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Abstract—Performances of data-driven prognostics approaches
are closely dependent on form, and trend of extracted features.
Indeed, features that clearly reflect the machine degradation,
should lead to accurate prognostics, which is the global objective
of the paper. This paper contributes a new approach for features
extraction / selection: the extraction is based on trigonomet-
ric functions and cumulative transformation, and the selection
is performed by evaluating feature fitness using monotonicity
and trendability characteristics. The proposition is applied to
time-frequency analysis of non-stationary signals using Discrete
Wavelet Transform. The main idea is to map raw vibration
data into monotonic features with early trends, which can be
easily predicted. To show that, selected features are used to build
a model with a data-driven approach namely, the Summation
Wavelet-Extreme Learning Machine, that enables a good balance
between model accuracy and complexity. For validation and
generalization purpose, vibration data from two real applications
of Prognostics and Health Management challenges are used: 1)
cutting tools from Computer Numerical Control (CNC) machine
(2010), and 2) bearings from platform PRONOSTIA (2012).
Performances of the proposed approach are thoroughly com-
pared with the classical approach by performing: feature fitness
analysis, cutting tool wear “estimation” and bearings “long-term
predictions” tasks, which validates the proposition.

Index Terms—Prognostics, monitoring, feature extraction,
data-driven.

I. INTRODUCTION

A Prognostics and Health Management system is usually
described as the combination of 7 modules that collectively en-
able linking failure mechanisms with life management (Fig. 1).
PHM aims at extending the life cycle of an engineering asset,
while reducing exploitation and maintenance costs. For that
purpose, prognostics is considered as a key process with
future capabilities. In brief, it relies on the usage of condition
monitoring (CM) data from operating machinery (acoustic
signal, force, vibration, temperature, etc.,) to obtain useful
features, to assess the level of degradation, and to predict
the evolution of phenomena [1]. The predicted time before a
failure is known as the Remaining Useful Life (RUL). The
accuracy of RUL estimates is required for further plan of
actions to increase safety, minimize downtime, ensure mission
completion and efficient production [2]. More precisely, pre-
dicting the behavior of critical machinery like bearings [3],
cutting tools [4] is a challenging task while handling raw
vibration data due to its inherent non-linearity. The degradation
of such critical components can also affect the system as a
whole and cause major breakdowns or huge wastes [5].
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Fig. 1. Prognostics and Health Management cycle adapted from [15]

According to literature, prognostics may face various situa-
tions regarding collected information and data from the past,
present or future behavior. Among different approaches for
prognostics (model-based, data-driven, hybrid [6]–[8]), data-
driven approaches are easier to deploy when its hard to
understand first principles of a complex machinery to build a
diagnostics or prognostics model [9], [10]. They are black-box
models that learn system behavior directly from CM data, use
that knowledge to infer its current state and to predict future
progression of failure to estimate RUL.
Generally, modeling of data-driven prognostics has to go
through necessary steps of learning and testing. Firstly, raw
data are collected from machinery and pre-processed to extract
useful features to learn degradation behavior. Secondly, in the
test phase, the learned model is used to predict future behavior
and to validate model performance [10]. Most importantly, the
quality of extracted features has direct effect on performances
of a learned model. Obviously, features that properly reflect
failure progression may lead to simple prognostics [11], [12].
In this context, two main problems can be highlighted.

1) Even if most of data-driven approaches are able to cater
non-linearity of degrading signals, features with mono-
tonic behavior are likely to lead to better RUL estimates.

2) Some of classical features do not correlate to degradation
phenomena and are unable to show variation until failure,
which prevents timely RUL estimation [13], [14].

Such situations prevent timely RUL estimates to recommend
actions for maintenance and system configuration. Therefore,
in this paper mainly, the aspects related to usefulness of fea-
tures for prognostics are addressed. Developments are focused
on improving accuracy of prognostics by proposing a new
approach of feature extraction / selection using vibration data.
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The main contributions of this paper are as follows.
• Features extraction is performed by using trigonometric

functions and cumulative transformation;
• Features selection is performed by assessing their fitness

using monotonicity and trendability metrics;
• Generalization of the approach on two real applications.

The paper is organized as follows. In section II, the importance
of features extraction / selection is addressed and limits are
identified. Section III is dedicated to the proposed approach
of features extraction / selection, and prediction modeling to
improve accuracy of prognostics. Section IV demonstrates per-
formances of proposed approach on vibration data of cutting
tools and bearings. Finally, section V concludes this work.

II. BACKGROUND - FEATURE EXTRACTION / SELECTION

Relevant information related to degrading machinery is
often hidden in raw data and should be extracted. Therefore,
it is also important to identify features that are sensitive to
machine condition and clearly reflect failure progression, to
serve need of modeling [11], [16]. Considering importance
of such aspects, following topics address recent literature on
features extraction / selection and highlight important issues.

A. Features extraction

In literature, a large number of signal processing techniques
have been proposed. Prior to any selection among different
possibilities, it is required to investigate an appropriate method
for a specific application. However, there is vast literature on
this topic, which is beyond the scope of our paper. Let us
highlight three main categories of features extraction [7], [16].

1) Time domain: Time domain features extraction is di-
rectly performed on the sensed waveforms (e.g. acoustic emis-
sions, vibration signal) to identify signatures. Time-domain
approach extracts features using statistics like mean, variance,
standard deviation, etc. They are suitable for fault detection
and applied to stationary signals. Otherwise, extracted features
may show sensitivity to variation in data and inherit non-
linearity, which complicates prognostics [16].

2) Frequency domain: Frequency domain techniques are
considered more effective for fault diagnostic, because, they
have good ability to identify and isolate frequency compo-
nents. The most widely applied technique in this category
is Fast Fourier Transform. Other methods that belong to this
category are cepstrum, spectral analysis, higher-order spectra
or envelop analysis [7], [16], [17]. The main limitation of such
techniques is their inability to deal with non-stationary signals,
unfortunately which is the case in degrading machinery.

3) Time-Frequency: Time-frequency techniques aim at in-
vestigating signals in both time and frequency domains. They
are considered to be powerful to analyze non-stationary sig-
nals. Some of popular time-frequency techniques proposed
in literature are: Short Time Fourier Transform (STFT) [16],
Wavelet Transform (WT) [18], Empirical Mode Decomposi-
tion (EMD) [19], etc.
According to literature [20], EMD and WT are the two out-
standing examples among signal processing techniques since
the last two decades. However, the main weakness of EMD is

high sensitivity to noise, and it also runs into the problem
of mixing modes [21]. In addition, EMD is also reported
to have characteristics like wavelet [22], which encourages
to use WT as a substitute in studying the behavior of the
time-frequency signals [23]. Moreover, EMD is popular in
demodulation applications, whereas WT is commonly used in
vibration content characterization [20] and has better applica-
bility [4], especially when vibration data come from rotating
machinery like bearings [24], [25] or cutting tools [4], [26].
However, as far as authors know, even application WT cannot
guarantee ideal features for prognostics applications, and its
performances can vary from case to case.

B. Features selection

Feature dimensionality can be reduced in two ways:
1) By drawing features in a new space with methods like:

Principal Component Analysis, Singular Value Decom-
position, Self-Organizing Map, or clustering [26];

2) By selecting a feature subset based on essential charac-
teristics like monotonicity and trendability [2], [14] .

Leaving aside conventional approaches for dimensionality
reduction, recent works confirm that features selection by
essential characteristics in later case are vital to prognostics
[2], [11], [13], [14]. In literature, two simple metrics are
devised to assess quality of features prior to selection.
• “Monotonicity” characterizes increasing or decreasing

trend. It can be measured by absolute difference of
“positive” and “negative” derivatives for each feature [2]:

M =

∣∣∣∣no. of d/dx > 0

N − 1
− no. of d/dx < 0

N − 1

∣∣∣∣ (1)

where “N” represents observations, M = 1 is for highly
monotonic features and M = 0 is vice versa.

• “Trendability” is related to the functional form of a
feature and its correlation to time, i.e., how the continuous
state of a machinery changes with time [13]:

R =
n (
∑
xy)− (

∑
x) (
∑
y)√[

n
∑
x2 − (

∑
x)2][n∑ y2 − (

∑
y)2] (2)

where, R ∈ [−1; 1] is the correlation coefficient between
feature x and time index y.

C. Problem statement

As raw vibration data exhibit great amount of hidden noise,
it can be very challenging to extract features that explicitly
reflect failure progression or have essential characteristics like
monotonicity and trendability. Most importantly, features are
extracted to make inference about health of machinery. They
can be seen as time series health indicators that can be non-
linear, noisy or smooth, which may affect performances of a
prognostics model. For understanding, consider Fig. 2, where
effects of features with different characteristics are presented.
Obviously, feature that clearly reflect failure progression (i.e.,
monotonic and trendable), up to current time tc may lead to an
accurate RUL estimate and with less uncertainty because the
predicted degradation is expected to grow in a same fashion
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till it reaches failure threshold at time tf1. On the other hand,
when a non-monotonic and non-trendable feature is presented
to a prognostics model, its performances may impair, or rather,
it could be impossible for the model to predict future unknown
from current time tc to tf2, leading to large uncertainties that
risk decision making. Therefore, it is strictly required to extract
features, that not only simplify prognostics modeling, but also
lead to accurate RUL estimates. This is the aim of the proposed
data-processing approach presented hereafter.
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Fig. 2. Effect of features on prognostics results

III. IMPROVING ACCURACY OF PROGNOSTICS

A. Outline: from raw data to accurate predictions

The proposed methodology is demonstrated on vibration
data, which are a kind of signal widely used for prognostics,
although RUL estimation is difficult to perform [27].
Firstly, time-frequency analysis is performed by applying
Discrete Wavelet Transform to raw vibration data. Following
that, rather than a classical approach [26], [27], features are ex-
tracted / selected (from a decomposed signal) in a new manner:
firstly, trigonometric functions are applied to extract features
and then smoothed to remove unwanted noisy part. Secondly,
extracted features are further transformed into their respective
cumulative features by performing a running total and simul-
taneous scaling, to obtain feature having monotonic behavior
and early trend. Note that, cumulative transformation can also
be performed on classical features like Root Mean Square
(RMS), energy, etc. Thirdly, multivariate data (of extracted
features) are analyzed for fitness. A complete representation
of proposed data processing procedure is shown in Fig. 3.
To show the benefit of our proposition, selected features are
used to build a model with a data-driven approach to perform
estimation / prediction tasks namely, the Summation Wavelet-
Extreme Learning Machine (SW-ELM). Performances with
proposed approach are discussed in section IV.

B. Data-Preprocessing to obtain suitable features

The proposed approach is elaborated as follows.
1) Discrete Wavelet Transform and Trigonometric Features:

Discrete Wavelet Transform (DWT) is achieved by discretiza-
tion of Continuous Wavelet Transform, that has the drawback
of impracticality with computers. An important implementa-
tion of DWT is known as Multi-Resolution Analysis (MRA),
which is accomplished by two functions: scaling and wavelet
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Fig. 3. Proposed approach to obtain monotonic and trendable features

that are associated with a low pass filter (LPF ) and a high-
pass filter (HPF ) respectively. At first level of decomposition,
a signal is passed through a LPF that gives approximation
coefficients (A), and a HPF that gives detail coefficients
(D), followed by a down sampling by 2. The frequency
band can be further broken down into lower resolutions by
recursive decomposition of approximation part at current level
[24], [27], [28]. For applications like vibration signal, MRA
has 3 requirements: mother wavelet, decomposition level and
features to be extracted.

a) Classical features: the classical approach for feature
extraction with DWT is performed at a required level of
decomposition (and using approximation coefficients) to ex-
tract different features. The extracted features can be entropy,
RMS or other statistical features [26], [29]. However, each
feature can be sensitive to different faults or the severity of
degradation. For example, vibration based features RMS and
kurtosis from the degraded bearings show variation only few
time before failure (i.e., rate of change increases significantly),
which can limit the use of such features for prognostics.
Therefore, a new set of features is introduced in the next topic.

b) Proposed trigonometric features: in this case, at a
required level of decomposition (of vibration data), features
extraction is performed by using a combination of statistics
and trigonometric functions. Mainly, the trigonometric func-
tions can be either monotonically increasing or decreasing,
e.g. inverse hyperbolic sine, etc. In this context, they can be
grouped in two classes.
• Functions that have domain (−∞,∞), e.g. inverse hy-

perbolic sine (asinh), inverse tangent (atan), etc;
• Functions that have different domain value but not

(−∞,∞), e.g. inverse hyperbolic cosine (acosh), etc.
For the second class, input values outside the domain are
transformed to complex outputs which can be further explored.
However, the first class appears to be more relevant to a real
data, due to domain values from (−∞,∞). Therefore, we limit
the study to the first class only.
Mainly, benefit of using trigonometric functions is that: they
transform the raw input data to different scale thereby, ob-
tained features have better trends and low scale as compared
to classical features. To achieve that, a trigonometric function
operates on array (X) element-wise (xj , j = 1, 2, .., n) to
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scale, and the standard deviation (SD) applied to the scaled
array for extracting feature value. Different features extracted
from vibration data are listed in Table I.

TABLE I
FEATURES EXTRACTED FROM REQUIRED APPROXIMATION LEVEL

Proposed Trigonometric Features

SD of asinh(X) σ
(
log
[
xj + (x2

j + 1)1/2
])

SD of atan(X) σ
(
i
2
log
(
i+xj
i−xj

))
Classical Features
Entropy (threshold) E =

∑n
j=1 E(xj)

Energy e =
∑n
j=1 x

2
j

Root mean square (RMS) RMS =
√

1
n

(x2
1 + ...+ x2

n)

Kurtosis
∑n

j=1(xj−X̄)4

(n−1)σ4

Upper bound max(X) + 1
2
max(X)−min(X)

n−1

2) Feature smoothing: to reduce variability of extracted
features and to filter unwanted noise, smoothing process is
performed on each feature F to capture important trends.
This step is met by applying a local regression (LOESS)
filter with a span value 0.3 (i.e., 30 %). In brief, LOESS
is a popular smoothing method based on locally weighted
regression function and a second degree polynomial. Given
some scattered data, LOESS filter can locally perform a
weighted fit with the n-nearest points (see [30] for details).

3) Proposed cumulative features: any machine is bound
to degrade as time grows. Thereby, the main idea of this
step is obtain health indicators that can clearly reflect failure
progression and satisfy requirements mentioned in II-C. In
fact, features with non-linear behavior don’t clearly indicate
state of the machinery under operation, i.e., to distinguish
among good, degrading or failure states. Note that, such non-
linearity can also represent self-healing. Here we assume that
self-healing it is not possible in case of components like
bearings, gears, or cutting tools. However, this assumption
does not hold for batteries that may undergo self-recovery
during non use [2].
A straightforward but an effective strategy is proposed to build
health indicators, that aims at transforming an extracted feature
into its respective cumulative form, to have monotonicity and
trendability characteristics. The feature transformation task
is achieved by applying a cumulative function on a given
time series, on which a point-wise running total and scaling
operations are performed simultaneously to obtain cumulative
feature, that can clearly distinguish among different states of
degrading machinery:

CF́v =

N∑
i=1

´Fv(i)∣∣∣∣( N∑
i=1

´Fv(i)

)∣∣∣∣1/2
, v = 1, 2...., k (3)

where,
N∑
i=1

F́v(i) represents the running total of a “smoothed

vth” feature F́v up to “N” points, and CF́v represents trans-
formed cumulative feature. It should be noted that, the cumu-

lation of a feature can be sensitive to noise, therefore, features
smoothing must be performed a priori (section III-B2).

4) Features fitness analysis: the choice of a features subset
is essential for any prognostics model. Therefore, features
selection is performed on the basis of monotonicity and
trendability characteristics, i.e., by retaining the subset of
cumulative features with higher M (Eq. (1)) and R (Eq. (2)).
Those features should lead to accurate RUL estimates.

C. Building a prediction model

1) Data-driven approach: the accuracy of a prognostics
model is related to its ability to predict future states of
equipment, where prediction is not only dependent on model
but observations as well. In the data-driven category of prog-
nostics, a number of techniques are proposed like Bayesian
approaches, Artificial Neural Networks (ANNs), etc. Among
these methods, ANNs are a special case of adaptive networks,
that are widely used among machine learning methods in
PHM domain [31]. Although, several learning schemes for
ANNs exist [32], relatively a new algorithm was proposed
for a Single Layer Feed Forward Networks (SLFN), namely
the Extreme learning Machine (ELM) [33]. ELM avoids slow
iterative tuning and requires one-pass to train SLFN, by
randomly choosing hidden layer parameters (weights and bias)
and analytically calculating output layer weights. However,
performances of ELM can suffer due to random initialization
of parameters and the type of activation functions in hidden
layer. Such issues can increase the complexity of model
and may lead to ill-condition [34]. To overcome limitations
of ELM without compromising its better applicability, an
improved variant is presented.

2) The Summation Wavelet-Extreme Learning Machine:
basically, SW-ELM combines ANN and wavelet theory and
appears to be an effective prediction approach [34]. Like ELM,
SW-ELM is a tuning free one-pass algorithm for SLFN, where
hidden node parameters are not only independent of training
but also each other. SW-ELM differs from ELM, mainly, in
structure, activation functions and parameters initialization.

a) Structure: the basic structure of SW-ELM is com-
posed of three fully connected layers of neurons (input, hidden
and output layers). As compared to ELM, the main differences
of SW-ELM structure are the following (see Fig. 4).
• Each hidden neuron holds a parallel conjunction of two

distinct activation functions (f1 and f2), where the output
from a hidden node is the average value from dual
activations (f̄ = (f1 + f2) /2).

• For better convergence of the algorithm, an inverse
hyperbolic sine (Eq. (4) [35]) and a Morlet wavelet
(Eq. (5) [36]) are used.

f1 = θ (X) = log
[
x+ (x2 + 1)1/2

]
(4)

f2 = ψ (X) = cos (5x) e(−0.5x2) (5)

Let note n and m the numbers of inputs and outputs, N the
number of learning data samples (xi, ti), where i ∈ [1 . . . N ],
xi = [xi1, xi2, ..., xin]T ∈ <n and ti = [ti1, ti2, ..., tim]T ∈
<m, and Ñ the number of hidden (hid.) nodes, each one with
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Fig. 4. SW-ELM structure and learning algorithm

activation functions (f1 and f2). For each sample j, the output
oj is mathematically expressed as:

Ñ∑
k=1

βkf̄ [(θ, ψ) (wk.xj + bk)] = oj , j = 1, 2, ..., N (6)

where f̄ is the average output from two different activation
functions θ and ψ. wk = [wk1, wk2, ..., wkn]T ∈ <n is an
input weight vector connecting the kth hidden to input layer
neurons, (wk.xj) is the inner product of weights and inputs,
and bk ∈ < is the bias of kth neuron of hidden layer.
Also, βk = [βk1, βk2, ..., βkm]T ∈ <m is the weight vector to
connect the kth neuron of hidden layer and output neurons.
To minimize the difference between output oj and target tj ,∑Ñ

j=1 ‖oj − tj‖ = 0, there exist βk, wk and bk such that:

Ñ∑
k=1

βkf̄ [(θ, ψ) (wk.xj + bk)] = tj , j = 1, 2, ..., N (7)

which can be expressed in matrix form as,

Havgβ = T (8)

where Havg is a
[
N × Ñ

]
matrix expressed as,

Havg (w1, . . . , wÑ , x1, . . . , xÑ , b1, . . . , bÑ ) =

f̄ (θ, ψ)

 (w1.x1 + b1) . . . (wÑ .x1 + bÑ )
... · · ·

...
(w1.xN + b1) . . . (wÑ .xN + bÑ )

 (9)

β =

 βT1
...
βT
Ñ


Ñ×m

T =

 tT1
...
tTN


N×m

(10)

Finally, the least square solution of the linear system defined
in Eq. (8), with minimum norm of output weights β is:

β̂ = H†avgT =
(
HT
avgHavg

)−1

HT
avgT (11)

b) Learning scheme: main learning phase derives from
Eq. (8) and (9). However, it is required to properly perform
parameters initialization task and to provide a better starting
point to algorithm. Two types of parameters have to be
considered: those from the wavelets (dilation and translation)
adapted by a heuristic procedure [37], and those from the
SLFN (weights and bias for input-hidden nodes), initialized
by Nguyen Widrow (NW) procedure [38]. Complete learning
scheme is synthesized in Fig. 4. Details can be found in [34].

IV. EXPERIMENTS, RESULTS AND DISCUSSION

A. PHM challenge datasets

To demonstrate the effectiveness of our contributions, we
consider vibration data from two real applications under
constant operating conditions: 1) cutting tools from CNC
machine [39] (Fig. 5a), and 2) ball bearings from experimental
platform PRONOSTIA [25], [40] (Fig. 5b). Key features of
both applications are summarized in Table II, and a brief
introduction is given below.

• Cutting tools are used for an extremely dynamical cutting
process. The in situ monitoring during the cutting process
can give important information about tool condition,
process itself, work piece surface quality and even ma-
chine condition [4]. CM systems for the cutting process
are normally based on the measurements of vibration,
acoustic emission and cutting force. However, vibration
measurement benefit from: wide frequency range, less
restrictive conditions, and easy to implement [41].

• Bearings are of great importance, because, rotating ma-
chinery often includes bearings inspections and replace-
ments, which implies high maintenance costs. However,
it is hard to evaluate model performance due to inherent
non-linearity in features extracted from raw vibration data
[3], [42]. In this context, the platform PRONOSTIA is
dedicated to test and validate fault detection, diagnosis
and prognostics methods on ball bearings. It allows per-
forming accelerated degradations of bearings by constant
and / or variable operating conditions, while gathering
CM data (load force, speed, vibration and temperature).
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TABLE II
KEY FEATURES OF PHM CHALLENGE DATASETS FROM TWO APPLICATIONS

Validation data PHM Challenge 2010 PHM Challenge 2012
Experimental platform / component Röders Tech RFM760 / cutters PRONOSTIA / bearings
Sampling frequency 50kHz 25.6kHz
Failure limit 165(×10−3mm) wear level 20g vibration level
Learning set (1800rpm & 4000N) / Ber1−1 Ber1−2

Operating condition / component (10400rpm) / C1 C4 C6 (1650rpm & 4200N) / Ber2−1 Ber2−2

(1500rpm & 5000N) / Ber3−1 Ber3−2

Testing set (1800rpm & 4000N) / Ber1−3 to Ber1−7

Operating condition / component (10400rpm) / C2 C3 C5 (1650rpm & 4200N) / Ber2−3 to Ber2−7

(1500rpm & 5000N) / Ber3−3

Load  

module 

Test  

bearing 

Rotation  

module 

Data 

acquisition 

module 

b) PRONOSTIA bearing testbed a)  CNC machine, work piece & sensors 

Work Piece     

Cutter     

Accelerometer       

Accelerometer       

Fig. 5. CNC machine SIMTECH Institute and PRONOSTIA testbed - FEMTO-ST Institute, AS2M department
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Fig. 6. Classical features vs trigonometric features extracted from: a),b) cutting tool (3rd level approximation), and c),d) bearing (4rd level approximation)

B. Feature extraction and selection results

As mentioned in III-B1, decomposition of vibration signal
require selection of mother wavelet, and decomposition level.
Therefore, as suggested in literature, for cutting tool applica-
tion Daubichies wavelet of 4th order (db4) [26], and 3rd [43]
level of decomposition was used, whereas for bearings db4 and
4th level was considered [27], prior to features extraction.

1) Classical features vs. trigonometric features: here, we
compare performances of trigonometric features with classical
ones, on cutter C1 (from CNC machine) and bearing Ber1−1
(from PRONOSTIA), see Fig. 6a and Fig. 6c. For both
cases, vibration data appear to be noisy with low trendability.
Especially for bearing Ber1−1 the vibration signal is almost
constant until 4th hour, but grows suddenly at the end. Results
in Fig. 6a and Fig. 6c show that classical features from
both cases (C1 and Ber1−1) have low monotonicity / trend-
ability and high noise / scales. Therefore, consider now the
proposition of features extraction using a combination of SD

and trigonometric functions (Table I). Results in Fig. 6b and
Fig. 6d, show that trigonometric features clearly reflect failure
progression with high monotonicity and trendability, and also
have lower scales as compared to classical features.
Back to the accuracy of prognostics, one can point out that
classical features (RMS, Kurtosis, etc.) are not well adapted
to catch machine conditions. Also, they can have large scales,
which require normalization before feeding a prognostics
model. This strengthens the interest of trigonometric features.

2) Classical features vs. cumulative features: it is quite
challenging to obtain monotonic and trendable features in
cases where raw data do not show clear progression of failure.
Cumulative transformation is a straightforward and effective
approach to counteract this problem. In brief, following a
smoothing task (by LOESS filter), all features (listed in
Table I) extracted by classical and proposed approaches were
transformed to build respective cumulative features (Eq. (3)).
To highlight the improvements, fitness analysis is performed to
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compare classical features extraction procedure and proposed
approach Fig. 3. Both approaches are thoroughly examined on
complete data of cutting tools (from CNC) and bearings (from
PRONOSTIA) by assessing trendability (R) and monotonicity
(M ) characteristics of extracted features. Mean performances
by each approach are summarized in Table III and Table IV.
According to results from both applications (cutting tools
and bearings), one can clearly notice that cumulative features
have higher fitness as compared to classical features (listed in
Table I). Also, cumulative features based on proposed trigono-
metric functions (C-σ(asinh) and C-σ(atan) in Table III and
Table IV) appear to be the more monotonic and trendable ones.
Same conclusion can be drawn qualitatively by considering
Fig. 7, that compares the form of features extracted from clas-
sical and proposed approaches (having best fitness). Whatever
the case is (and thereby, whatever load conditions), cumulative
transformation lead to highly monotonic and trendable wear
patterns. On the opposite, classical procedure result highly
non-linear and complicated patterns that do not clearly reflect
machine condition, which impairs performance of prognostics
model to very low accuracy (and large uncertainty of RUL
estimates, Fig. 2). Note that, classical / cumulative features
with higher fitness will only be used for further experiments.

TABLE III
COMPARING FEATURES FITNESS (MEAN PERFORMANCES 6 CUTTERS)

Feature R M Cumulative Feature R M
σ(asinh) 0.958 0.713 C-σ(asinh) 0.995 1
σ(atan) 0.960 0.709 C-σ(atan) 0.995 1
Entropy 0.949 0.643 C-Entropy 0.991 1
Energy 0.177 0.203 C-Energy 0.981 1
RMS 0.83 0.703 C-RMS 0.996 1
Kurtosis -0.15 0.418 C-Kurtosis 0.976 1
Upper bound 0.968 0.708 C-Upper bound 0.994 1

TABLE IV
COMPARING FEATURES FITNESS (MEAN PERFORMANCES 17 BEARINGS)

Feature R M Cumulative Feature R M
σ(asinh) 0.47 0.28 C-σ(asinh) 0.984 1
σ(atan) 0.47 0.31 C-σ(atan) 0.984 1
Entropy 0.47 0.31 C-Entropy 0.983 1
Energy 0.36 0.29 C-Energy 0.982 1
RMS 0.45 0.28 C-RMS 0.978 0.9
Kurtosis -0.04 0.15 C-Kurtosis 0.972 1
Upper bound 0.39 0.21 C-Upper bound 0.973 0.9

C. Does monotonic & trendable features improve accuracy?
1) SW-ELM as a suitable model: predicting continuous

state of a degrading machinery acts as prerequisite of any prog-
nostics model to estimate RUL. However, for real application,
performances of a prognostics model are closely related to
critical issues that limit its applicability, like the horizon of
prediction, the expected accuracy, the acceptable uncertainty
level, human intervention, or convergence of algorithm. Such
aspects should be considered for prediction modeling. There-
fore, SW-ELM is considered to perform estimation of cutting
tool wear, and multi-step ahead prediction (msp) of bearing
degradation using iterative approach [10], [31].
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Fig. 7. Classical features vs. cumulative features: a),b) cutters & c),d)
bearings

2) SW-ELM learning and testing strategy: for estima-
tion / prediction tasks, simulation settings are given in Table V.
For cutting tools application testing set (Table II) is not used

TABLE V
SW-ELM SIMULATION SETTINGS

Parameter Estimation model Prediction model
Input / hid. / output node 2 / 4 / 1 3 / 4 / 1
Constant C (see Fig. 4) 0.01 0.001
Inputs (classical) Entropy, Upper bound Entropy
Output (classical) Tool wear Entropy
Inputs (proposed) C-σ(asinh), C-σ(atan) C-σ(atan)
Output (proposed) Tool wear C-σ(atan)

due to absence of ground truth (tool wear [39]). Therefore,
only learning set is used for experiments using leave-one-out
strategy (e.g. learn C1, C4 and test C6). However, for bearings
application, learning and testing were performed according to
information given in Table II. Assuming that a single model
cannot guarantee accuracy of estimation / prediction, therefore,
for each application 100 SW-ELM models (with different
weights / bias) were learned rapidly, and the best model with
minimum learning error was selected for testing. For e.g. in
case of bearings, even with the large data from Ber1−1 and
Ber1−2, the learning time was just 0.0063 sec due to one-
pass learning phase (III-C2). Note that, for bearings 3 inputs
represent regressors from a particular feature (xt, xt−1, xt−2),
where output represents msp (xt+1→t+H ), H ∈ msp horizon.
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3) Results and discussion: As mentioned in previous topic,
tool wear estimation is performed for totally unknown cutter,
which was not included in learning. For illustration, tool wear
estimation results with features from classical and proposed
approaches (Table V) are compared for cutter C1 in Fig. 8,
which shows accurate estimates with cumulative features. All 3
tests on cutting tool application show better performance with
proposed features, that are summarized in Table VI. Note that
only test on cutter C6 showed lower performances by both
approaches, which is due to large deviation of unknown test
data from the learned cases (see Fig. 7).
As for bearings application, msp were performed from a
current time (of test data) to the end of the bearings life (see
details in [25], [40]). For illustration, predictions results with
features from classical and proposed approaches (Table V)
are compared for test bearings Ber1−7 which has the longest
msp horizon (Fig. 9). One can qualitatively note the accuracy
of msp with proposed methodology: the figure depicts very
minor difference between the actual and predicted trends,
where predictions with classical feature show poor results.
This conclusion can be extended for all tested bearings (see
Table VII for msp error): predictions with cumulative features
are achieved with high accuracy and generalization even for
long prediction horizons like “757 steps”. Since predictions
follow trending behavior of features in an accurate manner,
the complete approach (cumulative features with SW-ELM)
should lead to low uncertainty of RUL estimates.
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Fig. 9. Examples of multi-step ahead predictions (Classical vs. Proposed)

TABLE VI
TOOL WEAR ESTIMATION PERFORMANCES FOR 3 CUTTERS

Learned Test Classical features Proposed features
cutters cutter R2 RMSE R2 RMSE
C4 C6 C1 -1.85 46.9 0.84 10.9
C1 C6 C4 0.55 25.7 0.73 19.9
C1 C4 C6 0.13 43.4 0.19 41.8

RMSE: Root Mean Square Error - [0,∞[, Perfect score = 0
R2: coefficient of determination - should be closer to 1

TABLE VII
LONG TERM PREDICTION PERFORMANCES FOR 11 TEST BEARINGS

Test Prediction Entropy (classical) C-σ(atan) (proposed)
Ber steps MAPE RMSE MAPE RMSE

1− 3 573 2.09% 4.5 1.9% 0.81
1− 4 289 32.1% 67.5 6.4% 1.82
1− 5 161 0.38% 0.5 0.65% 0.23
1− 6 146 0.68% 1.05 0.66% 0.26
1− 7 757 16.92% 22.3 3.0% 0.99
2− 3 753 1.06% 2.55 0.19% 0.07
2− 4 139 3.92% 4.75 0.09% 0.01
2− 5 309 3.54% 4.73 0.55% 0.22
2− 6 129 5.70% 9.71 1.26% 0.19
2− 7 58 5.71% 12.5 2.60% 0.31
3− 3 82 2.48% 4.60 0.78% 0.11

MAPE: Mean Absolute Percent Error - [0,∞[, Perfect score = 0

V. CONCLUSION

Performances of prognostics methods are closely related
to the form and trends of extracted features from raw data
to serve the need of degradation modeling. However, use-
fulness of gathered data is highly dependent on the vari-
ability of phenomena. Developments of this paper focus on
the proposition of enabling features that can lead to simple
and accurate prognostics. In the first step, data-preprocessing
phase is improved in a new manner by applying trigono-
metric functions and cumulative transformation to achieve
monotonic / trendable features from a decomposed vibration
signal (by Discrete Wavelet Transform), which are further
selected on the basis of their fitness. To show the benefit of
our proposition for prognostics, in the second step, selected
features are used to build a model with SW-ELM algorithm to
perform estimation / prediction tasks. The proposed approach
is generalized on vibration data from two real applications: 1)
cutting tools (from CNC machine) and bearings (from platform
PRONOSTIA). The results clearly depict effectiveness of
the proposition for improving accuracy of prognostics. The
future perspective, is to integrate this work with our novel
developments of dynamic failure thresholds assignment for
prognostics [10]. Another possibility could be, the usage of
our proposition on vibration data of gearbox (in wind turbine).
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