Using GPU for Multi-Agent Multi-Scale
Simulations

G. Laville, K. Mazouzi, C. Lang, N. Marilleau, and L. Philippe

Abstract Multi-Agent System (MAS) is an interesting way to create models and
simulators and is widely used to model complex systems. As the complex system
community tends to build up larger models to fully represent real systems, the need
for computing power raise significantly. Thus MAS often lead to long computing
intensive simulations. Parallelizing such a simulation is complex and it execution
requires the access to large computing resources. In this paper, we present the adap-
tation of a MAS system, Sworm, to a Graphical Processing Unit. We show that such
an adaptation can improve the performance of the simulator and advocate for a more
wider use of the GPU in Agent Based Models in particular for simple agents.

1 Introduction

Scientists pay more and more attention to models. They aim at simulating real com-
plex systems to understand them, for example to prevent phenomena such as dis-
asters. Models thus (such as Agent Based Models -ABM-) become more and more
descriptive: where scientists used to built up conceptual models (KISS model), they
now create well described models (KIDS Model) [1]. Tomorrow the complex system
community may tend to "world model", a fully descriptive and generic model that
scientists can customize according to scientific questions [2]. Making these model-
ing evolutions possible requires a raise of computing power as the model executions
must return a result in a reasonable delay.

If a simulation can be parallelized then increasing the computing power becomes
a question of cost: we need to buy more cores to increase the size of the simulation.
While standard processors (CPU) are still expensive, modern Graphical Processing
Units (GPU) provide good execution performance for a lower cost. These GPUs
also give the possibility to execute non-graphic programs using languages such as
OpenCL or CUDA.

Typical simulators are however based on a sequential design and only use one
core of the main processor. So taking advantage of the computer architecture implies
to develop distributed simulators. In this context, Multi-Agent System (MAS) is an

Nicolas Marilleau
Institut de Recherche pour le Développement (IRD), France, e-mail: nicolas.marilleaul@
ird.fr

Christophe Lang - Guillaume Laville - Kamel Mazouzi - Laurent Philippe
Institut FEMTO, CNRS / Université de Franche-Comté, France, e-mail: name.surname@
univ-fcomte. fr



2 G. Laville, K. Mazouzi, C. Lang, N. Marilleau, and L. Philippe

interesting way to create this kind of models and simulators. ABM are indeed often
used to simulate natural or collective phenomenons whose actors are too numerous
or various to provide a unified algorithm describing the system evolution.

We propose in this paper to delegate part of the ABM execution to the graphical
unit of the computer, based on our experience in parallelizing and implementing
part of an ABM on a GPU. We then run it on both a standard CPU processor and
on a GPU. We get very good performance results and advocate for a more wider
use of the GPU in ABM in particular for simple agents. In Section 2 of the paper
we present the work related to agent and parallelization. We give an overview of
the sworm simulator in Section 3 and we detail its GPU implementation in 4. We
present the experiments and results in Section 5 then we conclude on the possible
generalization of our work.

2 Related works

To develop ABM, many frameworks are now available (e.g. Repast [3] or NetL-
0go [4]). Only a few of them introduces distribution in agent simulation (Madkit [5]
or MASON [6]). In this context, parallel implementations are often based on threads
using shared memory or on the integration of cluster libraries such as MPI. Even as
multi-core or multi-socket setups become more and more readily available, these
solutions stay limited to a relatively small number of parallel tasks, if not using a
fully-fledged computing cluster.

Parallelizing a simulation is however complex as space and time constraints must
be enforced. Time constraints are linked to the simulation execution. It is usually
based on a synchronous execution of time steps by the agents and the environment.
Distributing the simulation or delegating part of this execution to others processors
as GPUs [7] must thus be carefully done to enforce the synchronism [8]. Space
constraints are linked to the environment distribution. Using an environment on a
set of computers leads to classical parallelism issues: data coherency if the envi-
ronment is shared amongst all the computers or data exchanges if the environment
is distributed. In the particular case of multi-scale simulations such as the Sworm
simulation [9] the environment may be used at different levels. This characteristic,
especially in a fractal model, could be the key of the distribution. For instance, each
branch of a fractal environment could be identified as an independent area and paral-
lelized. In addition Fractal is a famous approach to describe multi-scale environment
(such as soil) and its organization [10].

3 Sworm

Sworm model aims at simulating soil functioning especially the role of macro-fauna
on microbial activity and on carbon production. A first version presented in [9] fo-
cuses on soil bioturbations caused by earthworms. Soil zones, which have been



Using GPU for Multi-Agent Multi-Scale Simulations 3

Algorithm 1 Sequential evolution algorithm

for all mm € mmlList do
breathNeed < world.respirationRate « mm.carbon
growthNeed < world.growthRate x mm.carbon
if toralAccessibleCarbon(mm) > breathNeed then
mm.active < true
consumCarbon(mm,breathNeed)
world.CO2 < world .CO2 + breathNeed
if totalAccessibleCarbon(mm) > 0 then
growthConsum < max(totalAccessibleCarbon(mm), growthNeed)
consumCarbon(mm, growthConsum)
mm.carbon <— mm.carbon + growthConsum
end if
else
mm.active < false
end if
end for

modified by these earthworms, are considered by biologist as hot spots of a micro-
bial activity (an important process that transforms organic matters into carbon and
so gives the fertility to the soil). The MIOR -MlIcro-ORganisms- model tackles re-
producing the microbial activity of these hot spots. MIOR focuses on a nearby 0.002
mm sized cube of soil while Sworm models 20 cm sized volume of soil.

Since these different models do not act at the same level of detail, this simulation
is split into multiple, recursive levels corresponding to different scales. It uses a frac-
tal pattern which allows lazy environment allocation: the different kinds of agents
do not work at the same scale, depending of their respective sizes. As an example,
worms tend to interact on a macroscopic scale (few millimeters), whereas micro-
bial colonies work at a microscopic scale (10~* millimeters). Figure 1 illustrates
the fractal data representation of Sworm. White cells (in the left part of the cell)
represent soil cavities, black cells represent mineral matter and gray ones represent
composite cells that must be further decomposed..

Scale n Scalen + 1
Fig. 1 Sworm environment representation

A MIOR simulation is based on two types of agents. MMs -Meta-MIOR- repre-
sent colonies of carbon-consuming microbes naturally found in soil. OMs -Organic
Matters- are deposits that represent the base resources randomly distributed in the
modeled environment. Two main processes account for the model evolution, repre-



4 G. Laville, K. Mazouzi, C. Lang, N. Marilleau, and L. Philippe

senting the MM metabolism: breathing (conversion of mineral carbon to CO;) and
growth (fixation of carbon into microbial colonies). This second process only occurs
if the colony needs are covered by the environment, as described in Algorithm 1.

Even with the sparse fractal representation, simulating the microscopic-scale
evolution quickly becomes time-consuming on a traditional CPU unit, where much
execution resources are already required for the macroscopic simulation (nearly one
week per simulation on a personal computer).

4 GPU Implementation

CUDA and OpenCL are the main programming languages for GPU scientific pro-
gramming. They are based on a C-like syntax with additions to support GPU-
specific features. Various open-source bindings, such as JOCL [11] and JCUDA [12]
exploit GPUs with the Java language. Since our implementation must be integrated
in a Java-based implementation and must be portable JOCL is a natural choice.

Sworm requires two species of agents, cognitive ones (representing worms) and
reactive ones (MIOR microbial colonies). The two kinds are not as good candidates
for a GPU implementation. Reactive agents tend to rely on data parallelism with
few, if any, kind of branching in the code to be executed. On the opposite, cognitive
agents have a variety of possible behaviors at each iteration.

Our work therefore mainly focuses on the adaptation of the MIOR part of the
Sworm simulation to a GPU architecture. Since the environment modeling and evo-
lution if often a costly aspect in many ABM, theses changes can provide a tangible
benefit on the simulator executions. By using simultaneously the GPU for the envi-
ronment execution and the CPU for the cognitive agents we also improve the quality
of modeling (replacement of the precomputed static carbon evolution graph by dy-
namically computed ABMs in our case).

4.1 OpenCL representation

Java can only be used to control the model initialization and the OpenCL executions.
So a mapping of the Java Object-Oriented concepts to the C-like data structures
of OpenCL is required to access and manipulate them in the GPU code. Here are
some guidelines that can be used in this mapping process. The data aspect (type,
attributes) can be represented as OpenCL structures. Methods can be implemented
as device-local functions, and each phase of the simulation can have its own high-
level function calling them. Consecutive function calls with the same dimensions
and subjects may be gathered into the same kernel (set of threads) to minimize the
number of context switches between host and GPU.

By applying these mapping rules, four main data structures appears in the MIOR
simulator: one array of MM structures for microbial colonies, one array of OM
structures for organic deposits, one neighboring matrix used to store accessibility



Using GPU for Multi-Agent Multi-Scale Simulations 5

between MM and OM and one single environment used to store global parameters
such as agent numbers and output data such as the quantity of CO».

The design of the computing topology is of importance for the parallelism of
the execution. Due to their simple behavior the reactive agents usually have limited
interactions and thus allow a high level of parallelism. In our case, the action radius
of each MM agent is determined by a fixed parameter of the environment, RA. All
organic matter deposits within this distance should be accessible for the metabolism.

Since there are no dependencies between each distance calculation, we can use
a two dimension kernel in OpenCL where each thread represents an (OM,MM)
couple. This approach can be generalized with n dimension kernels in OpenCL de-
pending on the modelized environment and on the GPU characteristics (usually one
to three dimensions).

4.2 Data Representation and Data Dependencies

The limited interactions between reactive agents also impact the data representation
as the density of interaction matrices may be low. In a typical MIOR simulation
each agent is linked to a small (less than 10) number of OM on a total of some
hundredth. The topology computation thus produces a low-density matrix. During
the following evolution process, going through these matrices may induce numerous
costly global memory accesses without actual use of the information. This issue can
be addressed by creating dense continuous representations of the matrices. So on the
topology stage we create two dense continuous representations of the neighboring
matrix. The additional memory cost of these two data structures (one for the OM,
one for the MM) can thereafter be balanced thanks to the model living steps.

Data dependency is a much difficult issue as it usually depends on the ABM
characteristics. Some guidelines may be given but good results can only be obtained
thanks to experience. Most of the time, as in our case, an algorithm adaptation will
be needed. We present two cases of algorithm adaptation in this section.

In the MIOR simulation the data dependencies comes from the need to ensure fair
access to carbon deposits for each microbial colony and thus to synchronize these
accesses across the simulation. Since the colonies are randomly placed at the model
initialization, no obvious geographic static locality can be extracted to split the car-
bon deposits in local memories for the sets of microbial colonies (MM). Therefore
much data has to remain into the global slow GPU memory. A first implementa-
tion based on mutual execution and global memory synchronization thus resulted in
GPU performances two order of scale slower than a sequential Java simulation. This
clearly indicated the need for an algorithm adaptation. Our solution is to reduce the
number of synchronization required for the execution of a given step of simulation.
For that we split the living cycle process into three steps:

1. Scattering: carbon deposit resource is evenly scattered in parts across all micro-
bial colonies accessing to it,

2. Living: each microbial colony consumes carbon for its breathing/growing process
and produces CO;,



6 G. Laville, K. Mazouzi, C. Lang, N. Marilleau, and L. Philippe

3. Gathering: each carbon deposit content is recomputed from the remaining carbon
in each part.

There are also synchronization issues in the breathing and growth part of the ini-
tial algorithm. Since multiple MM can share a OM carbon deposit, two synchroniza-
tion issues must be addressed to avoid introducing a bias in the simulation. First, a
synchronization on the resources is needed as multiple MM agents should not mod-
ify the OM’s properties at the same time. Second, the fair access to resources from
the MM must be enforced and no OM should be over-exploited.

4.3 Data transfer between Host and GPU

Since the reference algorithm is sequentially implemented, a synchronization of the
simulation steps must be implemented to prevent some agents to evolve faster than
their peers. A first naive implementation may attempt to copy all modified data from
and to Java objects between each simulation step. Data copy between the CPU sys-
tem and the GPU-dedicated memory however uses a connexion limited to a fraction
of the main memory bandwidth and with a much higher latency. So an obvious
course of action to improve this is to allow the simulation to run several steps at
once, or up to the termination avoiding these costly transfers. The only exception
must be for values needed to detect simulation termination or convergence. The bet-
ter improvements are achieved in the case where only the final state of the system is
needed.

4.4 Proposed implementations

We propose three consecutive GPU implementations of the MIOR living process
with an increased adaptation level. The first implementation, further referenced as
GPU v1.0, is based on a straightforward adaptation of the CPU algorithm where
the relations between agents are stored as a simple two-dimensions sparse matrix
located in global memory. Each simulation step iterates over the whole matrix (in-
cluding empty cells). The second GPU implementation, called GPU v2.0, replaces
this matrix by a compressed one using the same representation format as described
in [13]: neighbors are stored in a contiguous way in the matrix along with a precom-
puted count of neighbor agents. This representation reduces the required number of
iterations and of memory accesses. To minimize global memory access overhead,
the third GPU implementation, referenced as GPU v3.0, uses the GPU private mem-
ory to store often-used data such as carbon parts and MM neighboring information.

5 Experiments

To assess the performance of our work we compare the sequential version with
our MIOR implementations on two platforms, representing what a researcher could



Using GPU for Multi-Agent Multi-Scale Simulations 7

except as dedicated computing hardware or personal computer graphic card. The
first platform is a GPU node with two Intel Xeon X5550 CPU at 2.67GHz and a
Tesla C1060 GPU card running at 1.3GHz (240 cores organized in 30 streaming
multiprocessors). The second platform is a personal computer with an Intel Q9300
CPU at 2.5GHz and a mainstream GPU card: a GeForce 8800GT at 1.5GHz (112
cores organized in 14 streaming multiprocessors).

Figures 2 and 3 give the average execution time of 50 simulations. The problem
size is given by the scaling factor. A scaling factor of 6 means that the number of
agents is multiplied by 6. At scale 1, the model contains 38 MM and 310 OM.

180
cPU 1200
164

L GPU V1.0 —%—
GPU v2.0 —%—
140 |- GPUV3.0 —5—

120 //I‘/
100 /
80 /

60 A 400 Ve
40 / /
2 W 200 E/E/B/E/E
N W o k%

0 2 4 6 8 10 0 2 4 6 8 10
Model scaling factor Model scaling factor

CPU —+—
GPU V1.0 —<—
1000 | GPU V2.0 —%—

GPU V3.0 —B— //
800
600 /

=]

Average simulation time (ms)
Average simulation time (ms)

Fig. 2 CPU and GPU executions on a Tesla Fig. 3 CPU and GPU executions on a
C1060 GeForce 8800GT

We can note that small sized problems result in similar execution times across
all the implementations. The GPU simulations do not have enough agents to benefit
from the algorithm’s parallelism. From scale 5 GPU versions v2.0 and v3.0 are
clearly faster than the CPU or the simple GPU implementations. At scale 10, a ratio
of 10 can be observed between the v3.0 GPU implementation and the CPU one.

Several important remarks must be reported. First, the optimized GPU versions
give much better performance than the non-optimized GPU one. So it really matter
to work on the algorithm parallelization. Second, even a mainstream desktop graphic
card provides the same order of performance gain that a much more costly solution,
the Tesla card. This is rather interesting as a much larger public could benefit from
GPU adaptations. Third, the same code is run on the GeForce card as on the Tesla
card without any modification. So the performance does not depend on the GPU
characteristics and the same benefit could be expected on other graphic cards.

6 Conclusion

In this paper we have described an adaptation of an existing ABM simulation using
GPU hardware. The first result of this work is that adapting the algorithm to a GPU
architecture is possible for ABMs. This adaptation may provide a significant perfor-



8 G. Laville, K. Mazouzi, C. Lang, N. Marilleau, and L. Philippe

mance improvement without so much effort, or at least not much than for a standard
multi-threaded parallelization. We have shown that this approach especially suits
the case of multi-scale ABMs. We also have generalized this work to show the main
issues to be addressed when parallelizing an ABM and how to take benefit from the
GPU architecture. Last, we show that using a mainstream card, as the GPU card of
a standard computer, can even lead to a significant performance improvement and
avoid the use of a costly parallel cluster.

We are currently working on defining more general guidelines for adapting SMA
simulations to the GPU architecture. The aim is to use both CPU and GPU at the
same time to support multi-scale ABMs. With cognitive agents being run on the
CPU and reactive agents or environment being run on the GPU, we could run larger
simulations thanks to the performance improvement provided by this specific ar-
chitecture. In this perspective, we are working on the design of a generic library to
support reactive agent simulation on graphic cards.

Acknowledgements Computations have been performed on the supercomputer facilities of the
Mésocentre de calcul de Franche-Comté.

References

1. B. Edmonds and S. Moss. "from kiss to kids: An" anti-simplistic" modeling approach". In
MABS 2004, pages 130-144, 2004.

2. E. Amouroux. "KIMONO: using the modelling process as an aid for research orientation”.
PhD thesis, UPMC, Paris, France, 2011.

3. M.J. North, T.R. Howe, N.T. Collier, and J.R Vos. A declarative model assembly infrastructure
for verification and validation. In Springer, editor, Advancing Social Simulation: The First
World Congress, Heidelberg, FRG, 2007.

4. E. Sklar. Netlogo, a multi-agent simulation environment. Artificial Life, 13(3):303-311, 2011.

5. O. Gutknecht and J. Ferber. Madkit: a generic multi-agent platform. In Proceedings of the
fourth international conference on Autonomous agents, AGENTS ’00, pages 78-79, New
York, NY, USA, 2000. ACM.

6. L. Sean, C. Cioffi-Revilla, L. Panait, K. Sullivan, and G. Balan. Mason: A multi-agent sim-
ulation environment. Simulation: Transactions of the society for Modeling and Simulation
International, 82(7):517-527, 2005.

7. Avi Bleiweiss. Multi agent navigation on the gpu. GDC09 Game Developers Conference
2009, 2008.

8. N. Marilleau, C. Lang, P. Chatonnay, and L. Philippe. An agent based framework for urban
mobility simulation. In PDP, pages 355-361, France, 2006.

9. E. Blanchart, N. Marilleau, A. Drogoul, E. Perrier, JL. Chotte, and C. Cambier. Sworm: an
agent-based model to simulate the effect of earthworms on soil structure. EJSS. European
Journal of Soil Science, 60:13-21, 2009.

10. N Bird and E. Perrier. The psf model and soil density scaling. European Journal of Soil
Science, 54(3):467-476, 2003.

11. JOCL: Java bindings for OpenCL. http://www. jocl.org/. [11-oct-2011].

12. JCUDA: Java bindings for CUDA. http://www. jcuda.org/. [11-oct-2011].

13. J. Gémez-Luna, J.-M. Gonzilez-Linares, J.-I. Benavides, and N. Guil. Parallelization of a
video segmentation algorithm on cuda—enabled graphics processing units. In 15th Euro-Par
Conference, pages 924-935, Berlin, Heidelberg, 2009. Springer-Verlag.



