

Electrimac 2011 University of Cergy-Pontoise

Special Session 4 : Analytical Models in Electromagnetic Devices

June 6-8th, 2011, Paris, France

Slotting Effect in Permanent-Magnet Motors via a 2-D Exact Sub-Domain Model

F. Dubas and C. Espanet

Outlines

- Context and Objective of the Work
- Review of the Existing Analytical Models
- 2-D Analytical Field Model (i.e., Sub-Domains)
- Full Quantities No-Load Calculation
- Conclusion

 Context and Objective of the Work

• Review of the Existing Analytical Models

• 2-D Analytical Field Model (i.e., Sub-Domains)

• Full Quantities No-Load Calculation

• Conclusion

Cogging Torque Evaluation through a Magnetic Field Analytical Computation in Permanent Magnet Motors

Introduction: Context and Objective

☐ Accurate knowledge of the magnetic field distribution in the air-gap.

- Multi-pole surface mounted permanent-magnet (PM) motors (SMPMM).
 - **Modeling of slotting effect.**
 - **Full quantities no-load evaluation.**
 - **New 2-D** analytical Solution.
- Comparison analytical model vs Finite Element Analysis (FEA 2-D)

pp. 2097-2109, May 2009.

Problem Description and Assumptions

- Context and Objective of the Work
- Review of the Existing Analytical Models
- 2-D Analytical Field Model (i.e., Sub-Domains)
- Full Quantities No-Load Calculation
- Conclusion

Cross section under a one pole-pair of the multi-pole SMPMM

Slotted stator Slot Air-gap PMs Rotor yoke R_m R_m R_m Θ_r Θ

- End-effects are neglected.
- Saturation is neglected.
- Non-conductive PMs material (i.e., non-resolution of Diffusion's equations).
- Radial/Parallel magnetization.
- Linear demagnetization characteristics of PMs.
- Radial slot faces on the stator.

- Full Quantities No-Load Calculation
- Conclusion

- **Poisson's equations:** $\Delta A_{z1} = B_{rm} \cdot K_m(r, \Theta_s)$ in the PMs.
- Laplace's equations: $\Delta A_{z^2} = 0$ in the air-gap. $\Delta A_{z^i} = 0$ in the slots on the stator.

2-D Exact Sub-Domain Model

- Context and Objective of the Work
- Review of the Existing Analytical Models
- 2-D Analytical Field Model (i.e., Sub-Domains)
- Full Quantities No-Load Calculation
- Conclusion

- In the PMs: $A_{z1} = B_{rm} \cdot R_m \cdot f_{z1}(E_{1n}, G_{1n}, r, \Theta_s)$
- In the air-gap: $A_{z2} = B_{rm} \cdot R_m \cdot f_{z2} (E_{2n} \sim H_{2n}, r, \Theta_s)$
- In the slots on the stator: $A_{zi} = B_{rm} \cdot R_s \cdot f_{zi} (F_{iv}, r, \Theta_s)$

2-D Exact Sub-Domain Model

- Context and Objective of the Work
- Review of the Existing Analytical Models
- 2-D Analytical Field Model (i.e., Sub-Domains)
- Full Quantities No-Load Calculation
- Conclusion

The linear Cramer's system:

Given Size of the Cramer's system, i.e., [Q]:

 $6 \cdot Nn + Q_n \cdot Nv$ equations and unknowns.

with N_n and N_v are the number of terms in the Fourier's series for the computation A_{z1} , A_{z2} and A_{zi}

2-D Exact Sub-Domain Model

□ Integration Constants [*IC*]:

 E_{1n} Region 1: PMs E_{2n} F_{2n} G_{1n} G_{2n} Region 2: Air-gap [IC] = H_{2n} F_{3v} F_{4v} Regions *i*: Slots on the stator with i=3,..., (Q_p+2) where Q_p is the $F_{(\mathcal{Q}_p+2)v}$ number of stator slots per pole

- Context and Objective of the Work
- Review of the Existing Analytical Models
- 2-D Analytical Field Model (i.e., Sub-Domains)
- Full Quantities No-Load Calculation
- Conclusion

2-D Exact Sub-Domain Model

□ Magnetic sources [K]:

- Context and Objective of the Work
- Review of the Existing Analytical Models
- 2-D Analytical Field Model (i.e., Sub-Domains)
- Full Quantities No-Load Calculation
- Conclusion

$$[K] = \begin{bmatrix} K_{1n} \\ K_{3n} \\ 0 \\ K_{2n} \\ K_{4n} \\ 0 \\ 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

with the matrices $K_{1n} \sim K_{4n}$ have $Nn \times 1$ coefficients which depend on Θ_{rs} .

2-D Exact Sub-Domain Model

• Context and Objective of the Work

- Review of the Existing Analytical Models
- 2-D Analytical Field Model (i.e., Sub-Domains)
- Full Quantities No-Load Calculation

• Conclusion

□ Boundary conditions matrix [*Q*]:

$$\begin{bmatrix} Q \end{bmatrix} = \begin{bmatrix} Q_A & 0 & Q_B \\ 0 & Q_A & Q_C \\ Q_D & Q_E & Q_F \end{bmatrix}$$

$$Q_{A} = \begin{bmatrix} Q_{1nn} & Q_{0nn} & Q_{0nn} \\ Q_{2nn} & -Q_{0nn} & Q_{0nn} \\ 0 & Q_{3nn} & Q_{4nn} \end{bmatrix}$$

 Q_{0nn} : the **unit matrix** has $Nn \times Nn$ coefficients. $Q_{1nn} \sim Q_{4nn}$: the **diagonal matrices** have $Nn \times Nn$ coefficients.

2-D Exact Sub-Domain Model

• Context and Objective of the Work

• Review of the Existing Analytical Models

• 2-D Analytical Field Model (i.e., Sub-Domains)

• Full Quantities No-Load Calculation

• Conclusion

12

□ Boundary conditions matrix [*Q*]:

$$Q_{B} = \begin{bmatrix} 0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ Q_{5nv3} & Q_{5nv4} & \cdots & Q_{5nv(Q_{p}+2)} \end{bmatrix} \qquad Q_{C} = \begin{bmatrix} 0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ Q_{6nv3} & Q_{6nv4} & \cdots & Q_{6nv(Q_{p}+2)} \end{bmatrix}$$
$$Q_{D} = \begin{bmatrix} 0 & Q_{7vn3} & Q_{8vn3} \\ 0 & Q_{7vn4} & Q_{8vn4} \\ \vdots & \vdots & \vdots \\ 0 & Q_{7vn(Q_{p}+2)} & Q_{8vn(Q_{p}+2)} \end{bmatrix} \qquad Q_{E} = \begin{bmatrix} 0 & Q_{9vn3} & Q_{10vn3} \\ 0 & Q_{9vn4} & Q_{10vn4} \\ \vdots & \vdots & \vdots \\ 0 & Q_{9vn(Q_{p}+2)} & Q_{10vn(Q_{p}+2)} \end{bmatrix}$$

 $Q_{5nvi} \sim Q_{6nvi}$ and $Q_{7vni} \sim Q_{10vni}$: the **matrices** have $Nv \times Nn$ and $Nn \times Nv$ coefficients respectively.

2-D Exact Sub-Domain Model

• Context and Objective of the Work

- Review of the Existing Analytical Models
- 2-D Analytical Field Model (i.e., Sub-Domains)
- Full Quantities No-Load Calculation

• Conclusion

□ Boundary conditions matrix [*Q*]:

$$\begin{bmatrix} Q \\ P \end{bmatrix} = \begin{bmatrix} Q_A & 0 & Q_B \\ 0 & Q_A & Q_C \\ Q_D & Q_E & Q_F \end{bmatrix}$$

$$Q_{F} = \begin{bmatrix} Q_{11\nu\nu3} & 0 & \cdots & 0 \\ 0 & Q_{11\nu\nu4} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & Q_{11\nu\nu(Q_{p}+2)} \end{bmatrix}$$

 $Q_{11\nu\nu}$: the diagonal matrix has $N\nu \times N\nu$ coefficients.

Comp.: Analytical Model vs FEA 2-D

- Review of the Existing Analytical Models
- 2-D Analytical Field Model (i.e., Sub-Domains)
- Full Quantities No-Load Calculation
- Conclusion

14

Motor 1: M1

Parameters	M1	M2
Magnetization (R: Radial; P: Parallel)	R and P	
Number of pole pairs, p [–]	1	8
Total number of slots, Q_s [–]	12	48
Number of stator slots per pole, Q_p [–]	6	3
Magnet pole-arc to pole-pitch ratio, $\alpha_p = \Theta_m / \Theta_p$ [%]	100	
Stator slot opening to tooth-pitch ratio, $\zeta_o = \Theta_o / \Theta_t [\%]$	33.33	66.67
Radius of the stator yoke surface, R_{sv} [mm]	37	190
Radius of the stator surface, R_s [mm]	20	160
Radius of the PMs surface, R_m [mm]	19	157
Radius of the rotor yoke surface, R_r [mm]	14	145
Axial length, L [mm]	45	180
Remanent flux density of the PMs, B_{rm} [T]	1.13	
Relative magnetic permeability of the PMs, μ_{rm} [–]	1.029	

Motor 2: M2

<u>Analytical Model</u>	
Nv = 25	
Nn = 50	
Motor 1: 450 éléments Motor 2: 375 éléments	

Comp.: Analytical Model vs FEA 2-D

□ Motor 1: B_{r1} and $B_{\Theta 1}$ in the middle of the PMs

- Context and Objective of the Work
- Review of the Existing Analytical Models
- 2-D Analytical Field Model (i.e., Sub-Domains)
- Full Quantities No-Load Calculation
- Conclusion

Comp.: Analytical Model vs FEA 2-D

• Context and Objective of the Work

- Review of the Existing Analytical Models
- 2-D Analytical Field Model (i.e., Sub-Domains)
- Full Quantities No-Load Calculation

• Conclusion

16

Comp.: Analytical Model vs FEA 2-D

□ Motor 2: B_{r1} and $B_{\Theta 1}$ in the middle of the PMs

- Context and Objective of the Work
- Review of the Existing Analytical Models
- 2-D Analytical Field Model (i.e., Sub-Domains)
- Full Quantities No-Load Calculation
- Conclusion

Comp.: Analytical Model vs FEA 2-D

• Context and Objective of the Work

- Review of the Existing Analytical Models
- 2-D Analytical Field Model (i.e., Sub-Domains)
- Full Quantities No-Load Calculation
- Conclusion

• Context and Objective of the Work

- Review of the Existing Analytical Models
- 2-D Analytical Field Model (i.e., Sub-Domains)

• Full Quantities No-Load Calculation

• Conclusion

Slotting Effect in Permanent-Magnet Motors via a 2-D Exact Sub-Domain Model

Back Electromotive Force (EMF)

□ Spatial Distribution of the Overlapping *3*-phase stator windings:

<u>Motor 1:</u> $N_{l}=2$, N=48, $\alpha_{wp}=5/6$

Motor 2:
$$N_l=1$$
, $N=48$, $\alpha_{np}=1$

• Context and Objective of the Work

• Review of the Existing Analytical Models

• 2-D Analytical Field Model (i.e., Sub-Domains)

• Full Quantities No-Load Calculation

Conclusion

Slotting Effect in Permanent-Magnet Motors via a 2-D Exact Sub-Domain Model

Back Electromotive Force (EMF)

□ Spatial Distribution of the Overlapping *3*-phase stator windings:

• Context and

Objective of the Work

- Review of the Existing Analytical Models
- 2-D Analytical Field Model (i.e., Sub-Domains)

• Full Quantities No-Load Calculation

• Conclusion

Slotting Effect in Permanent-Magnet Motors via a 2-D Exact Sub-Domain Model

Back Electromotive Force (EMF)

□ Faraday's Law:

$$E_{g} = -\frac{d\psi_{g}}{dt} = -\Omega_{0} \cdot \frac{d\psi_{g}}{d\Theta_{rs}} \quad \text{with} \quad \psi_{g} = 2p \cdot L \cdot \int_{-\Theta_{p}}^{\Theta_{p}} \frac{Dw_{g}}{\left(\alpha_{o} \cdot \Theta_{p}\right)^{2}} \cdot A_{z2}\big|_{r=R_{s}} \cdot d\Theta_{s}$$

□ Analytical Solution of the back EMF:

$$E_g = N_0 \cdot S_{cyl} \cdot B_{rm} \cdot f_E$$

with
$$S_{cyl} = 2\pi \cdot R_s \cdot L$$

 $f_E = -\sum_{n \text{ odd}}^{\infty} Dw_n \cdot f_{Ebn} \cdot \left[Es_n \cdot \sin\left(np \cdot g \cdot \frac{2\Theta_p}{m}\right) + Ec_n \cdot \cos\left(np \cdot g \cdot \frac{2\Theta_p}{m}\right) \right]$
 $Es_n = E'_{2n} \cdot f_{Ean} + F'_{2n} \quad \& \quad Ec_n = G'_{2n} \cdot f_{Ean} + H'_{2n}$
 $f_{Ean} = 1 / \left(\frac{R_m}{R_s}\right)^{2 \cdot np} \quad \& \quad f_{Ebn} = \frac{\pi}{30} \cdot \frac{1}{2\alpha_o \cdot \Theta_p} \cdot \left(\frac{R_m}{R_s}\right)^{np+1}$

Comp.: Analytical Solution vs FEA 2-D

• Context and Objective of the Work

- Review of the Existing Analytical Models
- 2-D Analytical Field Model (i.e., Sub-Domains)

• Full Quantities No-Load Calculation

• Conclusion

- Context and Objective of the Work
- Review of the Existing Analytical Models
- 2-D Analytical Field Model (i.e., Sub-Domains)

• Full Quantities No-Load Calculation

• Conclusion

Slotting Effect in Permanent-Magnet Motors via a 2-D Exact Sub-Domain Model

Cogging Torque Calculation

Maxwell Stress Tensor:

$$T_{c} = -\frac{p \cdot R_{s}}{\mu_{0}} \cdot \int_{0}^{L} \int_{-\Theta_{p}}^{\Theta_{p}} \frac{\partial A_{z2}}{\partial r} \cdot \frac{\partial A_{z2}}{\partial \Theta_{s}} \bigg|_{r=R_{s}} \cdot d\Theta_{s} \cdot dz$$

Analytical Solution of the Cogging Torque:

$$T_{c} = V_{cyl} \cdot \frac{B_{rm}^{2}}{\mu_{0}} \cdot f_{T}$$

with
$$V_{cyl} = \pi \cdot R_s^2 \cdot L$$

 $f_T = \sum_{n \text{ odd}}^{\infty} f_{Tn} \cdot (E_{2n} \cdot H_{2n} - F_{2n} \cdot G_{2n})$ where $f_{Tn} = 2 \cdot \left(np \cdot \frac{R_m}{R_s}\right)^2$

- representing physically the air-gap reluctances;
- is equal to 0 for the slotless motors: the cogging torque does not existed.

Seminary SEEDS – "Analytical Modeling"

Comp.: Analytical Solution vs FEA 2-D

• Context and Objective of the Work

- Review of the Existing Analytical Models
- 2-D Analytical Field Model (i.e., Sub-Domains)

• Full Quantities No-Load Calculation

• Conclusion

D Motor 1: p=1, $Q_s=12$, $\zeta_o=33.33\%$

D Motor 2: p=8, $Q_s=48$, $\zeta_o=66.67\%$

• Context and Objective of the Work

- Review of the Existing Analytical Models
- 2-D Analytical Field Model (i.e., Sub-Domains)

• Full Quantities No-Load Calculation

• Conclusion

Slotting Effect in Permanent-Magnet Motors via a 2-D Exact Sub-Domain Model

2-D PMs Eddy-Current Losses

D Eddy-currents density and losses:

$$J_{z1} = -\sigma_m \cdot \Omega_0 \cdot \frac{\partial A_{z1}}{\partial \Theta_{rs}} + C \quad \text{and} \quad p_m^{slot} = p \cdot L \cdot \int_{R_r}^{R_m} \int_{-\Theta_p}^{\Theta_p} \frac{J_{z1}^2}{\sigma_m} \cdot r \cdot dr \cdot d\Theta_r$$

Analytical Solution of No-Load Losses:

$$\boldsymbol{P}_{m}^{slot} = \boldsymbol{k}_{nsfd} \cdot \boldsymbol{k}_{e} \cdot \boldsymbol{N}_{0}^{2} \cdot \boldsymbol{B}_{rm}^{2} \cdot \boldsymbol{M}_{m}$$

with M_m : Mass of the PMs $k_e = \frac{\pi^2 \cdot \sigma_m \cdot L^2}{6 \cdot \rho_{vm}}$: Eddy-current losses coefficient in the PMs $k_{nsfd} = f(E'_{2n}, G'_{2n}, E_{2n}, G_{2n})$

- representing physically the non-sinusoidal magnetic flux density produced by the PMs;
- is equal to 0 for the slotless motors: the 2-D eddycurrent losses does not existed.

Comp.: Analytical Solution vs FEA 2-D

• Context and Objective of the Work

- Review of the Existing Analytical Models
- 2-D Analytical Field Model (i.e., Sub-Domains)

• Full Quantities No-Load Calculation

• Conclusion

Conclusion

- Context and Objective of the Work
- Review of the Existing —Analytical Models
- 2-D Analytical Field Model (i.e., Sub-Domains)
- Full Quantities No-Load Calculation
- Conclusion

- Very good results (the local an integral quantities) excluding the PMs eddy-current losses ⇒ These differences are due to eddy-current effect on the magnetic field which is not taken into account in 2-D exact sub-domain model.
- Less computing time than the FEA 2-D.
- More rigorous than the methods based on the Schwarz-Christoffel transformation or the permeance network.
 - A useful tool for design and optimization of multipole SMPMM.

Electrimac 2011 University of Cergy-Pontoise

Special Session 4 : Analytical Models in Electromagnetic Devices

June 6-8th, 2011, Paris, France

Slotting Effect in Permanent-Magnet Motors via a 2-D Exact Sub-Domain Model

F. Dubas and C. Espanet

