
Preservation of timed properties during an

incremental development by components

Jacques Julliand, Hassan Mountassir, and Emilie Oudot

LIFC - Laboratoire d’Informatique de l’Université de Franche-Comté
16, route de Gray, 25030 Besançon Cedex, France

Ph:+33 (0)3 81 66 66 51, Fax:+33 (0)3 81 66 64 50
{julliand,mountass,oudot}@lifc.univ-fcomte.fr

Abstract. We are interested in the preservation of local properties of
timed components during their integration in a timed system. Timed
components are modeled as timed automata or timed automata with
deadlines. Properties considered are all safety and liveness properties
which can be expressed with the timed linear logic Mitl (Metric Inter-
val Linear Logic), as well as non-zenoness and deadlock-freedom.
Integration of components is a kind of incremental development which
consists in checking locally the properties of the components, before inte-
grating them in the complete system, using some composition operator.
Of course, established properties have to be preserved by this integra-
tion. Checking preservation can be achieved by means of the verification
of timed τ -simulation relations. Composability, compatibility and com-
positionality of these relations w.r.t. composition operators are proper-
ties which allow to reduce the cost of this verification. We examine these
properties when integration is achieved with two different timed com-
position operators: the classic operator usually taken for timed systems
and which uses a CSP-like composition paradigm, and a non-blocking
operator closer to the CCS paradigm.

Key-words. τ -simulations, component-based timed systems, integration
of components, preservation of timed linear properties.

1 Introduction

Incremental development methods are a way to cope with the state space explo-
sion problem of model-checking, which is increased in the case of timed systems
due to the presence of timing constraints. In particular, for component-based
systems, a way to develop incrementally is to use integration of components.
This method is indicated for the verification of local properties of the com-
ponents. It consists in checking the properties in isolation on the component
before integrating it in its environment, with some parallel composition opera-
tor. Model-checking is there still applicable since the size of the components is
generally small enough. Of course, this method is valid only if established prop-
erties of the component still hold after integration.

In [1], we defined two τ -simulation relations, adapted to timed systems, with
preservation abilities: a timed τ -simulation preserving safety properties, and a
divergence-sensitive and stability-respecting (DS) timed τ -simulation which pre-
serves all properties which can be expressed in the linear timed logic Mitl (Met-
ric Interval Temporal Logic) [2], strong non-zenoness and deadlock-freedom. We
also lead experiments in [3] to show that the cost, in terms of computation times,
of local verification and preservation (via the verification of the simulations) is
lower than the cost of a direct verification on the global model. The results are
encouraging since they show that integration of components, using these rela-
tions to guarantee preservation, can speed up verification and that models that
are too large to be verified in a whole can be checked in this way.

However, to increase the interest of the method, it would seem interesting to
avoid a systematic verification of the simulation. It can be the case that integra-
tion automatically preserves properties, depending on the composition operator
used to achieve this integration. Properties such as composability, compatibility
and compositionality of the simulation relations are a way to reach this goal.
Consider components A, B, C and D. Composability is a major property since
it expresses that a component A simulates its composition with another com-
ponent. The direct consequence is that properties of A (which are preserved by
the simulation) are automatically preserved by composition. It is thus clearly
essential for integration of components, or for the reuse of a component. The
compatibility of the relation w.r.t. to composition operators is the classic notion
of compatibility. Given some composition operator ‖, it states that if A simu-
lates B (and thus, properties of A also hold on B) then A‖C simulates B‖C.
During development, it is beneficial for instance in the case of the replacement in
a system of the component A by the component B. Compositionality is a conse-
quence of compatibility since it expresses that if A simulates B and C simulates
D then, A‖C simulates B‖D.

Therefore, in this paper, we study if the simulations we defined in [1] al-
low to benefit of these properties, in particular when integration is achieved
with one of the two following operators: the classic parallel composition oper-
ator used for timed systems and a non-blocking operator defined in [4, 5]. The
first operator uses a composition paradigm a la CSP [6]. The second one is
closer to the paradigm of CCS [7] and uses a notion of priorities between actions
to favour synchronizations. This analysis shows that the timed τ -simulation is
well-adapted to both operators, since we benefit of the three properties without
any assumptions. The DS timed τ -simulation is appropriate in the case of the
non-blocking operator, on some conditions. This study of the properties of the
simulations with respect to these composition operators is the contribution of
the paper.

The structure of the paper is the following. In section 2, we recall some back-
ground on timed systems. We present timed automata which is the formalism we

use to model timed systems and the two composition operators we consider for
these automata. Section 3 recalls the simulation relations we defined for timed
systems in [1], and their preservation abilities. Section 4 presents the contribu-
tions of this paper. We study whether the simulations have the composability,
compatibility and compositionality properties w.r.t. the two composition oper-
ators. In section 5, we present some related works. Finally, section 6 presents a
synthesis of the results obtained, as well as the consequences in terms of preser-
vation during integration, and plans some future works.

2 Preliminary definitions

In this section, we recall some background on the model we consider for timed
systems, i.e., timed automata and their variant timed automata with deadlines.
We also present the two operators that we consider in this work for the compo-
sition of timed automata.

2.1 Timed automata

Timed automata were introduced in [8]. They are finite automata with real-
valued variables, called clocks, which model the time elapsing.

Clock valuations and clock constraints. Let X be a set of clocks. A clock
valuation over X is a function v : X → R

+ mapping to each clock in X a value in
R

+. We note 0 the valuation assigning 0 to each clock in X . Let v be a valuation
over X and t ∈ R

+, the valuation v + t (respectively v− t) is obtained by adding
(resp. substracting) t to the value of each clock. Given Y ⊆ X , the reset in v of
the clocks in Y , written [Y := 0]v is the valuation obtained from v by setting to
zero all clocks in Y , and leaving the values of other clocks (∈ X\Y) unchanged.
The set Cdf (X) of diagonal-free clock constraints over X is defined as follows:

g ::= x ∼ c | g ∧ g | true

where x ∈ X , c ∈ N, and ∼∈ {<,≤, =,≥, >}. Diagonal-free constraints do not
allow comparisons between clocks, of the form x − y ∼ c. We say that a val-
uation v over X satisfies a constraint x ∼ c, written v ∈ x ∼ c, if v(x) ∼ c.
The satisfaction of other constraints is defined as usual. Note that a clock con-
straint over X defines a convex X-polyhedron. The reset operation defined on
valuations can be directly extended to polyhedra. The backward diagonal pro-
jection of the X-polyhedron ζ defines an X-polyhedron ↙ζ such that v′ ∈ ↙ζ

if ∃δ ∈ R
+ · v′ + δ ∈ ζ. Similarly, the forward diagonal projection of ζ defines an

X-polyhedron ↗ζ such that v′ ∈ ↗ζ if ∃δ ∈ R
+ ·v′−δ ∈ ζ. All these operations

preserve the convexity of polyhedra.
Syntax. Let Props be a set of atomic propositions. A timed automaton (TA)
is a tuple A =〈Q, q0, Σ,X,T, Invar,L〉, where Q is a finite set of locations, q0

is the initial location, Σ is an alphabet of names of actions and X is the finite
set of clocks. Invar : Q → Cdf (X) is a function which maps a clock constraint

to each location, called its invariant. L : Q → 2Props is the labelling func-
tion for the locations, mapping a set of atomic propositions to each location.
T ⊆ Q × Cdf (X) × Σ × 2X × Q is a finite set of edges. Each edge is a tuple
e = (q, g, a, r, q′) where q and q′ are respectively its source and target location,
g is its guard, a is its label and r is a set of clocks to be reset by the edge.
Semantics. The semantics of a TA A is an infinite graph which states are
pairs (q, v) where q is a location of A and v is a valuation over X such that
v ∈ Invar(q). The transitions of this graph can be either discrete transitions
or time transitions. Consider a state (q, v). Given an edge e = (q, g, a, r, q′) of

A, (q, v)
g,a,r
→ (q′, v′) is a discrete transition (where v′ = [r := 0]v) if v ∈ g and

v′ ∈ Invar(q′). We simply note (q, v)
a
→ (q′, v′) such a transition, when the other

elements are irrelevant. Given t ∈ R
+, the time transition (q, v)

t
→ (q, v + t) ex-

ists if v + t ∈ Invar(q). Given a state s = (q, v), the notation s + t denotes the
pair (q, v + t). In the sequel, we say directly states and transitions of the TA A

instead of states and transitions of the semantic graph of A.
A run of a TA is a path of its semantic graph. Thus, a run is a finite or infinite

sequence ρ = s0
t0→ s0 + t0

a0→ s1
t1→ s1 + t1

t2→ s1 + t1 + t2
a1→ s2 · · · . Note that we

do not concatenate successive time transitions in a run. A run ρ is said non-zeno
if time can diverge along the run, i.e., the total time elapsed along the run goes
to infinity. A TA is said strongly non-zeno if all its runs are non-zeno.

A variant: timed automata with deadlines. Timed automata with deadlines
(TAD) are a variant of TA introduced in [9]. The main difference lies in the fact
that time-progress conditions are not given as invariants in locations (invariants
mean that time can progress in the same way for each outgoing edge of the
location), but are associated with the edges. This allows to express the urgency
of an edge since the deadline represents the moment when time can not progress
any more before taking the edge. The following three degrees of urgency are
considered in [9]. Lazy edges, written λ, are edges which degree of urgency is the
lowest since time is never stopped. Eager edges, written ε, become urgent at the
moment they become enabled (an edge is enabled when its guard is true), i.e.,
they can not let time elapse once they are enabled. Delayable edges, written δ,
are the most currently used: time can pass as long as the edge is enabled.
Formally, the syntax of TAD is the same than the one of TA, with no invariants.
Edges are tuples (q, g, d, a, r, q′) where q, g, a, r and q′ are defined as for TA and
d ∈ {λ, ε, δ} is the type of deadline of the edge. Deadlines are then translated into
clock constraints computed from the guards. For an edge e, this clock constraint
is denoted deadline(e). The clock constraint is false for lazy edges, equal to the
guard for eager edges and equal to the falling edge (i.e., the last moment when the
guard is true) for delayable edges [5]. Note that invariants can be deduced from
the deadlines, by the following formula: Invar(q) = ¬

∨
e∈out(q) deadline(e),

where out(q) is the set of outgoing edges of the location q. Semantics of TAD

is then defined as for TA. Discrete transitions are written s
g,d,a,r
→ s′ (or, as for

TA, simply s
a
→ s′) where d represents the deadline of the corresponding edge.

2.2 Timed parallel composition operators

We consider in this paper two parallel composition operators which take into
account the timing constraints of the components. The first one, which is the
classic operator for TA, uses a composition paradigm close to the one of CSP,
while the second, which we call non-blocking parallel composition operator, is
closer to the paradigm of CCS and uses a notion of priorities between actions.

Classic parallel composition operator. This composition operator, written
‖, operates between TA with disjoint sets of clocks. Intuitively, it is defined as
a synchronized product, where actions with the same label synchronize, other
actions interleave and time elapses synchronously between the components. For-
mally, consider two TA A =〈QA, q0A

, ΣA,XA,TA, InvarA,LA〉 and B =〈QB ,

q0B
, ΣB,XB ,TB , InvarB ,LB〉, such that XA ∩ XB = ∅. The classic parallel

composition of A and B, written A‖B, results in a TA which set of clocks is
XA ∪XB and which labels are in ΣA ∪ΣB . The set Q of locations is a subset of
QA ×QB . The initial location is the pair (q0A

, q0B
). The invariant of a location

(qA, qB) is Invar(qA) ∧ Invar(qB) and its label is L(qA) ∪ L(qB). The set T of
edges is defined by the three following rules:

Interleaving:
(qA,qB)∈Q , (qA,gA,a,rA,q′

A) ∈ TA , a6∈ΣB

((qA,qB),gA,a,rA,(q′

A
,qB)) ∈ T

(qA,qB)∈Q , (qB ,gB ,b,rB,q′

B) ∈ TB , b6∈ΣA

((qA,qB),gB ,b,rB ,(qA,q′

B)) ∈ T

Synchronization:
(qA, qB) ∈ Q, (qA, gA, a, rA, q′

A) ∈ TA ,

(qB , gB , a, rB , q′

B) ∈ TB

((qA, qB), gA ∧ gB , a, rA ∪ rB , (q′

A, q′

B)) ∈ T

The main drawback of this composition operator is that deadlocks are gener-
ally introduced during composition. For this reason, other operators have been
defined, such as the following one.

Non-blocking parallel composition operator. This operator was introduced
in [4, 5] to operate between TAD with disjoint alphabets and sets of clocks. It
is defined as a product in which all actions interleave and time elapses syn-
chronously between components. Some actions also synchronize, according to a
synchronization function p: ΣA×ΣB → Σsync∪{⊥}, where Σsync is an alphabet
disjoint from ΣA and ΣB . The function maps to each pair of labels (a, b) the
label in Σsync of the action resulting of the synchronization of two actions a

and b, or the special symbol ⊥ if the two actions do not synchronize. Different
synchronization modes can be used. The and mode is the classic one, i.e., syn-
chronization takes place between two actions if both can be taken. The min mode
corresponds to a synchronization with interruption, i.e., the first enabled action
causes the synchronization even if the other one is not yet enabled. Finally, the
max mode corresponds to a synchronization with waiting, i.e., the first enabled
action waits for the other to be enabled for synchronization to occur.

Formally, consider two TAD A =〈QA, q0A
, ΣA,XA,TA,LA〉 and B =〈QB ,

q0B
, ΣB,XB ,TB ,LB〉 such that XA ∩ XB = ∅ and ΣA ∩ ΣB = ∅. Given a

synchronization function p, the non-blocking parallel composition of A and B,
written A|B, results in a TAD which set of clocks is XA ∪ XB. The set Q of
locations is a subset of QA ×QB . The initial location is the pair (q0A

, q0B
). The

label of a location (qA, qB) is L(qA)∪L(qB). The labels of the automaton are in
ΣA ∪ ΣB ∪ Σsync and the set T of edges is defined by the following rules:

Interleaving:
(qA,qB)∈Q , (qA,gA,dA,a,rA,q′

A) ∈ TA

((qA,qB),gA,dA,a,rA,(q′

A
,qB)) ∈ T

(qA,qB)∈Q , (qB ,gB ,dB ,b,rB,q′

B) ∈ TB

((qA,qB),gB ,dB,b,rB ,(qA,q′

B)) ∈ T

Synchronization:
(qA, qB) ∈ Q, (qA, gA, dA, a, rA, q′

A) ∈ TA ,

(qB , gB , dB, b, rB, q′

B) ∈ TB , a p b 6= ⊥
((qA, qB), g′, max(dA, dB), a p b, rA ∪ rB , (q′

A, q′

B)) ∈ T

where max(dA, dB) is defined by λ < δ < ε, and g′ is computed as follows:

– g′ = gA ∧ gB for the and mode,
– g′ = (gA∧ ↙gB) ∨ (↙gA ∧ gB) for the max mode,
– g′ = (gA∧ ↗gB) ∨ (↗gA ∧ gB) for the min mode.

Since all actions interleave, a priority order written <sync
∞ is used to favour

synchronized actions rather than interleaving. An infinite priority is given to
a synchronized action against the interleaving actions from which results this
synchronization. This priority order induces a modification of the guard of the
edges of lower priority. Given an action ai and actions aj leaving from the same
location, such that ai has a lower priority comparing to the aj , the guard gi of
ai is modified to g′

i, where

g′i = gi ∧
∧

j 6=i,ai<
sync
∞ aj

¬ ↗gj .

This priority order is applied as follows. If a ∈ ΣA, b ∈ ΣB and a p b 6= ⊥ then
a <sync

∞ a p b and b <sync
∞ a p b.

3 Timed τ -simulations to preserve properties

A way to ensure preservation of properties between two models is to compare the
two models, i.e., the one on which properties are checked and the one on which
they must be preserved. This comparison can be achieved by means of behavioral
equivalences or preorders. Preorders are generally more adapted to incremental
development and have already been used for this matter. For instance, in [10],
the refinement of transition systems is formalized as a kind of simulation pre-
order which preserves Ltl (Linear Temporal Logic) [11] properties.
In [1], we defined two kinds of simulation relations for timed automata. The
first one, called timed τ -simulation, preserves safety properties. The second one,
called divergence-sensitive and stability-respecting (DS) timed τ -simulation, pre-
serves all properties expressed with the timed linear logic Mitl (Metric Interval
Temporal Logic) [2], strong non-zenoness and deadlock-freedom.

3.1 Definitions

Consider two TA A and B with respective alphabets ΣA and ΣB, s.t. ΣA ⊆ ΣB .
In B, actions in ΣB\ΣA are called non-observable and renamed by τ . Other ac-
tions, in ΣA, are called observable. The following conditions must hold in order
that A simulates B w.r.t. the timed τ -simulation, and thus that safety properties
of A are preserved on B. The first condition (clauses 1 and 2 in Def. 1) expresses
that if B can make an observable action after some amount of time, then A
could do the same observable action after the same amount of time. The second
one (clause 3 in Def. 1) requires that non-observable actions stutter. This is a
classic definition of τ -simulation that we extend to the timed framework.
Such a simulation only preserves safety properties. To deal with a wider range of
properties, in particular liveness, additionnal conditions, called stability-respect
and divergence-sensitivity, are necessary. Divergence-sensitivity (clause 4 of Def.
1) states that there are no non-zeno infinite sequences of non-observable actions
in B, i.e., there are no non-zeno τ -cycles in B (a cycle in which discrete tran-
sitions are only labelled by τ is called a τ -cycle). Stability-respect (clause 5 of
Def. 1) means that B must not contain deadlocks which do not exist in A. To
express formally this condition, we use the predicate free defined in [12]. Given
a location q, free(q) is the set of all valuations (of states with q as discrete part)
from which a discrete transition can be taken after some delay. Formally,

free(q) =
[

(q,g,a,r,q′) ∈ T

↙(g ∩ ([r := 0]Invar(q′))).

The simulations are defined on the semantics of TA. In the sequel, we focus
directly on the definition of the DS timed τ -simulation Sds. The definition of
the timed τ -simulation, written S, can be obtained by removing the clauses
divergence-sensitivity and stability-respect.

Definition 1 (Divergence-sensitive and stability-respecting (DS) timed
τ-simulation Sds). Let A =〈QA, q0A

, ΣA, XA, TA, InvarA, LA〉 and B =〈QB ,

q0B
, ΣA ∪ {τ}, XB , TB , InvarB , LB〉 be two TA s.t. XA ⊆ XB. We call SA and

SB the respective set of states of A and B. The DS timed τ -simulation Sds is
the greatest binary relation included in SB × SA. Consider sA = (qA, vA) in SA

and sB = (qB , vB) in SB. We say that sBSdssA if the following conditions hold:

1. Strict simulation:
sB

a
→ s′B ∧ a ∈ ΣA ⇒ ∃s′A · (sA

a
→ s′A ∧ s′B Sds s′A).

2. Delays equality1:
sB

t
→ sB + t ⇒ ∃(sA + t) · (sA

t
→ sA + t ∧ sB + t Sds sA + t).

3. τ -transitions stuttering:
sB

τ
→ s′B ⇒ s′B Sds sA.

4. Divergence-sensitivity:
B does not contain any non-zeno τ -cycles.

5. Stability-respect:
vB 6∈ free(qB) ⇒ vA 6∈ free(qA).

1 Note that we do not intend to check this semantic definition directly. For algorithmic
purpose, it is extended into a symbolic relation where this clause delays equality

consists in polyhedra inclusion and thus, is decidable.

We extend this notion of simulation on TA. Given two TA A and B, and
their respective initial state s0A

and s0B
, we say that A simulates B w.r.t. Sds

(respectively S), written B �Sds
A (resp. B �S A) if s0B

Sdss0A
(resp. s0B

Ss0A
).

3.2 Preservation abilities

The timed τ -simulation preserves safety properties. This result for this kind of
simulation is a classic result in the untimed case, which we extend to the timed
framework. Adding divergence-sensitivity and stability-respect allows to preserve
also liveness properties. More precisely, the DS timed τ -simulation preserves all
properties expressed with the timed linear logic Mitl, as well as strong non-
zenoness and deadlock-freedom. A complete proof can be found in [1].

Theorem 1. Let A and B be TA, and ϕ be a safety property. If B �S A and
ϕ holds on A then ϕ holds on B.

Theorem 2. Let A and B be TA, and ϕ be a M itl formula. We have the
following:

– If B �Sds
A and ϕ holds on A then ϕ holds on B.

– If B �Sds
A and A is strongly non-zeno then B is strongly non-zeno.

– If B �Sds
A and A is deadlock-free then B is deadlock-free.

4 Properties of timed τ -simulations w.r.t. timed parallel

composition

We implemented the verification of these simulations in a tool named Vesta2 (Ver-
ification of Simulations for Timed Automata). With this tool, we performed ex-
perimentations concerning the verification of local properties of components [3].
We compared the two following methods: first, direct verification of these local
properties on the complete model, made up of all the components, and secondly
local verification and integration of components, using the simulations as a way
to guarantee the preservation. Even if the first experimental results are encour-
aging, it seems interesting to avoid a systematic verification of the relations. For
this purpose, composability, compatibility and compositionality of the relations
w.r.t. the composition operators used for integration of components are essential
properties. Thus, in this section, we study these three properties for the timed
τ -simulation and the DS one w.r.t. the two operators presented in section 2.2.

In the sequel, we use the following notations. Given a timed automaton A, we
note SA its set of states and ΣA its alphabet. A state of A is simply written sA

or s′A, which respectively represent the pairs (qA, vA) and (q′A, v′A). The initial
state of A is written s0A

.

2 Vesta is available at: http://lifc.univ-fcomte.fr/~oudot/VeSTA

4.1 Classic parallel composition

We first examine the properties with the timed τ -simulation.

Proposition 1 (Composability). Let A and B be TA. We have: A‖B �S A.

Proof. By construction of A‖B, its initial state is the pair (s0A
, s0B

). To prove
that A‖B �S A, it is enough to prove that (s0A

, s0B
)Ss0A

. By definition, �S

is the greatest relation included in SA‖B × SA which satisfies clauses 1 to 3 of
Definition 1. Thus, each relation R ⊆ SA‖B × SA which satisfies these clauses is
included in �S . Consider a relation R ⊆ SA‖B ×SA such that ∀(sA, sB) ∈ SA‖B ,

(sA, sB)R s′A if sA = s′A.

Consider ((sA, sB), sA) ∈ R.

1. Strict simulation: let (sA, sB)
a
→ (s′A, s′B) in A‖B such that a ∈ ΣA. By

construction of A‖B, a transition sA
a
→ s′A exists in A. By definition of R,

(s′A, s′B)R s′A and R satisfies the strict simulation.
2. Delays equality : same arguments than those for strict simulation can be used

to prove that this clause holds for R.
3. τ -transitions stuttering : consider a transition (sA, sB)

τ
→ (s′A, s′B) in A‖B.

Recall that τ -transitions represent non-observable actions initially labelled
by an action in ΣB\ΣA. By construction of A‖B, s′A = sA. Thus, (sA, s′B)R sA

and R satisfies τ -transitions stuttering.

Proposition 2 (Compatibility). Let A, B and C be TA. If A �S B then
A‖C �S B‖C.

Proof. The structure of the proof is similar to the previous one. Consider a
relation R ⊆ SA‖C × SB‖C such that (sA, sC)R(sB , s′C) if sASsB and sC =
s′C . As previously, we prove that R satisfies clauses 1 to 3 of Definition 1. Let
((sA, sC), (sB , sC)) ∈ R,

1. Strict simulation : the proof is naturally divided into three parts, since this
clause concerns three types of transitions in A‖C:
(i) Transitions of C which do not synchronize with an action of A,
(ii) Transitions in ΣA ∩ΣB

3 which do not synchronize with an action of C,
(iii) Transitions in C which synchronize with a transition in A (and which

appear in B‖C either as interleaving actions of C if the synchronization
is done with an action of A which does not exist in B, or as an action of
B synchronized with an action of C otherwise).

Let us detail the three cases:
(i) Consider a transition (sA, sC)

g,c,r
→ (sA, s′C) such that c ∈ ΣC\ΣA. By

construction of A‖C, a transition sC
g,c,r
→ s′C exists in C. Therefore, g

only involves clocks of C and vC ∈ g. Thus, by construction of B‖C,

a transition (sB , sC)
g,c,r
→ (sB , s′C) exists in B‖C. Since sASsB , and by

definition of R, we have (sA, s′C)R(sB , s′C).

3 These transitions exist since A �S B and thus ΣB ⊆ ΣA.

(ii) Consider a transition (sA, sC)
g,a,r
→ (s′A, sC) such that a ∈ (ΣA∩ΣB)\ΣC

(the state sC is not modified). By definition of ‖, the transition sA
g,a,r
→ s′A

exists in A. Since sASsB , there is a transition sB
g′,a,r′

→ s′B in B, such that
s′ASs′B . Thus, vB ∈ g′. Since g′ only involves clocks of B and that the
set of clocks of B and C are disjoint (by hypothesis in the construction

of B‖C), then (vB , vC) ∈ g′ and the transition (sB , sC)
g′,a,r′

→ (s′B , sC)
exists in B‖C. Thus, (s′A, sC)R(s′B , sC) by definition of R. Note that
(sB , sC) is reachable. Indeed, (sA, sC) is reachable in A‖C. Thus, in C,
there exists a prefix of a run ρC up to the state sC which “synchronize”
with the prefix of a run ρA of A up to the state sA. As sASsB , this prefix
of ρA is simulated by the prefix of a run ρB in B up to the state sB .
Comparing to ρB , the run ρA has the same ordering of observable actions
with possibly non-observable actions inserted between them. Thus, the
prefix of ρB can also “synchronize” with the prefix of ρC and therefore,
the state (sB , sC) is reachable. This observation holds for the rest of the
proof.

(iii) Consider a transition (sA, sC)
g,a,r
→ (s′A, s′C) such that a ∈ ΣA ∩ ΣC . By

definition of ‖, there is a transition sA
g1,a,r1

→ s′A in A and a transition

sC
g2,a,r2

→ s′C in C. There are two cases: either a ∈ ΣA ∩ ΣB (a is an
observable action of A comparing to B and exists in B), or a ∈ ΣA\ΣB

(a is a non-observable action of A which does not exists in B).

In the first case, since sASsB , there is a transition sB
g3,a,r3

→ s′B in B

such that s′ASs′B . Thus, there is a transition (sB , sC)
g′,a,r′

→ (s′B , s′C) in
B‖C, such that (s′A, s′C)R(s′B , s′C) by definition of R.

In the second case, s′ASsB since sASsB . The transition (sB , sC)
g2,a,r2

→
(sB , s′C) exists in B‖C since vB does not involve clocks of C and vC ∈ g2.
By definition of R, we have (s′A, s′C)R(sB , s′C).

Thus, the relation R satisfies the strict simulation.

2. Delays equality : consider a time transition (sA, sC)
t
→ (s′A, s′C). By definition

of ‖, the transitions sA
t
→ s′A and sC

t
→ s′C exist respectively in A and C.

Since sASsB , then the transition sB
t
→ s′B exists in B and s′ASs′B . The

transition (sB , sC)
t
→ (s′B , s′C) exists also in A‖C and, by definition of R,

(s′A, s′C)R(s′B , s′C).
3. τ -transitions stuttering : in A‖C, comparing to B‖C, τ -transitions are la-

belled in ΣA\(ΣB ∪ ΣC). Consider a transition (sA, sC)
τ
→ (s′A, sC) (the

state sC is not modified since τ represents an action of ΣA\(ΣB ∪ ΣC)).
Since sASsB , we have s′ASsB . It follows that (s′A, sC)R(sB , sC).

Proposition 3 (Compositionality). Let A, B, C and D be TA. If A �S B

and C �S D then A‖C �S B‖D.

Proof. Immediate with Proposition 2. Since A �S B, then A‖C �S B‖C. Since
C �S D, then B‖C �S B‖D. By transitivity of the relation �S , we have
A‖C �S B‖D.

The timed τ -simulation allows to benefit of the three properties for free.
This is not the case for the DS timed τ -simulation. Indeed, the operator ‖ is
known to introduce deadlocks during composition, which prevents the clause
stability-respect of the DS timed τ -simulation from being established. However,
this simulation allows to get the properties when using the non-blocking parallel
composition operator, on some simple conditions.

4.2 Non-blocking parallel composition

First note that the non-blocking parallel composition operates between TAD.
Thus, in this section, we extend the notations �S and �Sds

, initially defined for
TA, to TAD. This extension does not matter since the simulations are defined
at a semantic level and that the semantics of TAD is given by an infinite graph
of the same kind than for TA.

Consider two TAD A and A′, and suppose that A′ is obtained from A by
integration of components using the non-blocking parallel composition operator,
i.e., A′ = A|B for some automaton B. For a TAD A to simulates a TAD A′,
we imposed in the definition of the simulations that ΣA ⊆ ΣA′ . Moreover, we
suppose that observable actions in A′ (and, in particular, synchronized actions)
have the same label than in A. Recall that a synchronization function must be
provided with the non-blocking parallel composition operator to describe the
synchronizations. Without loss of generality, we consider here that the synchro-
nization function is defined by p: ΣA ×ΣB → ΣA ∪{⊥} such that, given a ∈ ΣA

and b ∈ ΣB , a p b = a if the two actions synchronize. In other words, the label of
the synchronized action is the same than the one of the action of A which takes
part in the synchronization.

We focus directly on the DS timed τ -simulation. Indeed, as we will note at the
end of the section, the results for the timed τ -simulation are the same than in the
case of the classic operator. Recall also that different synchronization modes can
be used with the non-blocking operator. We first consider the most frequently
used mode, which is the AND one. First, the following result is necessary for
composability.

Proposition 4 (Non τ-divergence preservation). Let A and B be TAD.
Actions in ΣB\ΣA are renamed by τ . If B does not contain any non-zeno τ -
cycles, then A|B does not contain any non-zeno τ -cycles.

Proof. (by contradiction) Suppose that there are no non-zeno τ -cycles in B.
Suppose also that there exists a non-zeno τ -cycle in A|B. If such a cycle exists
in A|B, there is a non-zeno run which, from one point, only takes time transitions

or τ -transitions. By construction of A|B, if there is a time transition (sA, sB)
t
→

(s′A, s′B) in A|B, then the transitions sA
t
→ s′A and sB

t
→ s′B respectively exist

in A and B. In the same way, if a transition (sA, sB)
τ
→ (sA, s′B) exists in A|B,

then the transition sB
τ
→ s′B exists in B. Thus, by construction of A|B, B must

contain a non-zeno run which, from one point, only takes time transitions or
τ -transitions, which leads to a contradiction with the assumption that B does
not contain any non-zeno τ -cycles.

Proposition 5 (Composability). Let A and B be TAD. Actions in ΣB\ΣA

are renamed by τ in B. If B does not contain any non-zeno τ -cycles, we have:
A|B �Sds

A.

Proof. We prove this proposition using the same method than for proposition 1.
By construction of A|B, its initial state is the pair (s0A

, s0B
). As previously, we

must prove that (s0A
, s0B

)Sdss0A
. Thus, we consider a relation R ⊆ SA|B × SA,

and prove that it is included in Sds by showing that it satisfies the clauses of the
definition of Sds. Consider a relation R such that ∀(sA, sB) ∈ SA|B,

((sA, sB), s′A) ∈ R if sA = s′A.

Let ((sA, sB), sA) ∈ R.

1. Strict simulation: let (sA, sB)
g,d,a,r
→ (s′A, s′B) be a transition such that a ∈

ΣA, i.e., a is either an interleaving action of A, or an action of A which
synchronizes with an action of B. In both cases, this transition results of
an edge ((qA, qB), g, d, a, r, (q′A, q′B)) of A|B (in the case of an interleaving
action, note that s′B = sB , but this observation does not change anything to
what follows).
If a is a synchronized action, then it results of the synchronization of an edge
(qA, gA, dA, a, rA, q′A) of A with an edge (qB , gB , dB , b, rB , q′B) of B, such that
the synchronization function defines a p b = a. By definition, g = gA ∧ gB

and r = rA ∪ rB . Since the transition (sA, sB)
g,d,a,r
→ (s′A, s′B) exists in A|B,

(vA, vB) ∈ g. As vA and gA only involve clocks of A, it follows directly that
vA ∈ gA. Moreover, since (v′

A∪v′B) = [r := 0](vA, vB), and that r∩XA = rA,

we have v′
A = [rA := 0]vA, and thus the transition sA

gA,dA,a,rA
→ s′A exists in

A. By definition of R, we have ((s′A, sB), s′A) ∈ R.
If a is an interleaving action, an edge (qA, gA, dA, a, rA, q′A) exists in A, with
g = gA. The same reasoning than for synchronized actions applies to this

case: the transition sA
gA,dA,a,rA

→ s′A exists in the semantic graph of A, and
by definition of R, we have ((s′A, sB), s′A) ∈ R.
In both cases, R satisfies the clause strict simulation.

2. Delays equality : consider a transition (sA, sB)
t
→ (sA + t, sB + t) in A|B.

This transition appears in A|B if the invariant of the location (qA, qB) is
satisfied by the valuations (vA, vB) + t′, ∀t′ < t. Recall that invariants of
A|B are deduced from the deadlines of the outgoing edges of (qA, qB). This
means that the previous transition exists if the valuations (vA, vB)+t′ do not
satisfy any deadlines of the outgoing edges of (qA, qB). Edges leaving from
(qA, qB) can be either only interleaving actions, or also synchronized actions.
First consider that only interleaving actions leave from (qA, qB). If there are
no edges of B leaving from (qA, qB), then time elapsing from (sA, sB) is only

dependant of the deadlines of the edges of A, and thus time can elapse as it

did in A. It follows directly that if the transition (sA, sB)
t
→ (sA + t, sB + t)

exists in A|B, then the transition sA
t
→ sA + t exists in A. If edges of B also

leave from (qA, qB), and that their deadlines are reached later than the ones
of the edges of A, time elapsing will still be dependant of the deadlines of A,
which leads to a similar case than the previous one. Otherwise, time elasping
is dependant of the deadlines of the edges of B, and since the deadline is
stronger, time elapses less than in A, which is required since we impose than

time elapses at most as in A. It follows that sA
t
→ sA + t exists in A.

The analysis for synchronized actions is similar to the previous one, since, by
definition of |, the deadline of a synchronized action is the stronger deadline
of the actions which synchronize.

Thus, if a transition (sA, sB)
t
→ (sA + t, sB + t) exists in A|B, then there is a

transition sA
t
→ sA +t in A′. By definition of R, ((sA +t, sB +t), sA +t) ∈ R,

and thus R satisfies the clause delays equality.
3. τ -transitions stuttering : consider a transition (sA, sB)

τ
→ (s′A, s′B) in A|B.

These τ -transitions are non-observable actions in A|B, i.e., actions of B

which do not synchronize with an action of A. By definition of |, these actions
occur in A|B as interleaving actions. Thus, s′A = sA and, by definition of R,
((sA, s′B), sA) ∈ R and R satisfies the clause τ -transitions stuttering.

4. Divergence-sensitivity : immediate, with proposition 4, since B does not
contain any non-zeno τ -cycles.

5. Stability-respect : immediate by definition of | (all actions interleave).

Proposition 6 (Compatibility). Let A, B and C be TAD. If A �Sds
B then

A|C �Sds
B|C.

Proof. Similar arguments than in the proof of proposition 2 apply in this case
for the clauses 1 to 3. The proof for stability-respect is immediate by definition
of | and the fact that this operator does not introduce deadlocks, due to a
total interleaving of all the actions. Divergence-sensitivity is ensured since τ -
transitions of A|C are labelled with actions in ΣB\ΣA and since A �Sds

B.

Proposition 7 (Compositionality). Let A, B, C and D be TA. The internal
actions of A|C (i.e. in (ΣA ∪ ΣC)\(ΣB ∪ ΣD)) are renamed by τ . If A �Sds

B,
C �Sds

D and A|C does not contain any non-zeno τ -cycles then A|C �Sds
B|D.

Proof. Immediate with proposition 6.

Remark 1 (MIN and MAX modes). Recall that the MIN synchronization mode
corresponds to a synchronization with interruption, and that the guard of the
synchronized action is modified to take into account this paradigm. As for the
AND mode, this change consists in strengthening the guard of the synchronized
action, which implies that the concerned clauses (strict simulation and delays
equality) hold. Therefore, propositions 5 to 7 also hold when using the MIN
mode. The MAX synchronization mode corresponds to a synchronization with

waiting, which means that when one action in the synchronization is enabled,
it waits for the other to be enabled to synchronize. It follows immediatly that
the propositions do not hold. For instance, composability does not hold since
synchronized actions (which are observable actions) can be taken later in A|B
than they were in A. Similar arguments can be given in the case of compatibility
and compositionality.

Remark 2 (Timed τ -simulation and |). We focused on the properties of the DS
timed τ -simulation. The properties also hold, without assumptions, in the case
of timed τ -simulation, when using AND and MIN modes. Indeed, the DS timed
τ -simulation is obtained from the timed τ -simulation by adding divergence-
sensitivity and stability-respect. As the three properties hold for the DS timed
τ -simulation (modulo assumptions for divergence-sensitivity in the case of com-
posability and compositionality), they also hold for the timed τ -simulation.

4.3 Synthesis

Table 1 gives a synthesis of the results presented in this section. The abbre-
viations hyp. div. 1 and hyp. div. 2 represent respectively the assumptions of
propositions 5 and 7 for divergence-sensitivity. Table 2 gives an interpretation
of these results in terms of properties preserved for integration of components.

Classic parallel Non-blocking parallel composition

composition AND / MIN MAX

timed τ -simulation

Composability OK OK nOK

Compatibility OK OK nOK

Compositionality OK OK nOK

DS timed τ -simulation

Composability nOK OK (hyp. div. 1) nOK

Compatibility nOK OK nOK

Compositionality nOK OK (hyp. div. 2) nOK

Table 1. Properties of τ -simulations w.r.t. composition operators

Classic parallel Non-blocking parallel composition

composition AND / MIN MAX

Properties preserved Mitl, deadlock-freedom,
during integration safety strong non-zenoness none

of components (hyp. div. 1 and 2)

Table 2. Synthesis on the preservation of properties during integration of components

5 Related Works

Several works have been devoted to the definition of simulation relations for
timed systems. A time-abstracting simulation has been studied in [13], but does
not preserve timed properties. A timed simulation is defined in [14]. This relation
has the properties of composability, compatibility and compositionality w.r.t. to
a totally synchronous composition operator. However, non-observable actions
are not considered and no criteria is added to take into account liveness.
The closest notion of simulation regarding to the one we defined is the timed
ready simulation of [15]. Non-observable actions are also taken into account. The
definition of the relation is almost the same than our timed τ -simulation and
thus, preserves safety properties. But, it was not extended to preserve liveness
properties. Composability, compatibility and compositionality are ensured w.r.t.
a composition operator using a composition paradigm close to the one of the
classic operator we consider. However, an assumption is made concerning the
absence of internal activity in the automata to guarantee the properties. In
particular, compositionality is expressed as follows. If A � B and C � D, and B

and D do not contain internal activity, then A‖C � B‖D, where � is the timed
ready simulation and ‖ the composition operator considered.

6 Conclusion and Future works

In previous works, we defined τ -simulation relations for timed systems, with
preservation abilities. Checking these relations is a way to guarantee the preser-
vation of properties during incremental development of timed systems, in partic-
ular during integration of components. However, we wish to avoid the verification
of the simulations, while still benefiting of their preservation abilities.
For this purpose, in this paper, we studied the properties of composability, com-
patibility and compositionality of the relations w.r.t. two composition operators
for timed systems: the classic operator, and a non-blocking one with three differ-
ent synchronization modes. It turns out that the properties hold for the timed
τ -simulation with both operators (except when using the max synchronization
mode with the non-blocking one). This means that the preservation of safety
properties is ensured for free when using these operators for integration of compo-
nents. The divergence-sensitive and stability-respecting timed τ -simulation has
the properties only with the non-blocking operator (except with the max mode),
on some conditions for divergence-sensitivity. Thus, Mitl properties, deadlock-
freedom and strong non-zenoness, are preserved (on the conditions expressed)
during integration of components with this operator. This is not the case when
using the classic operator. The reason is that this operator does not prevent from
introducing deadlocks during composition, which makes the stability-respecting
part of the simulation not guaranteed during integration of components.
Thus, in this case, the verification of the DS timed τ -simulation is necessary. In
this perspective, we are working on reducing the cost in practice of the algo-
rithmic verification of the simulation. The classic algorithm for the verification
of the simulation consists in a joint depth-first exploration of the two models

to compare, i.e., the one on which verification has been done and the one on
which preservation must be ensured. Stability-respect is checked at each step of
the exploration (divergence-sensitivity consists in detecting non-zeno τ -cycles,
thus it is checked independently with classic algorithms for cycles detection).
The verification of this clause has a high cost in practice. Thus, we intend to
verify it only on the paths on which preservation has to be ensured, i.e., the
paths which concern the properties to be preserved. Of course, this partial check
is done accordingly to the properties which must be preserved, and therefore
only ensures the preservation of these properties. This partial verification has
already been implemented in our tool Vesta for response properties of the form
�(p ⇒ ♦q) (details can be found in [16]). As a future work, we intend to extend
this partial verification to other patterns of properties.

References

1. Bellegarde, F., Julliand, J., Mountassir, H., Oudot, E.: On the contribution of a
τ -simulation in the incremental modeling of timed systems. In: Proc. of FACS’05.
Volume 160 of ENTCS., Macao, Macao, Elsevier (2005) 97–111

2. Alur, R., Feder, T., Henzinger, T.: The benefits of relaxing punctuality. Journal
of the ACM 43 (1996) 116–146

3. Bellegarde, F., Julliand, J., Mountassir, H., Oudot, E.: Experiments in the use
of τ -simulations for the components-verification of real-time systems. In: Proc. of
SAVCBS’06, Portland, Oregon, USA (2006) Also available on ACM Digital Library.

4. Bornot, S., Sifakis, J.: An Algebraic Framework for Urgency. Information and
Computation 163 (2000) 172–202

5. Bornot, S., Sifakis, J., Tripakis, S.: Modeling Urgency in Timed Systems. In:
COMPOS’97. Volume 1536 of LNCS., Springer-Verlag (1997)

6. Hoare, C.: Communicating Sequential Processes. Prentice Hall (1985)
7. Milner, R.: Communication and Concurrency. Prentice Hall (1989)
8. Alur, R., Dill, D.: A theory of timed automata. Theoretical Computer Science

126 (1994) 183–235
9. Sifakis, J., Yovine, S.: Compositional Specification of Timed Systems. In: Proc. of

STACS’96 - Invited Paper. Volume 1046 of LNCS. (1996) 347–359
10. Bellegarde, F., Julliand, J., Kouchnarenko, O.: Ready-simulation is not Ready to

Express a Modular Refinement Relation. In: Proc. of FASE’00. Volume 1783 of
LNCS., Berlin, Germany, Springer-Verlag (2000) 266–283

11. Pnueli, A.: The temporal semantics of concurrent programs. Theoretical Computer
Science 13 (1981) 1–20

12. Tripakis, S.: The analysis of timed systems in practice. PhD thesis, Universite
Joseph Fourier, Grenoble, France (1998)

13. Henzinger, M., Henzinger, T., Kopke, P.: Computing simulations on finite and
infinite graphs. In: Proc. of FOCS’95. (1995) 453–462

14. Tasiran, S., Alur, R., Kurshan, R., Brayton, R.: Verifying Abstractions of Timed
Systems. In: CONCUR’96. Volume 1119 of LNCS., Pisa, Italy (1996) 546–562

15. Jensen, H., Larsen, K., Skou, A.: Scaling up Uppaal : Automatic verifica-
tion of real-time systems using compositionnality and abstraction. In: Proc. of
FTRTFT’00, London, UK, Springer-Verlag (2000) 19–30

16. Julliand, J., Mountassir, H., Oudot, E.: Vesta : A tool to verify the correct in-
tegration of a component in a composite timed system. In: Proc. of ICFEM’07,
Boca Raton, Florida, USA (2007) To appear.

