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Remaining useful life estimation by classification of
predictions based on a neuro-fuzzy system and

theory of belief functions
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Abstract—Various approaches for prognostics have been de-
veloped, and data-driven methods are increasingly applied. The
training step of these methods generally requires huge datasets to
build a model of the degradation signal, and estimate the limit
under which the degradation signal should stay. Applicability
and accuracy of these methods are thereby closely related to
the amount of available data, and even sometimes requires the
user to make assumptions on the dynamics of health states
evolution. Following that, the aim of this paper is to propose
a method for prognostics and remaining useful life estimation
that starts from scratch, without any prior knowledge. Assuming
that remaining useful life can be seen as the time between the
current time and the instant where the degradation is above
an acceptable limit, the proposition is based on a classification
of prediction strategy (CPS) that relies on two factors. First, it
relies on the use of an evolving real-time neuro-fuzzy system
that forecasts observations in time. Secondly, it relies on the use
of an evidential Markovian classifier based on Dempster-Shafer
theory that enables classifying observations into the possible
functioning modes. This approach has the advantage to cope
with a lack of data using an evolving system, and theory of belief
functions. Also, one of the main assets is the possibility to train
the prognostic system without setting any threshold. The whole
proposition is illustrated and assessed by using the CMAPPS
turbofan dataset. RUL estimates are shown to be very close to
actual values, and the approach appears to accurately estimate
the failure instants, even with few learning data.
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ACRONYMS AND ABBREVIATIONS
BBA Basic Belief Assignment
CBM Condition-Based Maintenance
CMAPPS Commercial Modular

Aero-Propulsion System Simulation
CPS Classification of Prediction Strategy
EvHMM Evidential Hidden Markov Model
exTS Evolving extended Takagi-Sugeno system
FN , FP False negative, false positive
HMM Hidden Markov Model
ITS Iterative transition estimation algorithm
KL Kullback-Leibler divergence
PHM Prognostics and health management
RCGI Regrouping components with geometric

interaction algorithm
RLS Recursive Least Squares
RUL Remaining Useful Life

NOTATIONS
X, and Y Input, and output data sets
Ŷ Estimation of Y
Z joint input-output space
ε = Y− Ŷ Residual of estimates
msp Multi-step ahead predictions
NL Number of training data used to train exTS
NC Number of training data to infer predictions in

exTS and then used in EvHMM
F Dimension of the feature vector
H Horizon of prediction
k Time instant
mΩk Basic belief mass defined on the frame

of discernment Ωk
q, pl Commonality, Plausibility functions
M Number of components in a state in EvHMM
N Number of states in EvHMM
θk Linear model parameters in exTS at k
Ck Uncertainty of model parameters at k
I Interval of good prediction
Ak0RUL Accuracy of RUL estimates at critical time k0

E Difference between predicted and true RUL

I. INTRODUCTION

Prognostics is now recognized as a key process in main-
tenance strategies as the estimation of the remaining use-
ful life (RUL) of equipment allows avoiding critical dam-
age and expense. Various prognostics approaches have now
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been developed, classified into three categories: model-based,
data-driven, and experience-based approaches [1]–[4]. Data-
driven approaches aim at transforming raw monitoring data
into relevant information and behavior models (including the
degradation) of the system. They take as inputs the current
monitoring data, and return as outputs predictions or trends
about the health state of the system. These approaches offer
an alternative to other approaches, especially in cases where
obtaining in-situ data is easier than constructing physical or
analytical behavior models. Indeed, in many applications, mea-
sured input-output data is the major source of information for
a deeper understanding of the system degradation. Following
that approach, data-driven approaches are increasingly applied
to machine prognostics (mainly techniques from Artificial
Intelligence). However, data-driven approaches are highly sta-
tistically dependent on the quantity and quality of operational
data that can be gathered from the system. This effect is
the topic addressed in this paper: a method for prognostics
is proposed to face the problem of lack of information and
missing prior knowledge in prognostics applications.
The approach aims at predicting the failure mode early, while
the system can switch between several functioning modes.
The approach is based on a classification of predictions
strategy (CPS), and consists thereby in two main phases. 1)
An evolving neuro-fuzzy system (exTS) is used for on-line
multi-step ahead prediction of observations (prediction step).
This phase is able to start from scratch, and is thus well-
suited for applications where only a small amount of data are
available. 2) The predicted observations are then classified into
functioning modes using an evidential Markovian classifier
called Evidential Hidden Markov Model (EvHMM), and based
on Dempster-Shafer theory (classification step). This classifier
relies on a training procedure that adapts the number of
parameters according to the data. The use of belief functions
makes this classifier robust to a lack of information.
To our knowledge, the idea of using classifiers instead of
manually-tuned thresholds in prognostics and health man-
agement (PHM) has been initially mentioned in [5] with
Cumulative Shock Models, and in [6] where the authors
presented the concept of post-prediction situation assessment.
The use of the sequence of states method has then been
introduced in [7]. In this paper, a method is proposed to
automatically build the threshold from both a set of data
and some labels representing possible functioning modes.
Compared to previous work, the main advantage of using a
classifier is the possibility to consider multidimensional health
indices or sensor measurements. The method described in this
paper is an enhancement of previous works published in [7],
[8], and in two international conferences supported by the
IEEE Reliability Society: [9], [10]. In particular, three main
contributions can be pointed out.

1) RUL estimation is performed by a classification of
predictions strategy. In the proposed scheme, there is no
use of a priori failure thresholds. Instead, RUL estimates
are performed by detecting transitions to faulty modes.

2) The approach combines two efficient tools for handling
a lack of information: a neuro-fuzzy system (exTS), and

an Evidential Hidden Markov Model (EvHMM).
3) A procedure is proposed to train the EvHMM classifier.
4) The proposed methodology is validated on a dataset gen-

erated from the Commercial Modular Aero-Propulsion
System Simulation (CMAPPS) by studying the influence
of the quantity of data in RUL estimation.

The paper is organized in three main parts. The global
prognostics approach is first presented. Then, main theoretical
backgrounds concerning prediction and classification steps are
given. The whole proposition is finally illustrated on a real-
world prognostics problem concerning the prediction of an
engines health. This part enables deeply analyzing the effect
of the size of the training dataset.

II. PROGNOSTICS ARCHITECTURE, A CLASSIFICATION OF
PREDICTION STRATEGY

A. The approach as a specific case of CBM

According to the standard ISO 13381-1:2004, prognostics
is the “estimation of time to failure and risk for one or more
existing and future failure modes” [11]. It is thereby a process
for predicting the RUL before a failure occurs. However,
prognostics cannot be seen as a single task because all aspects
of failure analysis and prediction have to be performed. This
idea is highlighted within the Condition-Based Maintenance
(CBM) concept. Usually, a CBM system is decomposed into
seven layers, one of them being that of prognostics [12]. The
main purpose of each layer is described in the following.

1) The sensor module provides the system with digitized
sensor or transducer data.

2) The processing module performs signal transformations
and feature extractions.

3) The condition monitoring module compares on-line data
with expected values.

4) The health assessment module determines if the system
has degraded.

5) The prognostics module predicts the future condition of
the monitored system.

6) The decision support module provides recommended
actions to fulfill the mission.

7) The presentation module can be built into a regular
machine interface.

In this paper, only layers 3 through 5 are considered.

B. Proposition of a data-driven classification of predictions
strategy (CPS)

Consider a monitored system that can switch within various
functioning modes. The proposed approach links multidimen-
sional data to the RUL of the system (Fig. 1). Data are
first processed (feature extraction, selection, and cleaning),
and then used to feed a prediction engine which forecasts
observations in time. These predictions are then analyzed by a
classifier which provides the most probable state of the system.
This action is the Classification of Predictions Strategy (CPS).
The RUL is finally deduced thanks to the estimated time to
reach the failure mode. The processing part is not considered
in this paper, but the reader can refer to [9] for an example of



3

Figure 1. Prognostics architecture with CPS .

variables selection based on Choquet Integral and information
theory.
The classifier requires the data to be segmented into two or
more functioning modes. It estimates at each time a confidence
value that reflects how likely predictions are close to each
functioning mode. This segmentation is a prior information
that can be provided either by expert annotation (if avail-
able) [9], or by a clustering tool [13], [14]. For example, in
Fig. 2, the data depicted concern the evolution of a health
performance index segmented into four functioning modes:
steady state, degrading state, transition state, and critical state.
The set comprising the data and the ground truth concerning
the modes is called the training dataset.

C. CPS procedure, and algorithm

In this paper, prediction and classification steps are per-
formed by two different tools (detailed in the sequel) that are
the exTS [15], and the (EvHMM) [10]. Both algorithms can
be trained using a small amount of data, and were developed
to cope with modeling time series when only a few data are
available.

1) Algorithm exTS can start from a few data points to
initialize the fuzzy rules, and then its structure (number
of rules and parameters) is adapted recursively for each
new data point.

2) Algorithm EvHMM adapts its parameters according to
the amount of data available, and manages uncertainties
using belief functions [16].

The different steps to estimate the RUL by CPS strategy are
represented in Fig. 3. It requires 1) a training dataset composed
of Nexp experiments, each of them being composed of F time-
series features; and 2) the set of labels corresponding to the
functioning mode at any time in each time series.
A part of the training dataset (NL experiments) is first used

to learn a prediction model for each feature (F predictors are
thus built). At this step, neuro-fuzzy approximation algorithms
(such as exTS) are used to face the disparity of data in a simple
manner, and without prior knowledge or human assumptions.
The neuro-fuzzy system is then used to perform predictions
on NC experiments. Those predictions, accompanied by the
labels corresponding to the functioning modes, are finally used
to train a classifier system that aims at assessing the health
state at any time (current, and future functioning modes). The
underlying idea of feeding the classifier with predictions is
to build a classifier system that is able to compensate for the
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Figure 2. Segmentation of data.

Figure 3. CPS Procedure: a) training step, b) testing step.

error of predictions.
Note that the proposed classification approach is not a discrim-
inate one (learning a classifier for a class against another).
We would rather use a system composed of various one-
class classifiers, which is more relevant in the case where the
amount of data is too small for some modes. Indeed, in real
applications, subsets of modes are generally very unbalanced,
with many more data points concerning normal modes rather
than faulty ones [17].
The role of the whole classification system is to detect a
transition from a normal state to a fault state within the pre-
dictions. Compared to other approaches for RUL estimation,
the proposed CPS is a process that enables one to estimate the
RUL without the need of thresholds. Moreover, thresholding
is generally applied to one-dimensional degradation signals,
while the proposed CPS can be applied to a multi-dimensional
one. In the experimental tests, we study the influence of the
amount of prior information on RUL estimates, and demon-
strate that the proposed approach is well suited when priors
are limited.

III. TEMPORAL PREDICTIONS WITH AN EVOLVING
NEURO-FUZZY SYSTEM

A. Objectives

The aim of this part of the CPS strategy is to forecast obser-
vations in time. Obviously, this step of prognostics is critical,
and must be dealt with in an appropriate manner to provide
accurate predictions, and thereby better RUL estimates. Also,
predictions must be sufficiently long to ensure usefulness of
the full prognostics process. This section describes the ap-
proach used to perform long term multi-step ahead predictions.



4

Assuming that data are defined in a multidimensional space,
i.e. Xk = [X1

k X2
k . . . XFk ], the aim of the prediction

module is to forecast in time the evolution of the data values,
specifically

Xk+1→ k+H = [X1
k+h X2

k+h . . . XFk+h] (1)

where h = [1, H]. For each feature i ∈ 1 . . . F ,
the multi-step ahead prediction problem consists of esti-
mating future values of the time series X̂

i

k+1→k+H =[
x̂ik+1 , x̂

i
k+2 , x̂

i
k+3 , . . . , x̂

i
k+H

]
. This approximation can

be expressed as

X̂
i

k+1→k+H = m̂sp(SXik) (2)

where, msp is the multi-step ahead prediction model, and
SXik ∈ Xik is known as the set of regressors (for example
SXik = [xik , x

i
k−1 , x

i
k−2]).

Many approaches exist in literature to build each one of
the prediction systems (for each dimension) [18]. According
to previous works [19], recent papers focus on the interest
of using hybrid systems for prediction. More precisely, first
order Takagi-Sugeno (TS) fuzzy models have shown improved
performance over conventional approaches [20]–[27]. In this
paper, the evolving extended Takagi Sugeno system (exTS)
introduced in [15] is considered.

B. First order Takagi-Sugeno systems

A first order TS model aims at approximating an input-
output function. It can be seen as a multi-model structure
consisting of linear models that are not necessarily statistically
independent [15]. 1) The input space is fuzzily partitioned, 2)
a fuzzy rule is assigned to each region of the input space and
provides a local linear approximation of the output, and 3) the
final output is a combination of the whole set of rules.

A TS model is depicted in Fig. 4 with two inputs variables,
two membership functions (antecedent fuzzy sets) for each of
them, and the output of the TS model is a linear combination
of two fuzzy rules. The rules perform a linear combination of
inputs, specifically

Ri : If x1 is A
1
i , . . . and xn is Ani ,

then yi = ai0 + ai1x1 + . . .+ ainxn.
(3)

Ri is the ith fuzzy rule, N is the number of rules, Xn =
[x1, ..., xn]

T is the input vector, Aji denotes the antecedent
fuzzy sets, j = [1, n], yi is the output of the ith linear
subsystem, and ail are its parameters, l = [0, n].
Due to their generalization capabilities, Gaussian antecedent
fuzzy sets are generally assumed to define the regions of fuzzy
rules in which the local linear sub-models are valid.

µji = exp
−(4‖x−xi∗‖

j
)/(σj

i )2 (4)

with σji being the spread of the membership function, and xi∗

being the center of the ith rule antecedent. The firing level τi
and the normalized firing level λi of each rule are obtained as

τi = µ1
i (x1)× . . .× µni (xn) , λi = τi

/∑N
v=1 τv

. (5)
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Figure 4. A First-order TS model with 2 inputs.

Let πi = [ai0, . . . , ain] be the parameters vector of the ith

sub-model, and Xe = [1 XTn ]T be the expanded data vector.
The output is expressed as

y =
∑N

i=1
λiyi =

∑N

i=1
λiXTe πi (6)

A TS model has two types of parameters. The non-linear
parameters are those of the membership functions represented
by Gaussians membership functions which have two param-
eters: the center, and the spread in (4). These parameters are
referred to as premise or antecedent parameters. The linear
parameters form the consequent part of each rule such as ail
in (3). All these parameters have to be tuned as described later.

C. Learning procedure of exTS

The learning procedure of exTS is composed of two phases.
1) An unsupervised data clustering technique is used to

adjust the antecedent parameters.
2) The supervised recursive least squares (RLS) learning

method is used to update the consequent parameters.
These algorithms cannot be fully detailed in this paper, but
are well described in [15], [28].
The exTS clustering phase is performed on the global input-
output data space: Z = [XT

n; YT
m]T , Z ∈ <n+m, where n+m

defines the dimension of the input-output data space (m = 1
in this paper). Each exTS sub-model operates in a sub-area
of Z. This clustering algorithm is based on the calculus of
a potential which represents the capability of data to form
a cluster (antecedent of a rule). The procedure starts from
scratch; and, as more data are available, the model evolves
by replacement or rules updates. This approach enables the
adjustment of the non-linear antecedent parameters.
The RLS phase aims at updating the consequent parameters.
At any learning step k, (6) can be expressed as

ŷk+1 =
∑N

i=1
λiyi =

∑N

i=1
λiXTe πi = ψTk θ̂k (7)

where ψTk = [λ1x
T
1 , ..., λnx

T
n ]Tk is the vector of the inputs

weighted by normalized firing (λ) of the rules (updated thanks
to the clustering phase). θ̂k = [π̂T1 , ..., π̂

T
N ]Tk is an estimation of

the linear parameters of the sub-models obtained by applying
the RLS procedure

θ̂k = θ̂k−1 + Ckψk(yk − ψTk θ̂k−1) ; k = 2, 3, ... (8a)

Ck = Ck−1 −
[
Ck−1ψkψ

T
k Ck−1

]/[
1 + ψTk Ck−1ψk

]
(8b)

with Ck the R(n + 1) × R(n + 1) covariance matrix of
parameters errors. Initial conditions are given by θ1 = 0,
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C1 = ΩI where Ω is a large positive number [15], [28].

The main advantage of the exTS results from the clustering
phase for which no assumption is required about the structure
(number of clusters and parameters initialization). Indeed, an
exTS is able to update the parameters without the intervention
of an expert. Moreover, it has a flexible structure that evolves
as data are gradually collected, which enables one to form new
rules or modifying existing ones. This characteristic is useful
to cope with non-stationary signals.

D. Multi-step ahead predictions with the exTS

When using connexionist systems (such as exTS), the multi-
step ahead prediction model msp can be obtained in different
manners. [19] provides an overview of those approaches, and
discusses their respective performances. According to this
work, the approach they named the Iterative approach appears
to be the most common one, and the simplest to implement.
Also, this approach offers a compromise between accuracy and
complexity. Last but not least, the Iterative approach is the only
one to be able to predict at any horizon of prediction, whereas,
in other approaches, the end-user has to set in advance the final
horizon of prediction, which can be difficult because the time
of failure is unknown. Thus, in this paper, multi-step ahead
predictions are performed thanks to an exTS-based Iterative
model that can be explained as follows.
Multi-step predictions are provided by using a single tool
(exTS) that is tuned to perform a one-step ahead prediction
x̂k+1. This estimated value is used as one of the regressors
of the model to estimate the subsequent regressors, and the
operation is repeated until the estimation of x̂k+H . Formally,

x̂k+h =


if h = 1, f1

(
xk, . . . , xk+1−p, [θ

1]
)

elseif h ∈ {2, . . . , p},
f1
(
x̂k+h−1, . . . , x̂k+1, xk, . . . , xk+h−p, [θ

1]
)

elseif h ∈ {p+ 1, . . . ,H},
f1
(
x̂k+h−1, . . . , x̂k+h−p, [θ

1]
)

(9)
where

{
f1, [θ1]

}
is the one-step ahead exTS-based prediction

model with its parameters set calculated during the learning
phase, and p is the number of regressors used, i.e. the number
of past discrete values used for prediction. This type of
architecture enables performing multi-step ahead predictions
without building various predictors (thereby with a single
learning phase). Note that, from the time h > p, predictions
are made only on evaluated data, and not on observed data.
Fig. 5 shows the evolution of a performance index of an
engine, and the prediction that can be obtained thanks to the
exTS-based Iterative approach. Note that, in this figure, all
predictions (from 51 to 231) where made at time k = 50.

IV. EVIDENTIAL HIDDEN MARKOV MODEL FOR
CLASSIFICATION OF TEMPORAL PREDICTIONS

A. Objectives

The aim of this part of the CPS strategy is to classify the
predictions made by the exTS into meaningful states. Because
the problem deals with time series modeling, Hidden Markov
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Figure 5. Example of multi-step ahead predictions of a performance index
of an engine with an exTS-based Iterative model.

Models (HMM) [29] appear to be a good option. In this
paper, developments are focused on an extension of HMM
to manage uncertainties based on Dempster-Shafers theory
of belief functions [16], [31] described in [10], and called
evidential HMM (EvHMM). EvHMM were first proposed to
cope with statistical modeling of time series using sparse data.
This condition is particularly the case in industrial applications
where the cost of data acquisition and interpretation is high.
Besides, because the exTS-based algorithm for prediction can
be trained using few data, the classifier should also have the
same capability. It also strengthens the use of belief functions
for the classification step (CPS).
EvHMM are used for classification in both normal and faulty
classes. One EvHMM is built using data from the normal
class, and another one from data in the faulty class. For each
EvHMM, one needs to set the number of states (which repre-
sent latent variables), and the set of components in each state.
The set of states at time k is denoted by Ωk = {ω1, . . . , ωK},
and the basic belief assignment (BBA) mΩk is defined on the
powerset 2Ωk to represent imprecision and uncertainty about
the possible states at a given time k; specifically,

mΩk : 2Ωk → [0, 1], A→ mΩk(A)∑
A⊆Ωk

mΩk(A) = 1.
(10)

The estimation of BBAs from data is explained below.

B. Classification in EvHMM

The exTS estimates the future values taken by each feature,
i.e. X̂

i

k+1→k+H , i = 1 . . . F . Predictions are then gathered in
the vector Xk+1→ k+H = [X1

k+h X2
k+h . . . XFk+h], which

becomes the input of the EvHMM classifier. Given a training
dataset, a set of predictions can be generated and labeled as
normal class (XNormk+1→ k+H ), or faulty class (XFaultk+1→ k+H ),
from which two respective classifiers λNorm, and λFault
can be built. Note that sequences of data XNormk+1→ k+H or
XFaultk+1→ k+H are generally called observations in the HMM
community, and denoted Ok at time k, or O1:H for the whole
sequence, where H represents the number of observations (for
a given sequence).
The parameters λr, r ∈ {Norm,Fault} of a EvHMM are
composed as follows.
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• The BBA representing transitions between states at two
consecutive time instants are denoted as mΩk

a (·|Si). It is
a conditional BBA defined on Ωk conditionally to subsets
Si ⊆ Ωk−1.

• The BBA on states given observations is mΩk

b (Si|Ok).
Given EvHMMs λNorm, and λFault, the goal of the classi-
fication process (Algorithm 1) is to choose the EvHMM that
best fits observations. The classification criterion is given by

Le(λr) =
1

H

H∑
k=1

log plΩk
α (Ωk|λr) (11)

with
λ∗ = argmax

r
Le(λr) (12)

The prediction of a subset Sj is computed using the law of
total plausibility, and combined with observations to update
belief on states.

qΩk
α (Sj) =

∑
Si⊆Ωk−1

mΩk−1
α (Si) ·qΩk|Ωk−1

a (Sj |Si) ·qΩk

b (Sj |Ok)

(13)
In (13), q is the communality function obtained from a BBA
using

qΩk(B) =
∑
C⊇B

mΩk(C) . (14)

Commonalities are in one-to-one correspondance with
BBA [16], and make the combination rules easier to compute.
In the same way, a plausibility is given by

plΩk(B) =
∑

C∩B 6=∅

mΩk(C) . (15)

In (13), the BBA at k = 1 can be defined as mΩ1
α (Ω1) = 1,

reflecting full ignorance about the first state. Moreover, com-
monalities qa conditional to subsets with cardinality greater
than 1 are computed using the disjunctive rule of combina-
tion [10], reducing the number of parameters to be estimated.
Besides, as in probabilistic HMM, the conflict resulting from
the conjunctive combination between observations and predic-
tion has to be canceled out by normalisation at each iteration
of the forward propagation [10]. The normalisation process
consists in redistributing uniformly 1−

∑
j αk(j) to each state

at k. Similarly, as in standard HMM, backward and smoothing
variables can be defined [10].

Algorithm 1 EvHMM Classification
Require: model λr with qb at each k and qa {Belief on

transitions and on states given observations. }
Ensure: Evidential likelihood Le
Ensure: Evidential filtered estimate α

1: for all instants k = 1 to H do
2: α = Forward propagation {(13)}
3: α∗ = Normalise α
4: end for
5: Compute Le {eq. 11 and 12}

C. Learning procedure of EvHMM

Training the EvHMM consists of estimating qa (transitions),
as well as the parameters of the models that generate be-
lief functions conditional to observations Ok. As underlined
in [10], applying an iterative procedure such as Expectation-
Maximization often used in HMM is not relevant because
successive forward and backward propagations imply conjunc-
tive combinations, which gradually generates specific BBAs
focused on singletons, therefore loosing the interest of using
belief functions. We rather propose two separate processes:
one for observation models (called the regrouping components
with geometric interaction algorithm (RCGI)), and one for
transitions (called the iterative transition estimation algorithm
(ITS)), described below.

1) RCGI, and Observations models training: The proposed
training process of observation models is decomposed in two
steps:
• clustering data into M clusters (called components), and
• regrouping the M components into N states.

The main features of this algorithm (Alg. 3) are depicted in
Fig. 6.

Components found in
the Clustering phase
Prototypes
Regrouping of
components into states

Figure 6. RCGI steps with N = 4, and M = 6.

Step 1 - Clustering. The first step consists of paving the
feature space by first finding M ×N components in the data
(see filled circles in Fig. 6):

Λ0 ← find M ×N components using a clusterer. (16)

This phase can be performed by any clustering approach. In
this paper, we considered that only a small amount of data
are available. Therefore, we use an adaptive method that can
find an optimal number of components according to the data
distribution [30].

Step 2 - Regrouping. In probabilistic HMM, a set of states
N and a number of components for each state M has to be
chosen. Then a Baum-Welch algorithm finds the parameters
of each component in each state [29]. The regrouping of
components into states is done automatically by maximizing
likelihood. In [10], we adapted this algorithm for EvHMM as
follows. Let M×N components found by the Clustering phase
(16). We then need to find N states, each one composed of
M components. For that, we developed the RCGI procedure
described in Alg. 3. RCGI assumes that EvHMM is used for
time series modeling, and therefore the relative position of
components is important.
Given Λ0, the set of M×N components provided by the clus-
tering phase, the N sets of states are denoted Λi, i = 1 . . . N ,
such that ∩iΛi = ∅ and ∪i Λi = Λ0. The cardinality |Λi| can
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be different for each state, but for the sake of simplicity we
consider here the same cardinality. RCGI thus fills an M ×N
association matrix A with

A(i, j) =

{
1 if component j is assigned to state i
0 otherwise. (17)

a) Initialisation: RCGI first requires one component for
each state, which are determined in four steps (Alg. 2).
First, we compute pairwise distances (Euclidean) between all
components. The result is an N ×M matrix [D(i, j)] where
elements are the distances between components i and j:

D(i, j)← Distance between comp. i and j. (18)

Then, we find the farthest component from all others, as

c1 = argmax
j

∑
i

D(i, j). (19)

In the third step, the farthest component from c1 is estimated
as

c2 = argmax
j,j 6=c1

D(comp. c1, j). (20)

At this stage, we have two states, each with one component.
To find the first component for the remaining N − 2 states,
we consider the distance between c1 and c2, and divide it into
N − 1 segments of equal-length. Denote ĉi as the estimated
component for state i = 3 . . . N . Therefore, ci is given by the
closest component to ĉi:

ci = argmin
j,j 6=cl,l>i

D(comp. ĉi, j), i = 3 . . . N. (21)

In Fig. 6, the result of the initialization step is represented by
the stars on the chosen components.

Example 1: Consider the data in Fig. 7. The figure repre-
sents a set of N = 4 states, each one being corrupted by
M = 3 components’ additive noise (different for each state).
Ideally, there are 12 components. Assume that the components
are characterized by the center means µ = [4.2 3.2 2.2 1.2
1.6 2.7 0.7 3.4 3.7 0.8 3.6 2.3]. Thus, criterion (18) gives
the values D(i, j) = [51.68 22.08 16.48 34.88 24.64 16.28
53.08 26.08 33.88 48.96 31.04 15.96]. Therefore, c1 = 7
(µ7 = 0.7), and c2 = 1 (µ1 = 4.2). Then the segment length
is (4.2−0.7)/3 = 1.1667; thus, ĉ3 = 3.033, and ĉ4 = 1.8667,
leading to c3 = 2 (with µ2 = 3.2), and c4 = 5 (with µ5 = 1.6).
Finally, the first components of each state are 7, 1, 2, and 5.
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Figure 7. Signal to be segmented.

b) Association: A component j in Ω0 is associated to a
state i if the latter is the closest state to j:

j∗ = argmin
j

D
′
(component j, state i)

A(i, j∗) = 1.
(22)

A representation of this assignment is depicted by dotted
circles in Fig. 6.
A state can be composed of several components; therefore it is
necessary to adapt the distance measure D′ to compare a single
component (j) to a set of components (composing state i). For
distribution-based clusterers (such as Gaussian mixtures mod-
els as considered in experiments), we use the Kullback-Leibler
(KL) divergence between both the distribution pj ≡ p(y|j) of
data points y in component j and the distribution pi ≡ p(y|i)
of data points y in the mixture of components composing state
i:

D
′
(j, i) = KL

(
pi || pj

)
(23)

For mixtures of continuous densities, the KL divergence does
not have a closed-form, but can be estimated by Monte-Carlo
sampling. Samples are thus drawn from the mixture associated
to pi; and given a set of i.i.d. sampled points y1 . . . yn . . . yNs ,
we can approximate the KL by its Monte-Carlo estimate as

K̂L =
1

Ns

∑
n

log
( p(yn|i)
p(yn|j)

)
−−−−−→
Ns→∞

KL(pi||pj). (24)

As for tests, we used Ns = 1e5 samples.

Algorithm 2 ONE STATE RCGI
Require: Set of components Ω0

Require: Number of states N {assume the same number of
components for each state}

Ensure: Find N prototypes: A(j) = 1, j = 1 . . . |Ω0| if
component j is a prototype

1: Compute distances between all components ([D(i, j)])
2: Find the farthest component: c1 ⇒ A(C1) = 1
3: Find the farthest component from c1: C2 ⇒ A(c2) = 1
4: Find N − 2 components between c1 and c2 as described

in the text: assign A(ci) = 1, i = 3 . . . N

Example 2: RCGI is applied on the data described in the
previous example. It finds a set of N = 4 states, with M = 3
components each. The resulting association is [7 10 4] for
state 1, [1 9 11] for state 2, [2 8 6] for state 3, and [5 3 12]
for state 4. The obtained segmentation is given in Fig. 8, in
which the states were renumbered (1, 2, 3, 4) according to the
order of appearance.

2) ITS, transition estimation: After RCGI is performed,
transitions are estimated as

m
Ωk×Ωk+1

â0
∝
H−1∑
k=1

(
m

Ωk↑Ωk×Ωk+1

b ∩©m
Ωk+1↑Ωk×Ωk+1

b

)
(25)

up to a constant 1/(H − 1), and where m
Ωk↑Ωk×Ωk+1

b is
the vacuous extension [31] of the belief mass mΩk

b (·|Ok)
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Algorithm 3 RCGI
Require: Set of components Ω0 {characterized by some pa-

rameters}
Require: Number of states N {M = |Ω0|/N since we

assume the same number of components for each state}
Ensure: Association matrix A(i, j) = 1 if component j is

assigned to state i
1: A(:, 1) ← ONE STATE RCGI(Ω0, N) (Alg. 2)
{Initialisation, then remove the prototypes from Ω0.}

2: for states i = 1 To N do
3: while

∑
j A(i, j) < M do

4: for all remaining components j in Ω0 do
5: Compute the distance D′(i, j) between state i and

component j {See comments in text}
6: end for
7: A(i, j∗) = 1 with j∗ = argmin j D

′
(i, j) {Assign a

component to state i}
8: Ω0 ← Ω0 − {j∗} {Update remaining components}
9: end while

10: end for
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Figure 8. Segmentation after RCGI.

(provided by observations) on the cartesian product defined
by

m
Ωk↑Ωk×Ωk+1

b (B|Ok) = mΩk

b (C|Ok) if C × Ωk+1 = B
(26)

and 0 otherwise. Equation (25) is a generalization of the HMM
transition estimate to belief functions when there is no prior
information on transitions.

D. RUL estimation

Following the proposed architecture (Section II), an
EvHMM λFault is built corresponding to some data related
to a faulty state ωFault, and one EvHMM λNorm for the
normal state ωNorm. Given a new experiment where the
RUL has to be estimated, we first run the exTS algorithm
to estimate the predictions at t + h, h = 1 . . . H . Inference
procedures of both EvHMM models are then performed, and
provide the likelihood of each model at each time-step of the
predictions. The RUL is then defined as the time-instant where
the likelihood of λFault (faulty state model) becomes higher
than the likelihood of λNorm (normal state model).

V. APPLICATION TO THE TURBOFAN DATASET

The aim of this part is to illustrate the capability of the
proposed architecture to provide reliable estimates of the RUL.

A. Data sets

We considered the first CMAPPS dataset introduced dur-
ing the first Int. Conf. on Prognostics and Health Manage-
ment [32]. The dataset is a multiple multivariate time series
with sensor noise. Each time series was from a different
engine of the same fleet, and each engine started with different
degrees of initial wear and manufacturing variation unknown
to the user but considered normal. The engine was operating
normally at the start, and developed a fault at some point. The
fault grew in magnitude until system failure. The variability
of the true RULs was studied in [33].

B. Feature selection

In [9], we proposed a feature selection approach based
on the Kullback-Leibler divergence to select 8 complemen-
tary features among the 26 features found in the dataset
(corresponding to columns 7, 8, 9, 11, 13, 15, 17, 18). These 8
features were then used to train the prediction system. Among
these 8 features, only 4 were kept by maximizing

median
over all training data
t∈current training data

U

(
X̂t(j)

Xt(j)
> 0.95

)
, j = 1 . . . 8 (27)

where U(x) = 1 if x is true, 0 otherwise. This criterion
enforces the predictions to be statistically close or above the
real values in the training dataset.

C. Prediction and classification settings

1) Temporal predictions settings: As for the prediction step,
each feature was estimated with an exTS-based iterative model
for multi-step ahead prediction (as explained in Section III-D).
Table I recalls the set of input variables used for that purpose,
which can be automatically estimated, for example using a
parsimony criteria [22].

Table I
SETS OF REGRESSORS FOR FEATURES PREDICTIONS

Feature Inputs
1 x1(k), x1(k-1), x1(k-2)
2 x2(k), x2(k-1), x2(k-2)
3 x3(k), x3(k-1), x3(k-2)
4 x4(k), x4(k-1)
5 x5(k)
6 x6(k)
7 x7(k), x7(k-1)
8 x8(k), x8(k-1)

2) Classification settings: One EvHMM classifier was
trained for the faulty state, and one for the normal state. Data
concerning the faulty state correspond to the last 12 data of
each time series (the remainder corresponding to the normal
state). In this paper, only the data located after the transition
from state 3 to 4 (last 12 data) were considered to train the
EvHMM classifier. This figure shows that the RULs are spread
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on a large range (from 50 to 350 time units).
The number of Gaussian components M was set automatically
by an Expectation-Maximization (EM) algorithm using a min-
imum description length criterion (MDL) as proposed in [30].
The number of states N was set to the first prime number
such as the modulus of M over the latter equals 0. The EM
algorithm which estimates the parameters of the distributions
requires initial values. We thus proceed as follows.
• Select random initial values of the parameters.
• Estimate the parameters (wait for convergence).
• Compute the model likelihood given the training data.

This process was repeated 10 times for both models, and
the one with the highest likelihood was selected. Practically,
the best models were obtained by considering the likelihood
estimated by the Viterbi-like decoder proposed in [10].

D. Evaluation process
To improve the analysis of the results, and to get a more

objective discussion on the interest of the proposed approach,
the exTS-based Iterative model was trained and run with
varying critical times, and different amounts of training data.
• Critical time (beginning time instant of the prediction):
k0 = [50 90 130 150] time units.

• Number of training data: NL = [2 5 10 20 30].
This condition enables us to discuss the influence, on the one
hand, of the starting point of predictions, and, on the other
hand, of the amount of available data to fit both the predictions
and the classification models.
Still to remain statistically independent on the parameteriza-
tion, a leave-one-out evaluation was performed to train the
classifier before assessing the RUL estimates: 14 predicted
time series were used to train the classifier (NC = 14 in
section II-C), and 1 for testing; and this process was repeated
15 times, and the RULs averaged.
Fig. 9a depicts the actual RULs to be estimated on the 15
experiments as a function of the critical instant of prediction.
One can note that the horizon length considered in the tests are
challenging because the greatest one is 207 time-units (with
k0 = 50), while the shortest one is still 24 time-units (with
k0 = 150).
To assess the predictions, define the prediction error at a given
time k by

E(k) = true RUL− predicted RUL. (28)

We can then report prediction errors by histograms. To assess
more precisely the errors made by the proposed system, we
considered false negative and false positive rates [34], [35].
• False Negative (FN) cases correspond to late predictions

such as E(k) < −kFN where kFN is a user-defined FN
threshold

FN(k) =

{
1 if E(k) < −kFN
0 otherwise (29)

• False Positive (FP) cases correspond to early predictions
such as E(k) > kFP where kFP is a user-defined FP
threshold

FP (k) =

{
1 if E(k) > kFP
0 otherwise (30)

The meaning of thresholds is represented in Fig. 10 where
I = [−kFN , kFP ].

Figure 10. Metric of performance assessment, here I = [−10,+15].

E. Results

An example of results is given in Fig. 9.b that depicts the
RUL estimates obtained for experiment #1 according to the
critical instant of prediction k0, and the size of the prediction
learning set NL. As expected, the worst results are obtained
with NL = 1. Also, as NL increases, the results’ accuracy
is enhanced, and RUL estimates are quite close together.
This result serves to strengthen the interest of the proposed
approach because few learning data are required to obtain good
results. However, one should consider results on the whole set
of experiments to avoid concluding falsely from a singular
case.
Consider Fig. 11 that shows the distributions of the error (28)
for all experiments. One can point out that, even for a small
number of training data (less than 10), the proposed approach
leads to accurate RUL estimates. For example, for the largest
horizon of prediction, i.e. the most difficult case with k0 = 50,
less than 5 training data can be sufficient to estimate the RUL
with a spread of the error less than 10 time units. A stable
result (for any k0) is obtained with NL = 20 training data.
As expected, the best RUL estimates are obtained for the
largest number of training data (here NL = 30), and for the
smallest horizon (k0 = 150), even though competitive results
are obtained with NL = 20, and k0 = [50 130].
The small amount of data can provide unexpected results such
as those obtained with k0 = 50, and NL = 10, where the
system made more errors than for NL = 5 or NL = 2. This
behavior is explained by the fact that the number of data is too
small to pave the feature space properly in the clustering phase
of both exTS and EvHMM. As expected, this effect decreases
as the number of training data increases.

Table II presents the accuracy of the RUL estimates for
different intervals (I = [−10, 10]; [−10, 20]; [−20, 10];
[−20, 20]) with report to the critical time k0 = 50, 90,
130, 150. According to these tables, the proposed architecture
performs well on this dataset with accurate RUL estimates.
Indeed, whatever the interval I, at least 74.4% of RUL
estimates appear to be correct predictions (as defined in
Fig. 10). Regarding the interval size, the system demonstrates
robust results for [−20 10], and [−20 20], where accuracies
of predictions are very high, and similar whatever k0 (from
85.6% to 94.4%). For small sizes such as [−10 10] (where
predictions have to be close to the ground truth), the proposed
system reaches high accuracy, from 74.4% to 82.2% according
to the value of k0.
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Figure 9. RUL of experiments: a) top, actual RUL accordingly to the instant of prediction; b) bottom, RUL estimates for experiment #1.

Table II
RUL ESTIMATES ACCURACY FOR CRITICAL TIMES k0 = 50, 90, 130, AND

150 (FROM SHORT TO LONG-TERM PREDICTIONS)

Interval I Ak0=50
RUL Ak0=90

RUL Ak0=130
RUL Ak0=150

RUL
[−10 10] 74.4 75.6 81.1 82.2
[−10 20] 80.0 78.9 87.8 88.9
[−20 10] 86.7 86.7 86.7 87.8
[−20 20] 92.2 92.2 92.2 94.4

VI. CONCLUSION

An original, efficient architecture is proposed for health
state assessment and prognostics. Leaving aside the features
extraction and selection step, this architecture is composed
of two modules: an evolving neuro-fuzzy system (exTS) for
reliable multi-step ahead predictions, and an evidence theoretic
Markovian classifier (EvHMM) for classification. The RUL is
estimated by a classification of predictions strategy: predic-
tions are first computed by exTS, and the instant of transition
from the normal state to the faulty one is detected by the
EvHMM to finally providing a RUL estimate.
The efficiency of the proposed architecture is demonstrated on
NASA’s turbofan dataset. The impact of the size of the training
dataset is discussed, as well as the stability of RUL estimates
performance according to the actual remaining time to failure
(instant of prediction). The overall accuracy of RUL estimates
is between 74.4% and 92.2% for very long-term prediction
(130, 150 time units), and between 82.2% and 94.4% for
short-term predictions (50, 90 time units). Also, the approach
appears to be suitable even if few learning data are available.
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sociate Professor. His main teaching activities are concerned with production,
maintenance, manufacturing, and informatics domains. He is currently at the
head of the PHM team in the Automatic Control and Micro-Mechatronic
Systems department of FEMTO-ST. His research interests concern industrial
prognostics systems using connexionist approaches like neuro-fuzzy methods,
and the investigation of reliability modeling using possibility theory. He is also
the scientific coordinator of PHM research axes at FCLAB (Fuel Cell Lab)
Research Federation (CNRS).


	Introduction
	Prognostics architecture, a classification of prediction strategy
	The approach as a specific case of CBM
	Proposition of a data-driven classification of predictions strategy (CPS)
	CPS procedure, and algorithm

	Temporal predictions with an evolving neuro-fuzzy system
	Objectives
	First order Takagi-Sugeno systems
	Learning procedure of exTS
	Multi-step ahead predictions with the exTS

	Evidential Hidden Markov Model for classification of temporal predictions
	Objectives
	Classification in EvHMM
	Learning procedure of EvHMM
	RCGI, and Observations models training
	ITS, transition estimation

	RUL estimation

	Application to the turbofan dataset
	Data sets
	Feature selection
	Prediction and classification settings
	Temporal predictions settings
	Classification settings

	Evaluation process
	Results

	Conclusion
	References
	Biographies
	Dr. Emmanuel Ramasso
	Dr. Rafael Gouriveau


