

Abstract—In this paper, radix-2r arithmetic is explored to
minimize the number of additions in the multiplication by a
constant. We provide the formal proof that for an N-bit constant,
the maximum number of additions using radix-2r is lower than
Dimitrov’s estimated upper-bound (2.N/log(N)) using double base
number system (DBNS). In comparison to canonical signed digit
(CSD) and DBNS, the new radix-2r recoding requires an average
of 23.12% and 3.07% less additions for 64-bit constant,
respectively.

Index Terms—Double Base Number System (DBNS), High-
Speed and Low-Power Design, Linear-Time-Invariant (LTI)
Systems, Multiplierless Single/Mutiple Constant Multiplication
(SCM/MCM), Radix-2 r Arithmetic.

I. BACKGROUND AND MOTIVATION

ANY applications in DSP and control, such as LTI
filters/controllers, involve the computation of a large

number of multiplications of one variable by a set of
constants. To be efficiently handled the implementation must
be multiplierless, that is, using exclusively additions,
subtractions, and left-shifts. This problem is called
single/multiple constant multiplication (SCM/MCM). Its
computational complexity still seems to be unknown. But
because the solution space to explore is so huge, one has to
use heuristics. Due to the importance of this issue, a large
number of heuristics have been proposed. They are classified
in four categories:

• Digit-recoding algorithms such as the canonical signed
digit (CSD) representation [1], Booth recoding [2], and
Dimitrov’s DBNS recoding [3];

• Common subexpression elimination (CSE) using pattern
matching performed after an initial digit-recoding. Typical
examples are Hartley [4], Lefèvre [5], and Boullis [6];

• Directed acyclic graph (DAG) based algorithms. This
category includes Bernstein [7], MAG [8], H(k) [9], and
Hcub [10];

• Mixed algorithms combining CSE and DAG such as the
recent optimal algorithm BIGE [11].

Surveys and detailed comparative studies showing pros and
cons of various algorithms are given in [10][11].

Despite the large number of proposed heuristics, to our
knowledge, only three heuristics are accompanied with their
respective addition-cost complexity [11][12]. This issue is
very important as it informs on the heuristic capabilities and
limitations with regard to the constant bit-size (N). For low
values of N (N≤32), H(k) [9] and Hcub [10] are, up to date,
considered as the best heuristics for SCM and MCM,
respectively. As long as their respective addition complexities
are unknown, there is no guarantee that they will preserve
their leading positions for high values of N.

It was shown in [13] that the number of additions for an
N-bit constant in CSD is bounded by (N+1)/2–1 and tends
asymptotically to an average value of (N/3)–8/9, which yields
33% saving over the naive add-and-shift approach. Pinch [14]
was the first to prove that the multiplication by a constant is
sublinear: O(N/(log(N))α) with α<1, where log is the natural
logarithm (Napierian). Based on the DBNS arithmetic [15],
Dimitrov [3] showed that the condition α<1 in Pinch’s
complexity is not necessary, decreasing therefore the upper
limit to O(N/log(N)). Even more, in 2011, Dimitrov [16]
estimated the hidden constant in the big-O notation as being
less than 2. Since then, 2.N/log(N) is considered as the lowest
analytic upper-bound estimated so far. On the other hand,
according to [5], Ross Donelly was the first to determine in
2000 via an exhaustive search that 699829 is the smallest
value (20 bits) that can not be obtained with 5 adders or less.
Thong [11] did better with the exact BIGE algorithm as he
conjectured (no proof) that 7 additions are enough up to 32
bits. Though BIGE guarantees optimality via an exhaustive
search, it requires an exponential runtime and storage with
respect to N [11]. Nevertheless, with BIGE we can observe
how much any heuristic is far from optimality up to 32 bits.

The main purpose of this work is the minimization of the
total number of additions. Based on the radix-2r arithmetic [17]
[18], a new digit recoding is proposed with an upper limit
equal to () 22/1 2 −++ −rrN , where, ()())2/log()2log(1W2 ⋅+⋅= Nr ,
W is the Lambert function, and   is the ceiling function (e.g.

  6295 =.) . This upper-bound is lower than 2.N/log(N) for any
value of N. The method described in this paper is actually a
variant of Pinch's method: instead of splitting the binary
representation into blocks of fixed weight, it is split into blocks
of fixed lengths (r).

The paper is organized as follows. Section I outlines the
need of addition-cost complexity for large constant bit-widths.
Section II introduces the radix-2r recoding for multiplication
by an N-bit constant, while Section III determines its upper-
bound in number of additions and compares the results to
existing heuristics. Section IV presents an illustrative example.
Finally, Section V gives some concluding remarks and
suggestions for future work.

II. RADIX -2r FOR MULTIPLICATION BY AN N-BIT CONSTANT

 A non-negative N-bit constant C is expressed in radix-2r as:

(
()

) rj
rrj

r
rrj

r
rN

j
rjrjrjrj ccccccC 222222 1

1
2

2
1/1

0
2

2
1

10
1 ×−+⋅⋅⋅++++= −+

−
−+

−
−+

=
++−∑

 ()
∑

−+

=
×=

1/1

0

2
rN

j

rj
jQ , (1)

where 01 ==− Ncc and *Ν∈r . For simplicity purposes and

without loss of generality, we assume that r is a divider of
N+1. In eq. (1), the two’s complement representation of the

Radix-2r Arithmetic for Multiplication by a Constant
Abdelkrim K. Oudjida, and Nicolas Chaillet, Member, IEEE

M

A.K. Oudjida is with “Centre de Développement des Technologies
Avancées”, CDTA, Cité du 20 août 1956, Baba-Hassen, Algiers, Algeria.
N. Chaillet is with FEMTO-ST Institute, UFC/CNRS/ENSMM/UTBM, 32
avenue de l'Observatoire, 25044 Besançon, Cedex, France.

TABLE I
UPPER-BOUND (Upb), ADDER-DEPTH (ATH), AND r VALUES FOR A

NON-NEGATIVE N-BIT CONSTANT USING RADIX-2r

N 8 16 32 64 128 256 512 1024 2048 4096 8192
r 3 3 4 5 5 6 6 7 8 8 9

 Upb(r) 3 6 11 19 32 57 100 177 319 575 1037

Ath(r) 3 6 10 15 28 46 89 151 262 518 917

 Fig. 2. Upb comparison for an N-bit constant.

constant C is split into (N+1)/r two’s complement slices (jQ),

each of r bit length because it goes from 20 to 2r–1. However,

jQ needs an additional bit (crj–1) equal to the most significant

bit of the previous digit (1−jQ), which could be seen as some

form of carry due to the use of signed digits; it comes from the
following formula: () .ccc rrj

rrj
jr

rrj
rj

rrj
r 1

1
1

11
1 2222 −+

−+
+

−+−+
− ×=×+×−

 This formula expresses the transformation of the conventional
radix-2r representation to the signed-digit radix-2r one.

A digit-set ()rDS2 corresponds to eq. (1), such as

() { }1111 2121011222 −−−− −−+−−=∈ rrrrr
j ,,...,,,,,...,DSQ .

Thus, the product becomes:
()

rj
rN

j
jQXXC 2

1/1

0

××=× ∑
−+

=

. (2)

The sign of the Qj term is given by the crj+r–1 bit, and

j
k

j mQ j ×= 2 , with { }1210 −∈ r,...,,,kj
 and () { }02 U

r
j OMm ∈ , where

() { }12...,,5,3,12 1−= −rrOM . ()rOM 2 is the set of odd positive

digits in radix-2r recoding, with () 222 −= rrOM . To 0=jQ

corresponds mj=0. Finally, the product can be expressed as

follows: () ()
()

jrrj krj
rN

j
j

c XmXC +
−+

=
×××−=× ∑ −+ 21

1/1

0

1 . (3)

 Unlike the multiplication by a variable (Y×X) where the
entire set of partial-products (mj×X) must be precomputed,
only a subset is needed in the multiplication by a constant
(C×X). In fact, the number of partial-products is equal to the
number of different values mj induced by the encoding process
of the (N+1)/r slices (terms Qj). Therefore, the generation of
partial products (PP) consists first, if mj≠0, in computing the
PP mj×X if it has not been precomputed before. It is then
submitted to a hardwired left-shift of rj+k j positions, and

finally, conditionally negated() 11 −+− rrjc depending on the sign

bit crj+r–1 of Qj. An illustrative example is given in Section IV.

III. MAXIMUM NUMBER OF ADDITIONS FOR AN N-BIT CONSTANT

On the one hand, there are (N+1)/r iterations in eq. (3).
Each iteration generates one PP. Thus, the maximal number of
PP is (N+1)/r, which requires a maximum of Npp=(N+1)/r–1
additions. On the other hand, a maximum of 12 2 −−r non-
trivial PP {3×X, 5×X, 7×X, …, (2r–1–1)×X} can be invoked
during the PP generation process. They are built using the
binary method, from the least significant bit to the most
significant bit. That is, the mj elements 3, 5, 7, ..., 2r–1–1 are
built one after the other, each time by using a single addition
between an element that has already been built and a power of
two. This process is summarized by the following recurrence
relation: dm p

j += 2 , where p≤r–2 because mj ≤ 2r–1–1, and

0 < d < 2p.

Theorem 1. In radix-2r, the precomputation of the entire set of
non-trivial PP {3×X, 5×X, 7×X,…,(2r–1–1)×X} yields an
adder-cost and an adder-depth of 2r–2–1 and r–2, respectively.
Proof. Since each new non-trivial digit requires only one
addition (recurrence relation), the adder-cost is the number of

non-trivial digits: () 1212 2 −=−= −rr
om OMN .

As the binary method is used, the adder-depth is deduced
from the maximum number of non-zero bits in the binary
representation of a digit: (r–1)–1=r–2. Since there are (N+1)/r
PP, the maximum adder-depth (Ath) in cascaded adders is:

 Ath(r)





 −++=




 −+−+= 3
1

21
1

r
r

N
r

r

N .

We illustrate the construction process of non-trivial PP with
the following radix-26 example:

() { }31,29,27,25,23,21,19,17,15,13,11,9,7,5,3,126 =OM

 { } { } { } { ,1132,912732,5123121 33221 =+=+=+=+=+= UUU
 } { ,2152,1932,17121572,1352 44433 =+=+=+=+=+ U

 }31152,29132,27112,2592,2372 44444 =+=+=+=+=+ .

Thus, the PP (mj×X) corresponding to ()62OM are

subsequently calculated in the following order (6–2=4 steps):
 {3×X} ; {5× X ,7×X } ; {9× X ,11×X ,13×X ,15×X } ;
 {17×X ,19×X , 21×X , 23×X , 25×X , 27×X , 29×X , 31×X }.

 Fig.1 provides all necessary details for hardware
implementation. It now becomes clear that eq. (3) involves
only additions, subtractions, and left-shifts. Note that right-
shifts are not allowed since r, j, and kj are non-negative
integers.

Consequently, the total number of additions required by
radix-2r is equal to:

 Upb(r) 




 −++=+= − 22
1 2r

ompp r

N
NN .

Upb(r) is minimal for ()())2/log()2log(1W2 ⋅+⋅= Nr , where
W is the Lambert Function. The minimum is obtained for one
of the two enclosing integers of r (since the upper limit is a
convex function of r), and both must be tested. Table I gives
the values of r that lead to the minimum number of additions
for N ranging from 8 to 8192. It also gives the corresponding
adder-depths. Fig.2 depicts the upper-bounds in number of
additions for CSD, DBNS, and RADIX-2r.

TABLE II
 RADIX-2r VERSUS CSD: AVERAGE NUMBER OF ADDITIONS (Avg)

AND UPPER-BOUND (Upb)

CSD RADIX-2r Constant
Bit-width N Avg Upb Avg Upb

Saving
 (Avg,%)

8 1.7882 4 1.8645 3 −4.2668+
16 4.4445 8 4.5127 6 −1.5344+
24 7.1111 12 6.7994 9 4.3832
32 9.7777 16 8.9627 11 8.3352
64 20.4444 32 15.7165* 19 23.1256

*: Obtained from 1010 uniformly distributed random values of C.
+: RADIX-2r average is higher than CSD’s.

CSD Avg = (N/3)–8/9 and CSD Upb=() 12/1 −+N .

 Fig. 3. Avg comparison for an N-bit constant.

As for the average number of additions (Avg), it has been
exhaustively calculated for values of C varying from 0 to 2N–1,
for N=8, 16, 24, and 32. But for N=64, we have calculated
Avg using 105, 106, 109 and 1010 uniformly distributed random
values of C. While the difference between the four obtained
results is insignificant (<10–3), the value Avg oscillates around
15.7165 additions. Results are reported in Table II. For N=64,
RADIX-2r uses 23.12 % less additions than CSD. This gain
seems to grow linearly for low values of N.

Regarding DBNS, Dimitrov [3] calculated Avg and Upb
from 105 uniformly distributed random constants, for 32 and
64 bits only (Table III). Note that DBNS Upb will be higher if
the worst cases are not attained by the pattern of 105 constants.

We have also compared RADIX-2r to some non-recoding
heuristics (CSE and DAG) based on programs and numeric

data kindly provided by Lefèvre and Voronenko. While Fig. 3
shows lower values of Avg for non-recoding heuristics as
expected due to a larger exploration of the solution space,
Table IV exhibits rather a higher value of Upb for Bernstein's
heuristic. Significant conclusion: a lower Avg does not
guarantee a lower Upb.

Another performance indicator of the recoding is the
smallest value that requires q additions, for q varying from 1
to the upper-bound of the recoding. Table V summarizes this
information for a 32-bit constant. Note that starting from q=7,
higher values are given by RADIX-2r compared to CSD.

IV. ILLUSTRATIVE EXAMPLE

The product 10599×X is first calculated in CSD, DBNS, and
RADIX-2r. Let us note that (10599)10=(10100101100111)2.
PCSD=(X×213)+(X×211)+(X×29)–(X×27)–(X×25)+(X×23)–X.
PDBNS=((X1×21)+ X1)+ (X×213)+ (X×23)–X ,
with X1=((X0×21)+X0)+(X×25) and X0=(X×28) [3].

In order to express the product in PRADIX, a two’s
complement representation of (10599)10 is necessary, which is
(010100101100111)2. Thus, in two’s complement notation, the
constant size becomes N+1 (14+1=15 for 10599).

X

+

3×X X

+

22×X 22×X

5×X 7×X

+

3×X X

+

23×X 23×X

9×X 11×X

+ +

23×X 23×X

13×X 15×X

5×X 7×X

+

21×X

3×X

+

3×X X

+

24×X 24×X

17×X 19×X

+ +

24×X 24×X

21×X 23×X

5×X 7×X

+

11×X

+

24×X 24×X

25×X 27×X

+ +

24×X 24×X

29×X 31×X

13×X 15×X 9×X

Step #1

Step #2

Step #3

Step #4

Fig. 1. Sequential order of computation of the entire set of partial-products needed by radix-26.

For radix-26, a maximum of 26–2–1=15
additions are necessary, carried out in
6–2=4 steps in the worst case.

TABLE III
 RADIX-2r VERSUS DBNS : AVERAGE NUMBER OF ADDITIONS (Avg)

AND UPPER-BOUND (Upb)

DBNS [3] RADIX-2r Constant
Bit-width N Avg Upb Avg Upb

Saving
 (Avg,%)

32 ≈9.05
+
* 13* 8.9627 11 0.9646

64 16.2151* 21* 15.7165 19 3.0749

+: Taken from Fig.1 in [3]; *: Obtained from 105 uniformly
distributed random values of C.

TABLE V
 RADIX-2r VERSUS CSD, LEFEVRE'S CSP, AND EXHAUSTIVE SEARCH:

SMALLEST VALUES UP TO A 32-BIT CONSTANT

Number of
Additions (q) CSD RADIX-2r

Lefèvre’s
CSP* [5]

Exhaustive
search [5]

1 3 3 3 3
2 11 11 11 11
3 43 43 43 43
4 171 139 213 683
5 683 651 1703 14709
6 2731 2699 13623 699829
7 10923 33419 174903 171398453

+
8 43691 526491 1420471 –
9 174763 8422027 13479381 –
10 699051 134744219 – –
11 2796203 2155905675 – –
12 11184811 – – –
13 44739243 – – –
14 178956971 – – –
15 715827883 – – –

*: Lefèvre calculated the values for q up to 9. This means that the common
subpattern algorithm (CSP) exhibits an Upb ≥ 9 among all 32-bit constants.
+: This is the sole value which has not been confirmed by Lefèvre’s
exhaustive algorithm. It has been found only by Donelly [5], using left-
shifts exclusively. If "right-shifts" are allowed, the value is strictly higher
since the BIGE solution using right-shifts gives 6 additions, as follows:
5 = (22)+1; 639 = (5×27)–1; 317 = (639–5)×2–1; 5194045 = (317×214)+317;
171393341 = (317×219)+5194045; 171398453 = (639×23)+171393341.
Thong [11] conjectured that 7 additions are enough up to 32 bits, allowing
right-shifts (exhaustive BIGE algorithm). It has been proved via RADIX-2r

heuristic that 11 additions are sufficient up to 32 bits, using left-shifts only.

TABLE IV
 RADIX-2r VERSUS NON-RECODING ALGORITHMS: RUNTIME COMPLEXITY

AND NUMBER OF ADDITIONS OF SOME SPECIAL CASES

Algorithm
(84AB5)H

N=20
+

(64AB55)H
N=23

+

(5959595B)H
N=31

+

Runtime
 [10]

BIGE [11] 4 5 6 O(2
N)

Bernstein [7] 8
G 7 8 O(2

N) [5]

Hcub* [10] 4 6 – O(N
6)

BHM* [19] 5 7 – O(N
4)

Lefèvre’s CSP [5] 4 6 9 O(N
3)

RADIX-2r 5 7 10 O(N)

N: Constant bit-size; +: In RADIX-2r, a zero bit is added in the MSB
position to ensure a non-negative value of the constant in the recoding.
G: Greater than RADIX-2r Upb; RADIX-2r Upb=7, 8, and 10, for N=20, 23,
and 31, respectively; *: Values are delivered by Spiral web version [20],
limited to 26 bits; X: Optimal number of additions.
The BIGE optimal solutions for the indicated values are obtained as follows:
(84AB5)H : 15 = (24)–1 ; 3825 = (15×28)–15 ; 19125 = (3825×22)+3825;
543413 = (219)+19125.
(64AB55)H : 255 = (28)–1; 65281 = (255×28)+1; 1109777 = (65281×24)+
65281; 5548885 = (1109777×22)+1109777; 6597461 = (220)+5548885.
(5959595B)H : 257= (28)+1; 16843009= (257×216)+257; 16843011= (2)+
16843009; 50529027 = (16843009×2)+16843009; 421075227 =
(50529027×23) +16843011; 1499027803 = (16843009×26)+421075227.

 To N=14 corresponds r=3 (see Upb formula). For C=10599,
eq. (1) and (3) become respectively:

∑
=

×=
4

0

32
j

j
jQC , and

 () () jj kj

j
j

c
RADIX XmP +

=
×××−= ∑ + 3

4

0

21 23 .

Fig.4 depicts the five terms Qj. To determine the unknown
values c3j+2, mj, and kj, the radix-23 look-up table (Table VI) is
indexed by the terms Qj. Referring to Table VI, the triplets
(c3j+2, mj, kj) corresponding to Q0, Q1, Q2, Q3, and Q4 are
(1,1,0), (1,3,0), (1,1,1), (1,3,0), and (0,3,0), respectively. The
recoding of C=10599 involves the precomputation of the PP
3×X. Consequently, we can write:
PRADIX = (3×X)×212 – (3×X)×29 – (1×X)×27 – (3×X)×23 – (1×X)

 = (X0×212) – (X0×29) – (X×27) – (X0×23) – X,
with X0 = (X×2)+X .

It has to be noted that for C=10599, PCSD and PDBNS require
both 6 additions, while PRADIX requires 5. The naive shift-and-
add approach would have required 7 additions. We assume
that addition and subtraction have the same area/speed cost,
and that shift is costless since it can be realized without any
gates, i.e. just by using hard wiring.

Simplifications in eq. (3) are possible in case two
consecutive terms Qj and Qj+1 with opposite signs exhibit pairs
(mj , kj) of the form (1, r–1) and (1, 0), respectively. This is
illustrated by the two following possibilities:

 ⋅⋅⋅±×+⋅⋅⋅=⋅⋅⋅±×−×+⋅⋅⋅ −+−++ 1)(rrj1)(rrj1)r(j 2X2X2X

 ⋅⋅⋅±×−⋅⋅⋅=⋅⋅⋅±×+×−⋅⋅⋅ −+−++ 1)(rrj1)(rrj1)r(j 2X2X2X

Another interesting idea is to include redundancy in the
terms Qj of eq. (1). These two tricks will decrease the average
number of additions in RADIX-2r (Table II, III, and Fig. 3).

 In addition to higher compression capabilities of RADIX-2r
compared to CSD and DBNS, its runtime complexity is
linearly proportional to N as shown by eq. (1). Moreover the
required memory space is very small (for a 8192-bit constant
corresponds a look-up table of 29+1=1024 entries). These two
features make RADIX-2r very useful for huge constants.

 0 1 0 1 0 0 1 0 1 1 0 0 1 1 1 0

 Q0= –1

Q1= –3

Q2= –1×21

Q3= –3

 c14 c13 c12 c11 c10 c9 c8 c7 c6 c5 c4 c3 c2 c1 c0 c −1

 C
 15+1 bits

Qj

 3+1 bits

 ()100
3

1
6

2
9

3
12

4 105992222 =+×+×+×+×= QQQQQC

 c2, c5, c8, c11, c14 are sign bits.

 Fig. 4. Partitioning of (10599)10 in radix-23.

Q4=3
TABLE VI

RADIX -23 LOOK-UP TABLE

Qj

c3j+2 c3j+1 c3j c3j− 1
mj kj

0 0 0 0 0 0
0 0 0 1 1 0
0 0 1 0 1 0
0 0 1 1 1 1
0 1 0 0 1 1
0 1 0 1 3 0
0 1 1 0 3 0
0 1 1 1 1 2
1 0 0 0 1 2
1 0 0 1 3 0
1 0 1 0 3 0
1 0 1 1 1 1
1 1 0 0 1 1
1 1 0 1 1 0
1 1 1 0 1 0
1 1 1 1 0 0

Note that for radix-23,
{ }2,1,0∈jk

and { }3,1,0∈jm .

Since the introduction of H(k) [9] in 2004, CSE heuristics
have outperformed DAGs at SCM [11]. This was achieved by
applying CSE to each possible signed-digit (SD) form of the
constant. Likewise, the search space of CSE can be expanded
considering RADIX-2r recoding instead of SD representation.
For such a goal (SCM/MCM), Lefèvre’s CSP heuristic [5]
stands as the best CSE candidate for its lower computational
complexity O(N

3) in comparison to its CSE counterparts [10].
Many conversion techniques from unsigned or two’s

complement number to its CSD form are proposed to reduce
the hardware complexity and increase the speed of variable
multipliers [21]. Based on RADIX-2r, we proposed several
conversion techniques and determined the most efficient one.
For more details on our extensive work on RADIX-2r
multiplication problem, reader is referred to [22] [23] [24].

V. CONCLUSION AND FUTURE WORK

Based on radix-2r arithmetic, we have developed a new
linear-time recoding (RADIX-2r) accompanied with its upper-
bound complexity. The latter is the lowest upper-bound known
so far for the multiplication by a constant. While the bound is
for a minimal set of operations (additions, subtractions, and
left-shifts), it remains valid if any other operation (such as
right-shifts) is allowed.

Not only RADIX-2r achieves better compression ratio than
DBNS and CSD, which yields more speed and less area and
power consumption, but also stands as a practical alternative
to non-recoding heuristics for large constant bit-widths.
Further improvements of RADIX-2r are possible using
redundancy in the recoding.

Our current work deals with exact analytic expressions of
the average number of additions as well as the minimal adder-
depth of RADIX-2r, which are still to be determined.

ACKNOWLEDGMENT

This work is supported by “Centre de Développement des
Technologies Avancées”, CDTA, Algiers, Algeria, under
project contract number: 21/CRSOC/DMN/CDTA/2011. The
project progresses under a close cooperation with FEMTO-ST
institute, Besançon, France.

Authors wish to thank M.L. Berrandjia and F. Ykhlef for
their technical help, and B. Djezzar for his careful review of
this manuscript.

REFERENCES

[1] A. Avizienis, “Signed-digit number representation for fast parallel
arithmetic,” IRE Trans. on Electronic Computers, vol. EC-10, No. 3, pp.
389–400, September 1961.

[2] Y.E. Kim et al., “Efficient Design of Modified Booth Multipliers for
Predetermined Coefficients,” Proceedings of the IEEE International
Symposium on Circuits and Systems (ISCAS), pp. 2717-2720, Island of
Kos, Greece, May 2006.

[3] V.S. Dimitrov, L. Imbert, and A. Zakaluzny, “Multiplication by a
Constant is Sublinear,” Proceedings of the 18th IEEE Symposium on
Computer Arithmetic (ARITH), pp. 261-268, June 2007.

[4] R.I. Hartley, “Subexpression Sharing in Filters Using Canonic Signed
Digit Multipliers,” IEEE Trans. on Circuits and Systems II: Analog and
Digital Signal Processing, vol. 43, No. 10, pp. 677-688, October 1996.

[5] V. Lefèvre, “Multiplication by an Integer Constant,” INRIA Research
Report, No. 4192, Lyon, France, May 2001.

[6] N. Boullis and A. Tisserand, “Some Optimizations of Hardware
Multiplication by Constant Matrices,” IEEE Trans. on Computers (TC),
vol. 54, No. 10, pp. 1271-1282, October 2005.

[7] R.L. Bernstein, “Multiplication by Integer Constant,” Software– Practice
and Experience 16, 7, pp. 641-652, 1986.

[8] O. Gustafsson, A.G. Dempster, and L. Wanhammar, “Extended Results
for Minimum-Adder Constant Integer Multipliers,” Proceedings of the
IEEE International Symposium on Circuits and Systems (ISCAS), vol.
1, pp. I-73 I-76, Scottsdale Arizona, USA, May 2002.

[9] A. Dempster and M. Macleod, “Using Signed-Digit Representations to
Design Single Integer Multipliers Using Subexpression Elimination,”
Proceedings of the IEEE International Symp.m on Circuits and Systems
(ISCAS), vol. 3, pp. III-165-168, Vancouver, Canada, May 2004.

[10] Y. Voronenko and M. Püschel, “Multiplierless Multiple Constant
Multiplication,” ACM Trans. on Algorithms (TALG), vol. 3, No. 2,
article 11, pp. 1-38, May 2007.

[11] J. Thong and N. Nicolici, “An optimal and practical approach to single
constant multiplication,” IEEE Trans. on Computer-Aided Design of
Integrated Circuits and Systems, vol. 30, no. 9, pp. 1373-1386,
September 2011.

[12] O. Gustafsson, “Lower Bounds for Constant Multiplication Problems,”
IEEE Trans. on Circuits and Systems II: Express Brief, vol. 54, No. 11,
pp. 974-978, November 2007.

[13] R. W. Reitwiesner, “Binary Arithmetic,” Advances in Computers, New
York: Academic, vol. I , pp. 231-308, 1966.

[14] R. G. E. Pinch, “Asymptotic Upper Bound for Multiplier Design,”
Electronics Letters, vol. 32, N° 5, pp. 420-421, February 1996.

[15] V.S. Dimitrov, G.A. Jullien, and W.C. Miller, “Theory and Applications
of the Double-Base Number System,” IEEE Trans. on Computers (TC),
vol. 48, No. 10, pp. 1098-1106, October 1999.

[16] V.S. Dimitrov, K.U. Järvinen, and J. adikari, “Area Efficient Multipliers
Based on Multiple-Radix Representations,” IEEE Trans. on Computers
(TC), vol. 60, N° 2, pp 189-201, February 2011.

[17] S. Homayoon and A. Gupta, “A Generalized Multibit Recoding of
Two’s Complement Binary Numbers and its Proof with Application in
Multiplier Implementation,” IEEE Trans. on Computers (TC), vol. 39,
N° 8, August 1990.

[18] P.M. Seidel, L. D. McFearin, and D.W. Matula, “Secondary Radix
Recodings for Higher Radix Multipliers,” IEEE Trans. on Computers
(TC), vol. 54, N°2, February 2005.

[19] A.G. Dempster and M.D. Macleod, “Use of Minimum Adder Multiplier
Blocks in FIR Digital Filters,” IEEE Trans. on Circuits and Systems-II:
Analog and Digital Signal Processing 42, 9, pp. 569-567, 1995.

[20] Available at: http://spiral.ece.cmu.edu/mcm/gen.html

[21] R. Guo and L.S. DeBruner, “A Novel Fast Canonical-Signed-Digit
Conversion for Multiplication,” Proceedings of the IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pp.
1637-1640, Prague, Czech Republic, May 22-27 2011.

[22] A.K. Oudjida, N. Chaillet, M.L. Berrandjia, and A. Liacha, “A New
High Radix-2r (r ≥ 8) Multibit Recoding Algorithm for Large Operand
Size (N ≥ 32) Multipliers,” Journal of Low Power Electronics (JOLPE),
vol. 9, N° 1, pp. 50-62, ISSN: 1546-1998/2013/9/50/62, American
Scientific Publishers (ASP), April 2013.

[23] A.K. Oudjida, N. Chaillet, A. Liacha, and M.L. Berrandjia, “A New
Recursive Multibit Recoding Algorithm for High-Speed and Low-Power
Multiplier, ” Journal of Low Power Electronics (JOLPE), vol. 8, N° 5,
pp. 579-594, ISSN: 1546-1998/2012/8/579/594, American Scientific
Publishers (ASP), December 2012.

[24] A.K. Oudjida, N. Chaillet, A. Liacha, and M.L. Berrandjia “New High-
Speed and Low-Power Radix-2r Multiplication Algorithms,”
Proceedings of the 11th edition of IEEE-FTFC Low-Voltage Low-
Power Conference, ISSN: 978-1-4673-0821-2/12, Paris, June 2012.

