Radix-2 Arithmetic for Multiplication by a Constant
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Abstract—In this paper, radix-2" arithmetic is explored to
minimize the number of additions in the multiplicaton by a
constant. We provide the formal proof that for anN-bit constant,
the maximum number of additions using radix-2 is lower than
Dimitrov’s estimated upper-bound (2N/log(N)) using double base
number system (DBNS). In comparison to canonical gned digit
(CSD) and DBNS, the new radix-2recoding requires an average
of 23.12% and 3.07% less additions for 64-bit conant,
respectively.

Index Terms—Double Base Number System (DBNS), High-
Speed and Low-Power Design, Linear-Time-Invariant I(TI)
Systems, Multiplierless Single/Mutiple Constant Muiiplication
(SCM/MCM), Radix-2" Arithmetic.

|. BACKGROUND AND MOTIVATION

ANY applications in DSP and control, such as LT

filters/controllers, involve the computation of arde
number of multiplications of one variable by a gssft
constants. To be efficiently handled the implemgotamust
be multiplierless, that is, using exclusively autis,
subtractions, and left-shifts. This problem is edll
single/multiple constant multiplication (SCM/MCM)lts
computational complexity still seems to be unknovut
because the solution space to explore is so hugehas to
use heuristics. Due to the importance of this issudarge
number of heuristics have been proposed. They lassified
in four categories:

- Digit-recoding algorithms such as the canonicalnsd
digit (CSD) representatiofil], Booth recoding2], and
Dimitrov's DBNS recoding3];

« Common subexpression elimination (CSE) using patte
matching performed after an initial digit-recodifigypical
examples are Hartldgyt], Lefévre[5], and Boullis[6];

- Directed acyclic graph (DAG) based algorithms. Thi
category includes Bernsteii], MAG [8], H(k) [9], and
Hcub[10];

» Mixed algorithms combining CSE and DAG such as th
recent optimal algorithm BIGEL1].

Surveys and detailed comparative studies showing and

cons of various algorithms are giveni®][11].

Despite the large number of proposed heuristicspuo
knowledge, only three heuristics are accompanieth tieir
respective addition-cost complexityt1][12]. This issue is
very important as it informs on the heuristic cafids and
limitations with regard to the constant bit-si2¢).(For low
values ofN (N<32), HK) [9] and Hcub[10] are, up to date,

considered as the best heuristics for SCM and MCM,

respectively. As long as their respective addittomplexities
are unknown, there is no guarantee that they wilsgrve
their leading positions for high valuesf
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It was shown in[13] that the number of additions for an
N-bit constant in CSD is bounded bi+1)/2-1 and tends
asymptotically to an average value dF3)—8/9, which yields
33% saving over the naive add-and-shift approatich?14]
was the first to prove that the multiplication bycanstant is
sublinear:O(N/(log(N))*) with o<1, where log is the natural
logarithm (Napierian). Based on the DBNS arithmétig],
Dimitrov [3] showed that the conditiom<1l in Pinch’s
complexity is not necessary, decreasing therefbee upper
limit to O(N/log(N)). Even more, in 2011, Dimitroy16]
estimated the hidden constant in the Bigrotation as being
less than 2Since then2.N/log(N) is considered as tHewest
analytic upper-bound estimated so far. On the otard,
according to[5], Ross Donelly was the first to determine in
g000 via an exhaustive search that 699829 is thellesh
value (20 bits) that can not be obtained with Seaslar less.
Thong [11] did better with the exact BIGE algorithm as he
conjectured (no proof) that 7 additions are enoughto 32
bits. Though BIGE guarantees optimality via an estiae
search, it requires an exponential runtime andag®rwith
respect toN [11]. Nevertheless, with BIGE we can observe
how much any heuristic is far from optimality up3® bits.

The main purpose of this work is the minimizationtloe
total number of additions. Based on the radisi®hmetic[17]
[18], a new digit recoding is proposed with an upper tlimi

equal to[(N+1)/r+22-2], wherer =2w{,/(N+1)og@) )/log@),
W is the Lambert function, and] is the ceiling function (e.g.

[529]=6) . This upper-bound is lower tharNPog(N) for any
rvalue of N. The method described in this paper is actually a
variant of Pinch's method: instead of splitting thaary
representation into blocks of fixed weight, it @isinto blocks
ef fixed lengths ().

The paper is organized as follows. Section | oaflirthe
need of addition-cost complexity for large constaitiwidths.
€ection Il introduces the radiX-Becoding for multiplication
by anN-bit constant, while Section Il determines its app
bound in number of additions and compares the tedol
existing heuristics. Section IV presents an illasue example.
Finally, Section V gives some concluding remarksd an
suggestions for future work.

II. RADIX-2" FORMULTIPLICATION BY AN N-BIT CONSTANT

A non-negativeN-bit constanC is expressed in radix-2as:
(N+1)/r—1
= (er a4t 20er + 21er 1t 22er +2 +HIF 2r_Zer +r-2 " 2r—1C”_ +r—l) x 21

(N+1)/r-1 _
QJ x21 ,
j=0

y

where c, =c, =0 and r ON*. For simplicity purposes and
without loss of generality, we assume thas a divider of

N+1. In eq.(1), the two’'s complement representation of the



constantC is split into (\+1)/r two’s complement slicesq;), As the binary method is used, the adder-depth dickd
from the maximum number of non-zero bits in thealyn

representation of a digitr41)-1=-2. Since there ardN¢1)/r
PP, the maximum adder-depth (Ath) in cascaded adder

each ofr bit length because it goes frofi® 2. However,
Q; needs an additional bit{) equal to the most significant

bit of the previous digit@;-1), which could be seen as some N+1 N+1
- — Ath(r) =| —=-1+r-2|=| ——=+r-3|-

form of carry due to the use of signed digits;,otnes from the
following formula: -2, x2 +6;,,x2 1 = g, x 21" We illustrate the construction process of non-&iBP with
This formula expresses the transformation of theveational the following radix-2 example:
radix-2 representation to the signed-digit radheBe. om(26)={ 1357 91113151719 21 23 25 27,29 3}

A digit-set DS(ZF) corresponds to egl), such as ={jU{2t+1=3U{22 +1=522 +3=7U{28 +1=9 28 +3=11

Q DDS(Zr):{_Zr—ll_zr—l +1..-10 ’1,”_,2r—1_12r—1}_ 234 5:1323+7:15}U{24+1:17, 24+3=1924+5=21

+1)/r-1 2+7=23 24+9=25 24+11= 27, 2 +13=29 24+15:31}.-

(N i ,
Thus, the product becomesCx X = J__OXXQJXZ”' (2) Thus, the PP ngxX) corresponding to oMz®) are

The sign of theQ term is given by thec;..; bit, and subsequently calculated in the following order (84-2teps):

\Q\ = xm. with k0 ~ q N(zr) h {3%X} ; {5x X ,;7xX}; {9%x X ,11xX ] 13xX 15%X};

) m: 0 012,..,r-4 and m DOMZ UG where 11705 1. 21w, 23X , 255K , 273X , 20X , 31xX }
oM2)={ 135..22-1}. om[2') is the set of odd positive  Fig.L provides all necessary details for hardware
=272 To ‘Q\=O implementation. It now becomes clear that &). involves

only additions subtractions and left-shifts Note that right-

correspondsm=0-( F;nally, the product can be expressed ashifts are not allowed since, j, and k are non-negative
N+1)/r-1

digits in radix-2 recoding, with \OM( ’)

. - — \Cii 41— ) fj+k; integers.
follows: CxX jZ:;) () (m] xX)x2 RC) Consequently, the total number of additions reglibsy
Unlike the multiplication by a variableY¥X) where the radix-Z is equal to: N +1
entire set of partial-productsn&X) must be precomputed, Upb() = N, + Nom{ $or-2 _21.

only a subset is needed in the multiplication bgamstant
(CxX). In fact, the number of partial-products is equmthe Upb(r) is minimal for r =2|]N(,/(N+1i[lbg(2))/log(2), where
number of different valuesy induced by the encoding processw is the Lambert Function. The minimum is obtaifiedone

of the (N+1)Ir slices (termsQ). Therefore, the generation of of the two enclosing integers of(since the upper limit is a
partial products (PP) consists first,nif£0, in computing the convex function of), and both must be testefable |gives
PP mxX if it has not been precomputed befote is then the values of that lead to the minimum number of additions
submitted to a hardwired left-shift af+k; positions, and for N ranging from 8 to 8192. It also gives the corresjing
finally, conditionally negate(j.l)cw—ldepending on the sign adder-depthsFig.2 depicts the upper-bounds in number of

bit C;j.—1 Of Q. An illustrative example is given in Section IV. additions for CSD, DBNS, and RADIX-2

TABLE |
lll.  MAXIMUM NUMBER OF ADDITIONS FOR ANN-BIT CONSTANT UPPERBOUND (Upb), ADDER-DEPTH(ATH), AND I VALUES FOR A
. . . NON-NEGATIVE N-BIT CONSTANT USING RADIX-2'

On the one hand, there ard+{l)/r iterations in eq.(3). N 13 1161321 6a] 128 258 51 10da 208 2d9s  8ib2
Each iteration generates one PP. Thus, the maxioraber of r 13l3l4al5 5] 6| 6] 7 s 8 9
PP is N+1)/r, which requires a maximum dp=(N+1)r—1 Upb()[3 | 6 | 11| 19| 32| 57| 100 174 3196 575 1037
additions. On the other hand, a maximum 252 -1 non-  [amr) |3 |6 [10] 15| 28] 46| 89| 151 262 518 o917

trivial PP {3xX, 5xX, 7xX, ..., (27~1)xX} can be invoked

during the PP generation process. They are buiiiguthe g’ 4096 T T
binary method, from the least significant bit toe timost :\2048—'D'CSD:UPb:{T"w

significant bit. That is, then elements 3, 5, 7, .../ 2-1 are 2 1024 4 ~&=DBNS U= ]

built one after the other, each time by using @lsiraddition Z 5124 _._RAD[x-z/':uph{¥+zvtﬂ

between an element that has already been builagualver of 2 2564 r=2 WV 1) oz o)

two. This process is summarized by the followingureence :"2 128 Wis the Lambert function E
relation: m; = 2° +d, wherepsr—2 becausen < 27'-1, and E 64 3 E
0<d<?. RS 3
Theorem 1 In radix-2', the precomputation of the entire set of é 165 3
non-trivial PP {3xX, 5xX, 7xX,...(27-1)xX} vyields an E 8] 3
adder-cost and an adder-depth 2f~1 and 2, respectively § 44 3

Proof. Since each new non-trivial digit requires only one 2 A — e
e : . 8 16 32 64 128 256 512 1024 2048 4096 8192
addition (recurrence relation), the adder-coshés umber of

Constant Size (N Bits) log,
non-trivial digits: N,,, :‘OM( r) -1=2"2-1. Fig. 2. Upb comparison for astbit constant.




2xx X

Step #1
3xX V
22xX 3xX ZZSIX X
For radix-2, a maximum of 2°-1=15 Step #2
additions are necessary, carried out in
6—2=4 steps in the worst case. X BxX Vi

2xX TxX XX 5xX 22xX 3xX 2%xX X

15xX 13xX 11xX 9xX \V
4

25X 15%X 29xX 13xX 2'xX 11xX 2'xX 9xX 2%xX 7xX 2'xX 5xX 2'™X 3xX 2xX X

#
31xX 29xX 27xX 25xX 23xX 21xX 19xX 17X \/

Fig. 1. Sequential order of computation of thérerget of partial-products needed by radix-2

As for the average number of additions (Avg), istmeen data kindly provided by Lefévre and Voronenko. \efilg. 3
exhaustivelycalculated for valuesf C varying from 0 to 2-1, shows lower values of Avg for non-recoding hewstias
for N=8, 16, 24, and 32. But fdX=64, we have calculated expected due to a larger exploration of the satutpace,
Avg using 16, 1¢F, 10 and 18° uniformly distributed random Table IV exhibits rather &igher value of Upb for Bernstein's
valuesof C. While the difference between the four obtainedheuristic. Significant conclusion a lower Avg does not
results is insignificant (<I9), the value Avg oscillates around guarantee a lower Upb.

15.7165 additions. Results are reportedatle Il For N=64, 9 , .
RADIX-2" uses 23.12 % less additions than CSD. This gain 1 —=—RADIX-2"

seems to grow linearly for low values f | —o—Bemstein 1986
2] —o— Lefevre's CSP 2001 ]

TABLE Il —e—BHM 1995

Hcub 2007

RADIX-2" VERSUSCSD:AVERAGE NUMBER OF ADDITIONS(AvQ)

AND UPPERBOUND (Upb) —o—MAG

2002

Average Number of Additions (Avg)
1

Constant CSD RADIX-2 Saving 7
Bit-width N Avg Upb Avg Upb| (Avg,%) 4_‘ ]
8 1.7882 4 1.8645 3| -4.2668 1
16 4.4445 8 45127 6| -1.5344 37 ]
24 7.1111 12 6.7994 9 4.3832] 2 i
32 9.7777 16 8.9627 11 8.3352 1
64 20.4444| 32| 15.7165F 19 23.1256 : . 7 1‘9 > >
*: Obtained from 18 uniformly distributed random values 6f Constant Size (VN Bits)

+: RADIX-2" average is higher than CSD'’s.

Fig. 3. Avg comparison for ak-bit constant.
CSD Avg = (V/3)-8/9 and CSD UplféN+3/2-1]. 9 g comp

) o Another performance indicator of the recoding i th
Regarding DBNSDimitrov [3] calculated Avg and Upb smajlest value that requiresadditions, forg varying from 1
from 1& uniformly distributedrandom constants, for 32 and to the upper-bound of the recodirable V summarizes this

the worst cases are not attained by the pattet@afonstants. higher values are given by RADIX-2ompared to CSD.
We have also compared RADIX-fo some non-recoding
heuristics (CSE and DAG) based on programs and riome

TABLE Il
RADIX-2" VERSUSDBNS :AVERAGE NUMBER OF ADDITIONS(AvQ)

IV. [LLUSTRATIVE EXAMPLE

The product 10599is first calculated in CSD, DBNS, and
RADIX-2". Let us note that (10599¥(10100101100114)

AND UPPERBOUND (Upb) Pesm (X% 213)+( Xx2M)+( Xx2%)—(Xx2")—(Xx 2%)+(Xx 2%)—X.
Constant|  DBNS|[3] RADIX-2" Saving Poens=(( Xix2Y)+ Xo)+ (Xx 213+ (Xx2%)—X
BitwidthN| Avg | Upb | Avg | Upb| (Avg.%) with Xy =(( Xox2Y)+Xo)+( Xx2°) and Xo=( Xx2%) [3].
32 |=005™ | 13* | 89627 | 11 0.9646 In order to express the product iRgapix, a two's
64 1621517 21* | 15.7165] 19 3.0749 complement representation of (10599 necessary, which is
+: Taken from Fig.1 in[3]; * Obtained from 10 uniformly (010100101100111)Thus, in two’s complement notation, the

distributed random values . constant size becomés-1 (14+1=15 for 10599).



TABLE IV

RADIX-2" VERSUS NONRECODING ALGORITHMS RUNTIME COMPLEXITY
AND NUMBER OF ADDITIONS OF SOME SPECIAL CASES

TABLE V
RADIX-2" VERSUSCSD,LEFEVRES CSP, AND EXHAUSTIVE SEARCH
SMALLEST VALUES UP TO A32-BIT CONSTANT

_ Runtime Number of : Lefévre's Exhaustive
Algorithm (84AB?)* (64AB5+5 M (5959595 B) 10 Additions @) Csb RADIX-Z CSP* [5] search5]
N=20 N=23 N=31 [10]
- 1 3 3 3 3
BIGE [11] 4 5 8 o) 2 11 11 11 11
Bernstein7] 8¢ 7 8 oM [5] 3 43 43 43 43
Heub* [10] 4 6 _ ond) 4 171 139 213 683
5 683 651 1703 14709
* _ 4
BHM" [19] 5 ! O(N) 6 2731 2699 13623 699829
Lefevre's CSH5| | 4 6 9 O(N®) 7 10923 33419 174903| 171398453
RADIX-2' 5 7 10 O(N) 8 43691 526491 1420471 -
N: Constant bit-size; +: In RADIX!2a zero bit is added in the MSB 9 174763 8422027 13479381 -
position to ensure a non-negative value of theteonsn the recoding. 10 699051 134744219 - -
G: Greater than RADIX'2Upb; RADIX-2 Upb=7, 8, and 10, fdi=20, 23 11 2796203 2155905676 — -
and 31, respectively; *: Values are delivered $yiral web versiorj20], 12 11184811 — — —
limited to 26 bits; X Optimal number of additions. 13 44739243 — — —
The BIGE optimal solutions for the indicated valaes obtained as follows: 14 178956971 - - -
(84AB5), : 15 = (2)-1 ; 3825 = (15x9-15 ; 19125 = (3825%p+3825; 15 715827883 - - -

543413 = ($)+19125.

(64AB55), : 255 = (8)-1; 65281 = (255X¥p+1; 1109777 = (65281%4pF
65281; 5548885 = (1109777321109777; 6597461 = {3+5548885.
(5959595B) : 257= (8)+1; 16843009= (257*9+257; 16843011= (2)+
16843009; 50529027 = (16843009x2)+16843009; 422275
(505290273 +16843011; 1499027803 = (16843009%221075227.

To N=14 corresponds=3 (see Upb formula). F&@=10599,
eg. (1) and(3) become respectively:
4 4 .
C=37Qx2% ,and Praoix = 2 (-1 x (my x X 2%1%%
j=0 i=0
Fig.4 depicts the five term&),. To determine the unknown
valuescss,, My, andk;, the radix-2look-up table Table V) is
indexed bythe terms Q. Referring toTable VI, the triplets
(C+2, My, k) corresponding tQo, Qi Q2 Qs and Q, are

*. Lefévre calculated the values fqrup to 9. This means that the common
subpattern algorithm (CSP) exhibits an Up® among all 32-bit constants.
+: This is the sole value which has not been cowdd by Lefévre's
exhaustive algorithm. It has been found only by &yn[5], using left-
shifts exclusively. If "right-shifts" are allowedhe value is strictly higher
since the BIGE solution using righhifts gives 6 additions, as follows
5 = (A)+1; 639 = (5x9-1; 317 = (639-5)x2; 5194045 = (317x9)+317;
171393341 = (317X9)+5194045; 171398453 = (639%2171393341.
Thong[11] conjecturedthat 7 additions are enough up to 32 kitkywing
right-shifts (exhaustive BIGE algorithm). It hasehgrovedvia RADIX-2"
heuristicthat 11 additions are sufficient up to 32 bitsngdeft-shifts only.

O X x 27040 — X x 20+0D) 4 = X < 290D + 0

X x 2"0%D + X x 204070 4 (= (- X x 29+ 07D +
Another interesting idea is to includedundancyin the

termsQ; of eq.(1). These two tricks will decrease the average

(1,1,0), (1,3,0), (1,1,1), (1,3,0), and (0,3,0)prectively. The nmper of additions in RADIX!ZTable I, 1ll, andFig. 3.
recoding ofC=10599 involves the precomputation of the PP |, 5qdition to higher compression capabilitiefR@DIX-2"

3xX. Consequently, we can write:

Prapix= (3xX)x2% — (3xX)x2” — (1) x2" — (3xX)x2° — (1%X)
= (Xx2"%) — (%x2%) — (Xx2") - (Xpx2°) =X,

with Xp= (Xx2)+X..

Q=-3 Qi=-3
| | |
01dpop101|10|1111|
Q=3 Q= —1x2 Qo= -1

I C14 C13 C12 C13 Cio C9 Cg C7 C C5 C4 C3 C2 C1 Co C—1|

C=Qux212+Qyx29 +Q, x 26 +Q x23 +Qq = (10599,

Cz, Cs, Cg, C11, C14 Are sign bits. ILI &l
15+1 bits  3+1 bits

Fig. 4. Partitioning of (10599)in radix-Z.

It has to be noted that f@=10599,P.spandPpgns require
both 6 additions, whil®gapixrequires 5. The naive shift-and-
add approach would have required 7 additidhe assume
that addition and subtraction have the same aresdspost,
and that shift is costless since it can be reali@éHout any
gates, i.e. just by using hard wiring.

Simplifications in eq. (3) are possible in case two
consecutive term&, andQ;,, with opposite signs exhibit pairs
(m , k) of the form (1,r—1) and (1, 0), respectively. This is
illustrated by the two following possibilities:

compared to CSD and DBNS, its runtime complexity is
linearly proportional toN as shown by eq.l). Moreover the
required memory space v&ry small(for a 8192-bit constant
corresponds a look-up table of"21024 entries). These two
features make RADIX 2very useful for huge constants.

TABLE VI
RADIX -2° LOOK-UP TABLE
Q
Cgj+2 | Cgj+1 | Cgj [Cg-1 m k‘
0 00| 0] O] O
0 00| 1] 1] O
0 0|1 0] 1] O
0 0|1 1] 1] 1
0 1 (0 0] 1| 1
0 1 /0 1] 3/ 0
0 11 o] 3/ O
0 102 1] 1 2
1 0|0| O 1] 2
1 00| 2] 3] 0
1 0|1] 0] 3] O
1 0|1 1| 1] 1
1 1 /0 0] 1| 1
1 10 1] 1| O
1 1121 0] 1/ O
1 11 1]0f O

Note that for radix-2
k0 013 and m {013}



Since the introduction of K) [9] in 2004, CSE heuristics [5]
have outperformed DAGs at SC[1]. This was achieved by
applying CSE to each possible signed-digit (SDfaf the
constant. Likewise, the search space of CSE cagxpanded
considering RADIX-2 recoding instead of SD representationgz)
For such a goal (SCM/MCM), Lefevre’s CSP heurigti¢
stands as the best CSE candidate for its lower otatipnal [8]
complexityO(N?) in comparison to its CSE counterpdfis].

Many conversion techniques from unsigned or two’s
complement number to its CSD form are proposecttiuce 9]
the hardware complexity and increase the speedanahle
multipliers [21]. Based on RADIX-2 we proposed several
conversion techniques and determined the mostieftione.
For more details on our extensive work on RADIX-
multiplication problem, reader is referred #2] [23] [24].

(6]

,110]

[11]
V. CONCLUSION AND FUTURE WORK

Based on radix-2arithmetic, we have developed a new
linear-time recoding (RADIX-2 accompanied with its upper- [12]
bound complexity. The latter is the lowest uppewtmbknown
so far for the multiplication by a constant. Whitee bound is
for a minimal set of operations (additions, subticaxs, and
left-shifts), it remains valid if any other opemti (such as
right-shifts) is allowed.

Not only RADIX-2 achieves better compression ratio thaps)
DBNS and CSD, which yields more speed and less amnda
power consumption, but also stands as a practitaihative
to non-recoding heuristics for large constant hLiths.
Further improvements of RADIX 2 are possible using
redundancy in the recoding. [17]

Our current work deals with exact analytic expressiof
the average number of additions as well as themaihadder-
depth of RADIX-2, which are still to be determined.

[14]

[16]
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