illustrated the practicability of
our approach by a case study where the transformation from
BBD, IBD and SMD SysML diagrams to SystemC was im-
plemented on Topcased platform using ATL and Acceleo
tools and the transformation form SystemC to Uppaal au-
tomata was achieved by STATE tools. Obtained results of
experimentations and simulations are encouraging. In fu-
ture, we plan to investigate SystemC code generation from
other SysML diagrams like Activity and Sequence behaviour
diagrams allowing the translation of more aspects of a sys-
tem.

8. REFERENCES
[1] Optimized Transformation and Verification of

SystemC Methods], author=Pockrandt, Marcel and
Herber, Paula and Gross, Holger and Glesner, Sabine,
booktitle=Pre-Proceedings of the 12th International
Workshop on Automated Verification of Critical
Systems (AVoCS 2012), volume=2, pages=1561,
year=2011.

[2] IEEE Standard for Standard SystemC Language
Reference Manual. IEEE Std 1666-2011 (Revision of
IEEE Std 1666-2005), pages 1–638, 2012.

[3] A. Abdulhameed, A. Hammad, H. Mountassir, and
B. Tatibouët. An Approach based on SysML and
SystemC to Simulate Complex Systems. In
MODELSWARD 2014, 2nd Int. Conf. on
Model-Driven Engineering and Software Development,
pages 555–560, Lisbon, Portugal, Jan. 2014. Short
paper. 6 pages.

[4] G. Agosta, F. Bruschi, and D. Sciuto. UML Tailoring
for SystemC and ISA Modelling. In UML for SOC
Design, pages 147–173. Springer, 2005.

[5] G. Behramm, A. David, and K. G. Larsen. A tutorial
on UPPAAL. proceedings of the 4th International
School on Formal Methods for the Design of
Computer, 2004.

[6] G. Behrmann, A. David, K. G. Larsen, J. Hakansson,
P. Petterson, W. Yi, and M. Hendriks. UPPAAL 4.0.
In Quantitative Evaluation of Systems, 2006. QEST
2006. Third International Conference on, pages
125–126. IEEE, 2006.

[7] J. Bengtsson and W. Yi. Timed automata: Semantics,
algorithms and tools. In Lectures on Concurrency and
Petri Nets, pages 87–124. Springer, 2004.

[8] D. C. Black. SystemC: From the ground up,
volume 71. Springer, 2010.

[9] M. Bombino and P. Scandurra. A model-driven
co-simulation environment for heterogeneous systems.
International Journal on Software Tools for
Technology Transfer, pages 1–12, 2012.

[10] F. Boutekkouk. Automatic SystemC code generation
from UML models at early stages of systems on chip
design. International Journal of Computer
Applications, 8(6):10–17, 2010.

[11] D. Campana, A. Cimatti, I. Narasamdya, and
M. Roveri. An analytic evaluation of SystemC
encodings in promela. In Model Checking Software,
pages 90–107. Springer, 2011.

[12] A. Cimatti, A. Griggio, A. Micheli, I. Narasamdya,
and M. Roveri. KRATOS–A Software Model Checker
for SystemC. In Computer Aided Verification, pages
310–316. Springer, 2011.

[13] A. Cimatti, I. Narasamdya, and M. Roveri. Software
model checking SystemC. Computer-Aided Design of
Integrated Circuits and Systems, IEEE Transactions
on, 32(5):774–787, 2013.

[14] A. Friesen. On Challenges in Enterprise Systems
Management and Engineering for the Networked
Enterprise of the Future. In Enterprise
Interoperability, pages 1–2. Springer, 2011.

[15] D. Groβe, U. Kühne, and R. Drechsler. HW/SW
co-verification of embedded systems using bounded
model checking. In Proceedings of the 16th ACM Great
Lakes symposium on VLSI, pages 43–48. ACM, 2006.

[16] R. Hajisheykhi, A. Ebnenasir, and S. Kulkarni.

[17] M. Hause, A. Stuart, D. Richards, and J. Holt.
Testing safety critical systems with SysML/UML. In
Engineering of Complex Computer Systems
(ICECCS), 2010 15th IEEE International Conference
on, pages 325–330. IEEE, 2010.

[18] M. C. Hause, C. Gloucestershire, and G. Hn.
ARTiSAN Software Tools. 2008.

[19] V. Jain, A. Kumar, and P. Panda. Exploiting UML
based validation for compliance checking of TLM 2
based models. Design Automation for Embedded
Systems, 16(2):93–113, 2012.

[20] H. M. Le, D. Große, V. Herdt, and R. Drechsler.
Verifying SystemC using an intermediate verification

language and symbolic simulation. In Design
Automation Conference (DAC), 2013 50th
ACM/EDAC/IEEE, pages 1–6. IEEE, 2013.

[21] K. Marquet, B. Jeannet, and M. Moy. Efficient
encoding of systemc/tlm in promela—full version.
Technical report, Technical Report TR-2010-7,
Verimag Research Report, 2010.

[22] G. Nicolescu, I. O’Connor, and C. Piguet. Design
technology for heterogeneous embedded systems.
Springer Publishing Company, Incorporated, 2011.

[23] O. Nikiforova, N. Pavlova, K. Gusarovs, O. Gorbiks,
J. Vorotilovs, A. Zaharovs, D. Umanovskis, J. Sejans,
et al. Development of the Tool for Transformation of
the Two-Hemisphere Model to the UML Class
Diagram: Technical Solutions and Lessons Learned. In
Proceedings of the 5th International Scientific
Conference

”
Applied Information and Communication

Technology, pages 11–19, 2012.

[24] OMG. OMG Systems Modeling Language (OMG
SysMLTM) Version 1.3. 2012.

[25] W. Penczek, B. Woźna, and A. Zbrzezny. Towards
bounded model checking for the universal fragment of
TCTL. In Formal Techniques in Real-Time and
Fault-Tolerant Systems, pages 265–288. Springer, 2002.

[26] M. Pockrandt, P. Herber, H. Gross, and S. Glesner.
Optimized Transformation and Verification of
SystemC Methods. 2012.

[27] E. Riccobene and P. Scandurra. Integrating the
SysML and the SystemC-UML profiles in a
model-driven embedded system design flow. Design
Automation for Embedded Systems, pages 1–39, 2012.

[28] B. Scholtz, A. Calitz, and I. Snyman. The usability of
collaborative tools: application to business process
modelling. In Proceedings of the South African
Institute for Computer Scientists and Information
Technologists Conference, pages 347–358. ACM, 2013.

[29] Y. Vanderperren, W. Mueller, D. He, F. Mischkalla,
and W. Dehaene. Extending UML for Electronic
Systems Design: A Code Generation Perspective. In
Design Technology for Heterogeneous Embedded
Systems, pages 13–39. Springer, 2012.

[30] M. Y. Vardi. Formal techniques for systemc
verification; position paper. In Design Automation
Conference, 2007. DAC’07. 44th ACM/IEEE, pages
188–192. IEEE, 2007.

[31] S. K. Wood, D. H. Akehurst, O. Uzenkov, W. G. J.
Howells, and K. D. McDonald-Maier. A model-driven
development approach to mapping UML state
diagrams to synthesizable VHDL. Computers, IEEE
Transactions on, 57(10):1357–1371, 2008.

