
Processor-oblivious parallel stream computations

Julien Bernard Jean-Louis Roch Daouda Traore
{Julien.Bernard,Jean-Louis.Roch,Daouda.Traore}@imag.fr

Laboratoire d’Informatique de Grenoble
Équipe MOAIS (CNRS-INRIA-INPG-UJF)

38330 Montbonnot Saint Martin, France
http://moais.imag.fr/

Abstract

We study the problem of parallel stream computations
on a multiprocessor architecture. Modelling the problem,
we exhibit that any parallelisation introduces an arithmetic
overhead related to intermediate copy operations. We pro-
vide lower bounds for the parallel stream computation on
p processors of different speeds with two models, a strict
model and a buffered model; to our knowledge, these are
new results. We introduce a new parallel algorithm called
processor-oblivious: it is based on the coupling of a fast
sequential algorithm with a fine-grain parallel one that
is scheduled by work-stealing. This algorithm is proved
asymptotically optimal. We show that our algorithm has
a good experimental behaviour.

1. Introduction

The amount and the variety of data communications has
increased with the network capacities. Many computations
must now be done on-the-fly in real time: compress, cipher,
filter, etc. We refer to these computations as stream com-
putations. While the network speed has long been the bot-
tleneck, the stream computations may now slow down the
communication: for example, a standard zlib compression
can achieve a speed of 10 to 20 Mbps (depending on the
machine) while an ADSL2+ can reach 24 Mbps. To benefit
from the network improvements, a way to accelerate stream
computations is to use the parallel multicore architectures.

A stream computation can naturally be described as a
sequential process that reads blocks of data from the input
device, computes the result and writes it to the output de-
vice. In the general case, the size of the output may differ
from the size of the input and may not be known until the
result has effectively been computed. This implies that if
the computations are done in parallel, the result of block

i can’t be written to the output until block i − 1 has been
computed. So taking benefit of parallelism requires addi-
tional memory copies via temporary buffers. Those copies
result in an arithmetic overhead proportional to the size of
the memory space used in the buffers.

In section 2, we study this overhead and provide a lower
bound for the time Tp of parallel computation on p identi-
cal processors of average speed Π in two situations: direct
stream computation and buffered stream computation. To
our knowledge, these bounds are new results.

Based on a work-stealing schedule [1, 2], we exhibit in
section 3 a generic parallel stream computation algorithm,
asymptotically achieving the lower bound. This algorithm
generalises the recursive three-loop scheme introduced in
[4] to stream computations. Only based on processor idle-
ness, its main feature is to automatically adapt the number
and the size of the blocks without any consideration nei-
ther on the number and speed of processors nor on the in-
put data to process. This is why it is named as processor-
oblivious [3].

2. Lower bounds for parallel stream computa-
tion

We consider a machine with p processors of average
speed Π with an input device and an output device.

We denote RI the bit rate of the input device, RO the bit
rate of the output device and RC the computation bit rate.
If RC > RI or RC > RO, then the bottleneck is one of the
I/O device and there is no need to improve the speed of the
computation. So we suppose thatRC < RI andRC < RO.

We even supposeRC � RI so that all the input bytes are
available when desired (they can be buffered if necessary at
no cost). In fact, this hypothesis is not too strong with our
adaptive algorithm in section 3.2.

Then, we suppose we have two operations:

• The normal computation C which takes an element

from the input stream and computes it either in the out-
put stream or in an intermediate result. We call ωC the
work of this operation.

• The overhead computation O which takes an interme-
diate result, computes the additional operation due to
the parallelisation and puts it in the output stream. We
call ωO the work of this operation.

2.1. Direct stream computation and lower
bound

In the model of direct stream computation, we consider
that the output stream has a strictly sequential semantic: the
stream must be written sequentially and only one process
can write in the stream at each step.

Theorem 1 The parallel time on p processors of a parallel
direct stream computation is lower bounded by:

Tp ≥
n

p.Π
ωC

1− (1− 1
p)ωO

ωC

Proof: Let a be the total number of input elements that
have been directly computed in the output stream. So the
number of overhead operations is (n−a). On the one hand,
if we consider the total work on the p processors, we have
p.Π.Tp ≥ n.ωC + (n − a).ωO (1). On the other hand, if
we take into account that the output stream must be written
sequentially, we have Π.Tp ≥ a.ωC +(n−a).ωO (2). Using
(ωC −ωO).(1) +ωO.(2), we finally have: (p.(ωC −ωO) +
ωO).Π.Tp ≥ n.ωC

2

�

Let consider the two following border cases:

1. If ωC � ωO, then the lower bound is Tp ≥ n.ωC

p.Π =
T1
p , which is the trivial bound.

2. If ωC ∼ ωO, then the lower bound is Tp ≥ n.ωC

Π = T1,
i.e. parallelism does not bring any speedup. This is
due to the restrictive nature of the above stream model:
the sequential semantic implies that writes are on the
critical path.

The next section consider a more general stream model that
improves this second border case.

2.2. Buffered stream computation and
lower bound

In the model of buffered stream computation, the output
stream can be written at multiple places in the same time.
If it’s not possible in the reality, we can imagine an inter-
mediate buffer (hence the name) where the data is stored

and a special process that send the data sequentially in the
output stream as soon as it is available. The buffer is not re-
ally a limitation as, in the reality, such systems already ex-
ist: buffers for packet-based network, write buffer for hard
disks.

Theorem 2 The parallel time on p processors of a parallel
buffered stream computation is lower bounded by:

Tp ≥
n

Π
ωC + ωO

p+ ωO

ωC

.

Proof: Let a be the total number of input elements that
have been directly computed in the output stream with no
overhead. On the one hand, those a input elements must
have been sequentially processed (maybe by different pro-
cessors, but in sequence): then Tp.Π ≥ a.ωC (1). On the
other hand, the number of overhead operations is (n − a).
So, if we consider the total work on the p processors, we
have: p.Tp.Π ≥ n.ωC +(n−a).ωO (2). Using (2)+ ωO

ωC
.(1),

we obtain
(
p+ ωO

ωC

)
.Tp.Π ≥ n.ωC + n.ωO which states

the lower bound on Tp.

�

As an illustration, let us consider the two previous border
cases:

1. If ωC � ωO, then the lower bound is Tp ≥ n.ωC

p.Π =
T1
p , which is the trivial bound again.

2. If ωC ∼ ωO ∼ ω, the lower bound is Tp ≥
n.(ωC+ωO)

(p+1).Π ' 2.n.ω
(p+1).Π : this lower bound is indeed the

same as the strict one for prefix computation [8, 9].
This is not surprising since prefix may be considered
as a special case of stream computation.

In both cases, previous lower bounds exhibit potential
speed-up for any p ≥ 2.

3. Optimal on-line parallel stream computa-
tion

In this section, we first introduce the generic parallelisa-
tion of a stream computation based on work-stealing. Then
we prove it achieves the previous lower bound.

3.1. Work-stealing and processor-oblivious
algorithms

We still consider a machine with p processors P1, . . . , Pp

of average speed Π i.e. number of instructions per second
per processor. Following Bender and Rabin [2], we call

work W of a computation the number of unit processor in-
structions it performs. So the time T to compute that oper-
ation on a single processor is T = W

Π .
We use the work-stealing scheduling paradigm [1] in

which each processor executes its own task until it becomes
idle and then, steals a fraction of the remaining work on a
randomly chosen busy processor. This paradigm has been
studied and implemented in Cilk [5, 2] and KAAPI [6, 7].
The following theorem stands an upper bound on the par-
allel time used for the execution of any series-parallel pro-
gram with total work W and depth D (critical path in num-
ber of unit instructions) on p heterogeneous processors with
average speed Π per processor:

Theorem 3 (theorem 6 and 8 in [2]) With high probabil-
ity, the number of steal attempts is O(p.D) and the exe-
cution time Tp on p processors is bounded by:

Tp ≤
W

p.Π
+O

(
D

Π

)
.

This theorem ensures that the number of idle tops is
O(pD) which appears optimal when the arithmetic depthD
is very small compared to W . However, this bound is only
valid when the work W is constant whatever the number of
processors is. This is not the case for stream computations
in general: due to additional arithmetic overhead, perform-
ing parallel work increases the number of instructions.

3.2. Our processor-oblivious algorithm

Our processor oblivious parallel algorithm relies on the
on-line coupling of two algorithms: a sequential algorithm
is performed by a single process S and a parallel algorithm
is performed by an unknown number of thief processes T .
Each process T acts as a co-processor to speed-up the se-
quential process S. If there is only one processor avail-
able, this reduces to the sequential stream computation. The
synchronisation between those processes is based on work-
stealing.

Efficient scheduling by work-stealing When non-idle, a
process is always computing a block [a, b[of contiguous el-
ements, storing its results in the final output buffered stream
for S or in an intermediate local buffer for T .

When a process T become idle after completion of its
own block, it becomes a thief: it randomly chooses a vic-
tim processor and steals the last half part

[
a+b

2 , b
[

of the
remaining block on the victim and starts computing it in a
new temporary buffer.

The important point is that S strictly follows the sequen-
tial order in the stream: S always writes the elements in the
output buffered stream at their final position. When S en-
counters a block [a, b[that has been stolen and computed

by a theft T in a temporary buffer [u, v[of length L, it pre-
empts the process T . Then it performs a jump operation as
follows. Let i be the current position S points to in the out-
put stream, the temporary buffer [u, v[can asynchronously
be finalised (due to parallelisation) and copied in the out-
put stream at position i. Meanwhile, the process S directly
jumps to compute the block starting at b + 1, and writting
directly its results in the output stream at position i+ L.

Note that S never waits: except for preemptions (each
performed in O(1) time), all its operations are performed
by the full sequential stream computation. When S reaches
the end of the input stream, all computations are necessar-
ily completed but there may be still to complete some fi-
nalisations and copies of intermediate buffers in the output
stream. Then, the sequential process participates behaving
as a theft like the other processes.

If there are n elements to compute, the depth of the com-
putation is D = Θ(log n) due to recursive splitting on suc-
cessfull steals. Then, from theorem 3, this on-line assign-
ment of elements ensures a well balanced load on p pro-
cessors, while the number of synchronisations, O(p log n)
steal requests, compares favourably to the work W = Ω(n)
for n large enough.

However, work stealing introduces arithmetic and mu-
tual exclusion overheads. In order to bound the overhead
of parallelism on the stream computation, the algorithm is
structured in three nested loops which are now detailed.

Bounding mutual exclusion overhead: microcroloop
and nanoloop Two processes need to modify the bounds
of the block [a, b[assigned to a process. On the one hand,
the process itself has to take a portion of the block to com-
pute it sequentially: this is the extract seq() opera-
tion. On the other hand, its thieves, when stealing, has to
take a fraction of the block: this is the extract par()
operation. This two operations must be done in mutual ex-
clusion. Each process execute two nested loops: the mi-
croloop and the nanoloop.

When a process has an empty interval, it performs
extract par() operations until finding a non idle vic-
tim processor. The extract par() operation splits the
victim block in two halves and steals the one that would
have been performed last by the victim. It then enters the
nanoloop.

To compute its local interval, the process performs
extract seq() to obtain a small subset of elements
that it proceeds non preemptively, in sequence. The
extract seq() operation consists in extracting the first
Θ(log(b− a)) elements of the block.

Due to the granularity choice Θ(log(b − a)), the
depth D remains Θ(log n) but the whole number
of extract seq() operations is now bounded by
Θ
(

n
log n

)
. So the overhead of mutual exclusion becomes

Θ
(

n
log n

)
; it is hidden by the work W = Ω(n).

Bounding buffer copies overhead: amortised macroloop
In order to bound the arithmetic overhead induced by
copies, an amortised scheme is used. The global range
[0, n(of the input stream is broken into several macrosteps
of increasing size. So the global computation is structured
in a sequential macroloop: the step k completes and step
k + 1 starts only when all computations and buffer copies
related to step k − 1 are completed. As a result, a theft pro-
cess cannot steal a range in macrostep k + 1 if all elements
before the corresponding range has not been written in the
output stream. Note that only thief processes T are synchro-
nised by the macroloop. The process S do not participate to
copies, except during the last macrostep.

Let sk be the size of the k-th macrostep (s1 = O(1) is
predefined) and let nk =

∑k
i=1 si. We define sk+1 = nk

ε(nk)

with ε(n) = o(n) and ε(n) → +∞ (typically, we will
consider ε(n) = log n in the sequel) As a consequence,
due to the sequential macroloop, the resulting depth of the
computation becomes D(n) = ε(n). log n = log2 n.

The next theorem states that this algorithm, independent
from the number of processors and their relative speeds,
reaches asymptotically the lower bound of theorem 2.

3.3. Asymptotic optimality of the
processor-oblivious algorithm

Theorem 4 The time Tp on p processors of the processor-
oblivious stream compression algorithm verifies:

Tp ≤
n

Π
ωC + ωO

p+ ωO

ωC

+O

(
n

ε(n)

)
which is asymptotically (n→∞) optimal.

Proof: We cut the computation in two phases, φ1 until
the sequential process S computes the last byte of the last
macrostep and then φ2. At the end of φ1, all the input buffer
has been computed, either in the output buffer or in tempo-
rary buffers. By definition of the macrostep, the size of the
last macrostep is O

(
n

ε(n)

)
= o(n).

We call a the number of bytes that have been processed
by S and b the number of bytes that have been copied from
temporary buffers to the output buffer in phase φ1. We also
call j the number of jump operations (which have a work
of ωJ) and ik (k ∈ [1, 2]) the number of idle tops of the
parallel processes in phase φk (which have a work of ωI).

During phase φ1 of time Tp(φ1): if we consider
the sequential process which always runs, Π.Tp(φ1) =
a.ωC + j.ωJ ; if we consider the parallel process, (p −
1).Π.Tp(φ1) = (n − a).ωC + b.ωO + i1.ωI . The p − 1

parallel processes make a work with critical path D(φ1) =
O(log n) due to recursive stealing. By applying theorem 3,
j = O((p−1). log n) and i1 = O((p−1). log n). Necessar-
ily, we have b ≤ n−a. So, from all this, a ≤ n. ωC+ωO

p.ωC+ωO
+

O(log n) and then: Tp(φ1) ≤ n
Π

ωC+ωO

p+
ωO
ωC

+O(log n)

During phase φ2 of time Tp(φ2), as said before, there

are n− a− b = O
(

n
ε(n)

)
bytes in the temporary buffers to

copy, so p.Π.Tp(φ2) = (n−a−b).ωO +i2.ωI . By applying

theorem 3, i2 = O(log(n − a − b)) = O
(

log
(

n
ε(n)

))
=

O(log n). So: Tp(φ2) ≤ 1
p.Π .O

(
n

ε(n)

)
.ωO +O(log n)

So joining both results leads to: Tp ≤ n
Π

ωD+ωC

p+
ωC
ωD

+

O
(

n
ε(n)

)
�

4. Experiments

To experiment the presented processor-oblivious algo-
rithm, we implemented a filter function and made some
experiments on a NUMA Bull machine with 8 Itanium
1.5GHz processors running GNU/Linux 2.6.12. We com-
pared our implementation (adaptive) with a trivial par-
allel one (parallel) that equally share the input data be-
tween all the processors.

The overhead operation is just a copy and we measured
ωO = 7.8 on this machine and the main computation is
composed of several multiplications (ωC = 207) on ele-
ments that are filtered. The sequential time is about 700ms.

Figure 1 shows that adaptive is quite close to the opti-
mal speedup. It also shows the performance of parallel
decrease with more than 4 processors, this is due to the
NUMA architecture. adaptive has a much better be-
haviour regarding this architecture.

Figure 2, that is the same experiment with very hetero-
geneous data (more elements are filtered at the end of the
buffer), shows that the behaviour of adaptive is the same
whatever the input whereas the behaviour of parallel
depends on the input. This emphasizes the name processor-
oblivious of our algorithm, its behaviour does not depend
on the input data.

5. Conclusion

Modelling stream computation as an algorithm that in-
troduces memory management overhead (copy via interme-
diate buffers), we exhibit a lower bound Tp ≥ n

Π
ωC+ωO

p+
ωO
ωC

where ωC (resp. ωO) is the elementary time to compute
(resp. compute the overhead operations of) one byte of in-
put stream. Then, using more processes than the number

Figure 1. speedup of a filter on homogeneous
data

Figure 2. speedup of a filter on heteroge-
neous data

of processors introduces arithmetic overhead and decreases
performances: parallel slackness is unsuited to this prob-
lem. This lower bound appears as a generalisation of the
lower bound of parallel prefix computation [9]: in the case
of prefix, ωC = ωO, both corresponding to a same arith-
metic operation. For prefix, the bound has been proven
tight [10]; for parallel stream computation, we only proved
asymptotic optimality but we think that a similar algorithm
to the one of Nicolau et al. could establish the strict opti-
mality of the bound.

Based on an underlying work-stealing scheduling, we
exhibit a processor-oblivious compression algorithm that
asymptotically achieves this lower bound. Its main prop-
erty is to execute a sequential compression on a given pro-
cessor with no overhead: this processor is active during al-

most all the computation while the other ones always be-
haves as work-stealers. The algorithm behaves well what-
ever the charge of the processors or the complexity of input
data.

References

[1] N. S. Arora, R. D. Blumofe, and C. G. Plaxton. Thread
scheduling for multiprogrammed multiprocessors. Theory
Comput. Syst., 34(2):115–144, 2001.

[2] M. A. Bender and M. O. Rabin. Online scheduling of par-
allel programs on heterogeneous systems with applications
to Cilk. Theory of Computing Systems Special Issue on
SPAA00, 35:289–304, 2002.

[3] V. D. C. Cung, V. Danjean, J.-G. Dumas, T. Gautier,
G. Huard, B. Raffin, C. Rapine, J.-L. Roch, and D. Trys-
tram. Adaptive and hybrid algorithms: classification and
illustration on triangular system solving. In J. Dumas, ed-
itor, Transgressive Computing TC’2006, pages 131–148,
Granada, Spain, April 2006.

[4] V. Danjean, R. Gillard, S. Guelton, J.-L. Roch, and T. Roche.
Adaptive loops with kaapi on multicore and grid: Appli-
cations in symmetric cryptography. In A. publishing, ed-
itor, Parallel Symbolic Computation’07 (PASCO’07), Lon-
don, Ontario, Canada, July 2007.

[5] M. Frigo, C. E. Leiserson, and K. H. Randall. The imple-
mentation of the Cilk-5 multithreaded language. In PLDI
’98: Proceedings of the ACM SIGPLAN 1998 conference on
Programming language design and implementation, pages
212–223, New York, NY, USA, 1998. ACM Press.

[6] S. Jafar, T. Gautier, A. W. Krings, and J.-L. Roch. A check-
point/recovery model for heterogeneous dataflow computa-
tions using work-stealing. In L. Springer-Verlag, editor, EU-
ROPAR’2005, August 2005.

[7] MOAIS Project. KAAPI. http://gforge.inria.
fr/projects/kaapi/, 2007.

[8] A. Nicolau and H. Wang. Optimal schedules for parallel
prefix computation with bounded resources. In PPOPP ’91:
Proceedings of the third ACM SIGPLAN symp. Principles
and practice of parallel programming, pages 1–10, New
York, NY, USA, 1991. ACM Press.

[9] J.-L. Roch, D. Traore, and J. Bernard. On-line adaptive par-
allel prefix computation. In Euro-Par 2006 Parallel Process-
ing, volume 4128 of Lecture Notes in Computer Science.
Springer-Verlag, 2006.

[10] H. Wang, A. Nicolau, and K.-Y. S. Siu. The strict time
lower bound and optimal schedules for parallel prefix with
resource constraints. IEEE Transactions on Computers,
45(11):1257–1271, 1996.

