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Abstract—In this paper, a data-driven method for remaining
useful life (RUL) prediction is presented. The method learns
the relation between acquired sensor data and end of life
time (EOL) to predict the RUL. The proposed method extracts
monotonic trends from offline sensor signals, which are used
to build reference models. From online signals the method
represents the uncertainty about the current status, using discrete
Bayesian filter. Finally, the method predicts RUL of the monitored
component using integrated method based on K-nearest neighbor
(k-NN) and Gaussian process regression (GPR). The performance
of the algorithm is demonstrated using two real data sets from
NASA Ames prognostics data repository. The results show that
the algorithm obtain good results for both application.

I. INTRODUCTION

The need of computer systems that are constantly mon-
itoring the health status of critical systems, by implement-
ing prognostics and health management (PHM) processes,
is particularly important for increasing the reliability while
decreasing the maintenance costs [1]. PHM consists of three
main processes: fault detection, diagnostics and prognostics.
Fault detection can be defined as the process of recognizing
that a problem has occurred regardless of the root cause
[2]. Fault diagnostics is the process of identifying the faults
and their causes [3]. Fault prognostics can be defined as the
prediction of when a failure might take place [4]. Prognostics
has recently attracted significant research interest due to the
need of models for accurate RUL prediction for different
applications. RUL prediction of critical components is a non
trivial task for many reasons. Sensory signals for instance are
usually hidden by noise and it is very challenging to process
and to extract informative representation of the remaining
useful life [5]. Another problem is the prediction uncertainty
due to the variation of the end of life time that can differ for
two components made by the same manufacturer and operating
under the same conditions. Therefore, proposed models should
include such uncertainties and represent them in a probabilistic
form [6].

The proposed methods for RUL prediction can be broadly
divided into physics based and data-driven methods [7].
Physics based methods build physical models of the desired
critical components by the means of state-space models [8]
and dynamic ordinary or partial differential equations [9].
These models require extensive experimentation and model
verification [10]. However, it will be very reliable at least until

the system is upgraded or changed [11]. Data-driven methods
can be used to model critical components’ degradation be-
havior when the first principles are complex or not available
and sufficient historical data are available [12]. Data-driven
methods employ pattern recognition and machine learning
techniques to characterize the desired critical components’
degradation behavior. For example, different regression models
have been proposed in the literature such as the auto regressive
model and the multivariate adaptive regression splines [4]. A
drawback of using regression methods is that when available
component degradation history is incomplete the extrapolation
may lead to large errors. There have been more interests lately
on various types of neural networks and neural-fuzzy systems
[13]. However, these methods generate black box models and
it is difficult to select the structure of the network.

Traditionally, data-driven approaches have mostly built on
estimating the current health status of the desired component
and when the degradation exceeds the alarm threshold, the
algorithms start predicting the RUL [14], [15]. A method based
on k-NN and belief function theory to estimate the RUL of
turbofan engines is presented in [16]. The method manually
annotates the health status of the offline data sets and predicts
the RUL when the degradation level reaches a predefined
alarm threshold. Another algorithm presented in [13] proposed
an integrated prognostics model based on summation wavelet
extreme learning machine and subtractive-maximum entropy
fuzzy clustering. The algorithm automatically identifies the
states of degrading machinery and sets dynamically the alarm
threshold. Alternatively, instead of learning the degradation
from the data and predict the RUL, direct RUL prediction al-
gorithms learn the relation between the observable parameters
and the end of life criteria (EOL) to predict the RUL [6].

In this work, integrated direct RUL prediction method is
presented. The main contribution of this work is to model
the relation between sensor data and EOL to predict the
RUL without the need for predefined alarm threshold using
integrated Bayesian framework. Also, the uncertainties about
the current state and the predicted RUL are presented in
probabilistic forms using Bayesian approaches. This paper is
structured as follows. In Section II the proposed method is
explained formally. The Experimental results are presented in
Section III and Section IV concludes the paper.



II. INTEGRATED BAYESIAN FRAMEWORK FOR REMAINING
USEFUL LIFE PREDICTION

Measurements observed from monitored components are
usually noisy multidimensional time series signals. Thus, it
is important to first extract information that represent the
degradation evolution through time. The relation between the
extracted information and EOL should be modeled to predict
the RUL. To do this, the proposed method learns the model
from the offline data set. It estimates the current status from
the unseen online data and predict the RUL by measuring the
similarity to the offline data. The method is summarized in
Figure 1 and will be explained hereafter.
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Fig. 1: The method’s general scheme.

A. Offline phase
1) Unsupervised variable selection: not all signals from

the monitored component are informative. Signals that have
non random relationships contain information about system
degradation. To select such signals, an unsupervised variable
selection algorithm based on information theory is performed
[17]. The algorithm first calculates pairwise symmetrical un-
certainty (SU) for all the input signals, defined by:

SU(X,Y ) = 2× I(X,Y )

H(X) +H(Y )
(1)

where, I(X,Y ) is the mutual information between two random
variables X and Y ; H(X) and H(Y ) are information entropy
values of the random variables X and Y respectively. Then,
the algorithm clusters the variables based on the SU distance
using hierarchical clustering. The algorithm finally ranks the
resulting clusters according to the quality of the included sig-
nals in representing interesting relationships using normalized
self-organizing map distortion measure.

2) Trend construction: after selecting the interesting vari-
ables, the task is to extract smooth monotonic signals that are
correlated with EOL. To do this, a trend extraction algorithm
is used [5]. The algorithm is divided in two main steps:

a) Variable compression: the goal of this step is to
compress the n signals selected in the previous step onto one-
dimensional space. In this work, standard principal component
analysis method is used. Thus, the first principle component
is used to represent the health status evolution with respect to
time. The compressed features are then further processed to
get a monotonic trend.

b) Trend extraction: the aim of this step is to extract
the internal structure of the data in a way that best explains
the variation of EOL in a monotonic signal. To do that,
empirical mode decomposition algorithm (EMD) is employed
[18]. EMD is a method used to decompose a signal into
successive intrinsic mode functions (IMF) and residual signal
rn(t) which should be constant or monotonic signal that can
be represented as:

rn(t) = X(t)−
n∑

i=1

imfi(t) (2)

where, X(t) is the input signal, imfi is the IMF and n is
maximum number of IMFs (Figure 2).
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Fig. 2: Trend construction at time t=192 cycles for Engine 1.

3) Health indicator: in order to represent the degradation
evolution, discriminant features should be extracted from
acquired monotonic trends. In this work, a feature vector
F = [a, b, x̄, s2] is extracted from each trend at each time,
where, a and b are the slope and the constant term of a linear
curve fit of the input trend respectively, x̄ and s2 are the mean
and the variance of the input trend respectively. The resulting
features are then used to represent each trend according to
its EOL time. Each group of trends with similar EOL time is
considered as a class and saved in the offline data base.

B. Online phase

In this phase, new sensor data are collected online from
the critical component(s) from the same sensor signals that
have been selected in the offline phase. Then, these signals
are processed to extract monotonic trends in the same manner
as in the offline phase. Before using these trends to predict the
RUL, the method represents the uncertainty of the input online
signal using recursive discrete Bayesian filter. The method then
extracts feature vector F over the estimated online trend. K-
NN classifier is then used to classify new online inputs based



on both offline and online features extracted from the trends. If
the class posterior is less than predefined threshold the method
uses GPR model to predict the RUL.

1) Online Estimation: the sensor data acquired from the
monitored component is prone to be affected by different
sources of noise. Thus, the uncertainty about the true or
unobserved signal at the present time should be represented
recursively in a probabilistic form. To do that, a recursive
discrete Bayesian filter is used to estimate the uncertainty from
the online trends. This filter, decomposes the state space into
finitely many regions and represents the cumulative posterior
for each region by probability values, see Algorithm 1.

Input : {pk,t−1} , zt
Output: {pk,t}
forall the k do

p̄k,t =
∑
i

p(Xt = xk|Xt−1 = xi)pi,t−1

pk,t = ηp(zt|Xt = xk)p̄k,t
end

Algorithm 1: Discrete Bayesian filter.

where the input to the algorithm is a discrete probability
distribution {pk,t} along with the recent measurement zt;
p̄k,t is prediction probability; pk,t is the posterior probabil-
ity; p(Xt = xk|Xt−1 = xi) is the state transition model
and p(zt|Xt = xk) is the measurement transition model.
Algorithm 1 first calculates the prediction for the new state
based on previous state uncertainty and state transition model.
The prediction is then updated in the second line so as to
incorporate the measurement. Discrete Bayes filters apply to
problems with finite state space, where the random variable
Xt can take many values:

Xt = x1,t ∪ x2,t ∪ ...xk,t (3)

A straightforward decomposition of Xt is a multidimensional
grid, where each xk,t is a bin or region. The size of each bin
dx can be calculated as follows:

dx =
xmax − xmin

n
(4)

Where, xmax is the maximum state value, xmin is the mini-
mum state value and n is the number of bins. Each bin can
then be represented as a Gaussian function with a mean value
at each state and a common variance:

p(Xt|Xt−1) = ‖dx×N (Xk,t, σ
2)‖ (5)

where, p(Xt = xk|Xt−1) is the state transition model, dx is
the bin size and N (Xk,t, σ

2) is the normal distribution at state
Xk,t. Moreover, (5) is normalised to turn this quantity into
a probability distribution. Similarly, measurement probability
model can be calculated in the same manner as the transition
model. Figure 3 depicts the overall Bayesian filter scheme.

2) Classification using k-Nearest Neighbours: in order to
build the predictive model, k-NN classifier is applied in this
work. The estimated feature vector F at time t is passed to
k-NN to find the closest offline trend in the data base. The
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Fig. 3: General scheme of Bayesian filter.

classification decision is based on largest posterior probability
of the tested sample, therefore, a probability value will be
assigned to the prediction output:

p(Ck|α) =
p(α|Ck)× p(Ck)

p(α)
(6)

where, α is the new online feature vector, Ck is the class or
the group of trends that has similar EOL value, p(α|Ck) is
the probability of observing α given Ck, is also known as
the likelihood, p(Ck) is class priors and p(α) is the marginal
likelihood. In case the value of the posterior probability of a
class membership, p(Ck|α), is less than a predefined threshold
the algorithm neglects this value and infers the class of the
online trend by using GPR model.

3) Gaussian process regression: GPR is a flexible, pow-
erful and probabilistic approach for Bayesian inference over
functions. In order to perform regression task, which aims to
approximate the input online samples x to the most similar
group of offline trends y = f(x), GPR defines the prior for
output f(x) in form of distribution over functions specified by
Gaussian process (GP).

y = f(x) +N (0, σ2
n) (7)

where, y is the estimated RUL, x is the input feature vector,
f(x) is the underlying GP and N (0, σ2

n) is the Gaussian
noise with zero mean and σ2

n variance. GP function, f(x),
is specified by a mean function m(x) and covariance function
k(x, x′) collected for all possible pairs of the input vector x.

f(x) = GP(m(x), k(x, x′) (8)

Given new observation y∗, the goal is to compute the posterior
probability p(y∗|y), i.e., the probability of the test data y∗
given the training data y. Since the assumption in GP is
that data can be represented as samples from multivariate
Gaussian distribution, the posterior probability distribution can
be written as:[

y
y∗

]
∼ N

( [
µ
µ∗

]
,

[
K KT

∗
K∗ K∗∗

] )
where, µ = m(x) for training set, µ∗ = m(x∗) for test set,
K is the covariance for training set, K∗ is the covariance for
training-test, K∗∗ is the covariance for test set and T is the
matrix transpose. The posterior probability for y∗ follows a
Gaussian distribution.

y∗|y ∼ N (µ∗ +K∗K
−1(y − µ),K∗∗ −K∗K−1KT

∗ ) (9)



where, the best estimate for y∗ is the mean of this distribution
which represents the RUL.

y∗ = µ∗ +K∗K
−1(y − µ) (10)

The uncertainty of the estimate is represented in the variance.

var(y∗) = K∗∗ −K∗K−1KT
∗ (11)

Figure 4 shows the final result of the proposed method. The
uncertainty about the online trend is estimated. Then, the
probability of the RUL prediction is calculated.
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Fig. 4: Final prediction result for Battery online trend at cycle
56.

III. EXPERIMENTS
Two real life data sets were used in the experiments: a

turbofan engine data sets and a lithium-ion battery aging.

A. Turbofan engine data
This is turbofan engine data set generated using commercial

modular aero-propulsion system simulation (C-MAPSS) [19].
It consists of four training files, four testing files and four
RUL values files. The training files contain run to failure
sensor records of fleet of engines generated under different
combinations of operational conditions and fault modes. Each
engine is operating normally and it develops a fault at some
point during the operation until finally it reaches the system
failure and the engine stops. The test files are generated in
the same way, however, the sensor readings are omitted prior
to system failure. The RUL files contains vector of true RUL
values for the test data. Each training and test file contains 26
columns of numbers that represent different variable. The first
two columns represent engine number and the time in cycles
respectively. The next three columns represent the operational
settings. The last 21 columns, or variables, represent different
time series sensor data such as total temperature at fan
inlet, pressure at fan inlet, physical fan speed, etc. Each row
represents a data snapshot taken during a single cycle. In
this work, the data file “train FD001.txt” is used for offline
training and “test FD001.txt” is used for online testing. Each
file contains data for 100 engines and the objective is to predict
the number of remaining operational cycles before failure in
the test set. The true RUL values for the test data are presented
in the data file “RUL FD001.txt”.

1) Variable selection: one of the results of the selection
algorithm is the pair of sensors number {8,13}, i.e. physical
fan speed and corrected fan speed respectively, see Figure
5. The selected group is interesting as the two variables are
correlated and both are related to the fan speed. Then, the
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Fig. 5: The selected pair of sensors from turbofan data set.

algorithm starts constructing the monotonic trends iteratively
from each pair at each time. As can be seen in Figure 2, the
result of the EMD is monotonic which is an important property
that help to extract health indicators.

2) Health indicator: as mentioned before, four features are
extracted from each trend at each time and labeled with EOL
time to be saved in the offline database. The features represent
the relation between the extracted trends. Figure 6 shows one
of the four health indicators for the Engine number 1. The
indicator is monotonic and shows how the relation between
the EOL and the extracted trend changes through the time.
Each trend is then saved in offline database and labeled with
the EOL time and will be used for predicting the RUL of new
trends.
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Fig. 6: The slope health indicator for Engine 1.

3) Prediction results: to assess the performance of the
proposed method, mean absolute percentage error (MAPE) is
calculated for all 100 online predictions:

E =
100%

n
×

n∑
i=1

|RULi −RUL∗i
RULi

| (12)

where, RUL and RUL∗ are the actual and predicted RUL
values respectively and n is the number of total predictions.



TABLE I: Training data sets with three folds

Fold #1 Fold #2 Fold #3 EOL

B0006 B0005 B0005 168

B0007 B0007 B0006 168

B0026 B0025 B0025 28

B0027 B0026 B0026 28

B0028 B0027 B0028 28

B0030 B0029 B0029 40

B0031 B0031 B0030 40

B0032 B0032 B0031 40

B0034 B0033 B0033 197

B0036 B0036 B0034 197

B0039 B0038 B0038 47

B0040 B0040 B0039 47

B0043 B0042 B0042 112

B0044 B0044 B0043 112

B0045 B0045 B0045 72

B0047 B0046 B0046 72

B0048 B0048 B0047 72

B0050 B0049 B0049 25

B0051 B0050 B0050 25

B0052 B0051 B0052 25

B0055 B0054 B0054 102

B0056 B0056 B0055 102

The error is calculated only for the last cycles of all 100 test
signals. The MAPE over the 100 test data is 11.41%. The
proposed method outperforms the method presented in [13]
in which the MAPE value is 15.5% for only the first 15 test
engines.

B. Lithium-ion battery data

This data is collected on 34 lithium-ion batteries run
through different operational profiles (e.g. charge, discharge
and impedance) at different temperatures [20]. In this work
only charge and discharge data are used. Each data set,
corresponding to one experiment, consists of 11 variables such
as charging voltage, charging current, temperature, discharging
current, discharging voltage and capacity. The aging of the
batteries was accelerated and the experiments continued until
the batteries reached their EOL time. Each cycle is presented
by the mean value to reduce the processing time. In order
to validate the proposed method a 3-fold cross-validation is
performed, i.e. the available data sets are partitioned into
three groups of equal size. Each group is then divided into
training and testing data set depicted in Table I and Table II
respectively.

1) Variable selection: one of the results of the selection
algorithm is the pair {6, 11}, i.e. the voltage measured at
discharge and the capacity of the battery (Figure 7). The
selected group is interesting as the two variables are correlated.
Also, the capacity is related to the battery health as the
decrease in the capacity indicates health degradation.

2) Health indicator: four features are extracted from each
trend at each time and labeled with EOL time to be saved in

TABLE II: Testing data sets with three folds

Fold #1 Fold #2 Fold #3 EOL

B0005 B0006 B0007 168

B0025 B0028 B0027 28

B0029 B0030 B0032 40

B0033 B0034 B0036 197

B0038 B0039 B0040 47

B0042 B0043 B0044 112

B0046 B0047 B0048 72

B0049 B0052 B0051 25

B0054 B0055 B0056 102

B0018 B0018 B0018 132

B0041 B0041 B0041 67

B0053 B0053 B0053 55
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Fig. 7: Selected pair of variables from Battery data set.

the offline database. Figure 8 shows two of the four health
indicators for battery B0005. The indicators are monotonic
and show how the relation between the EOL and the extracted
trend changes through the time.

0 20 40 60 80 100 120 140 160 180
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Time (cycles)

Fe
at

ur
e 

1 
(S

lo
pe

 o
f t

he
 c

ur
ve

 fi
t)

(a) Slope health indicator.
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Fig. 8: Two health indicators for battery B0005.

3) Prediction results: to assess the performance of the
proposed method, MAPE is calculated for all cycles of each
battery, see Figure 9. The total MAPE per fold is calculated
as follows:

MAPEf =
1

n
×

n∑
i=1

MAPEi,f (13)

where MAPEf is the average MAPE for a complete fold,
MAPEi,f is the MAPE for test battery i in fold f .
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Fig. 9: Results of predicting the RUL at all cycles.

TABLE III: Mean absolute percentage error for battery data
sets

Fold #1 Fold #2 Fold #3 Average

33.0966% 32.2086% 35.2726% 33.5259%

The final results are calculated and summarized in Table III.

IV. CONCLUSION

In this paper a data driven method for RUL prediction
based on Bayesian approaches is proposed. The method builds
on unsupervised selection of interesting variables from the
input offline signals. It construct representative features that
can be used as health indicators. The method represents the
current status of the online signals as well as the uncertainty
about the predictions in a probabilistic form. The performance
of the prediction is enhanced by integrating two models,
namely, k-NN and GPR. The selected variables are shown
to be interesting. Moreover, the prediction results show low
MAPE error for both applications and the turbofan engine
results outperform the prediction of another method.

For future work, the proposed method should be tested
using data sets with variable operating conditions and after
introducing maintenance interventions. Also, new classifi-
cation/regression models should be tested in the proposed
framework.
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