
Avoiding zigzag quality switching in real content
adaptive video streaming

Wassim Ramadan, Eugen Dedu, and Julien Bourgeois

University of Franche-Comté,
Laboratoire d’Informatique de l’Université de Franche-Comté

Montbéliard, France

Abstract. A high number of videos, encoded in several bitrates, are
nowadays available on Internet. A high bitrate needs a high and stable
bandwidth, so a lower bitrate encoding is usually chosen and transferred,
which leads to lower quality too. A solution is to adapt dynamically the
current bitrate so that it always matches the network bandwidth, like in
a classical congestion control context. When the bitrate is at the upper
limit of the bandwidth, the adaptation switches constantly between a
lower and a higher bitrate, causing an unpleasant zigzag in quality on
the user machine. This paper presents a solution to avoid the zigzag. It
uses an EWMA (Exponential Weighted Moving Average) value for each
bitrate, which reflects its history. The evaluation of the algorithm shows
that loss rate is much smaller, bitrate is more stable, and so received
video quality is better.

Key words: Real time content, Video streaming, Rate control, Conges-
tion control

1 Introduction

Nowadays, the number of videos encoded in several bitrates and accessible for
everyone increases significantly day by day. Their contents are generally delivered
to final user using streaming services over Internet. These services as well as
the demand for high video quality (e.g. HD and 3D videos) are in constant
progression. They require more and more bandwidth, hence available bandwidth
variation must be taken into account to shorten buffering time at the receiver.

Currently, one video bitrate is chosen at the beginning of a video streaming;
the transmission is controlled at the network layer (TCP or UDP) and appli-
cation is not involved at all. Hence, two choices exist when playing streamed
video content. The first is to choose a low video bitrate, and the video is played
directly, without interruption. The second is to choose a bitrate higher than av-
erage bandwidth, buffer multimedia data at the user and play the video when the
buffer has sufficient data; because the buffer empties, the user will be confronted
to many play/pause during the streaming. Both cases are unpleasant to the user
eye: the first has the advantage to watch a fluid video but with low quality, while
the latter allows to have a good quality but with either short or long waiting

2 W. Ramadan, E. Dedu, J. Bourgeois

time and with frequent interruptions. Users wishing to have an instant access
without delay to multimedia content and with the best possible quality can use
a new kind of multimedia streaming services, multimedia content adaptation.

For video streaming in a network with highly variable bandwidth, a content
adaptation is a way to adapt the video bitrate to the network characteristics,
hence to improve the video quality perceptible by the final user. A cooperative
approach between application layer and network layer can be used. Transport
protocol handles the congestion control on the network side, while the application
handles the video bitrate control on the server side. Bitrate control can be done
by changing the quantisation parameters, or by changing the FPS (frames per
second) etc.

An undesirable effect which appears when multiple video qualities are avail-
able and when bandwidth changes, is that the bitrate control leads to constant
switching between two qualities (bitrates); one is smaller than the bandwidth
and the second is greater. For example, when a user is connected to Internet
through a 2.5Mb/s link and the video is available in 2 and 3Mb/s qualities, then
an adaptive streaming algorithm will constantly switch between these two qual-
ities; obviously, the best solution would be to stay with 2Mb/s much more time
before retrying 3Mb/s quality. We call this problem zigzag quality switching.

Few papers treat this issue, and they do not solve it completely. This paper
presents a solution, called ZAAL (Zigzag Avoidance Algorithm), to this prob-
lem. It uses a successfulness value of each bitrate, and its average is constantly
updated. This average is used to take the decision whether a next higher quality
can be chosen or not, thus preventing the zigzag.

This paper is organized as follows. Section 2 formulates the problem which
we try to solve, and section 3 compares it to similar existing problems. Section 4
presents our ZAAL algorithm as a solution to the problem, and its performance
is evaluated through real experiments in section 5. Finally, section 6 concludes
this article and presents some perspectives.

2 Problem formulation

The zigzag quality switching is the fact that an adaptive video streaming sender
application keeps switching the video quality between two values, especially when
one value is greater and the other is smaller than the bandwidth capacity.

In a network with highly variable bandwidth, video adaptation is very impor-
tant. It aims to adapt the video bitrate to the network characteristics and thus
to improve the video quality perceptible by the final user. The adaptation can
be done at several OSI layers, but we take the application layer to exemplify. To
adapt video to network conditions, the sender application controls some video
parameters, such as the bitrate, FPS (Frames per second) or image size; for ex-
ample, if more bandwidth is available, application increases the video bitrate,
and if less bandwidth is available, application decreases it. To reach this goal,
application should constantly retrieve the bandwidth (each 100ms, each 2 sec. or
each I image for MPEG video for example) and adapt its bitrate accordingly. To

Avoiding zigzag quality switching in real content adaptive video streaming 3

minimise the quality fluctuation, it is not preferable, in our opinion, to change
quality each tiny period (at each sent packet for example). Sometimes the appli-
cation has the choice among multiple available video qualities (e.g. many videos
on Internet are encoded with several qualities). This video adaptation is known
in the literature as “rate adaptive video control”.

Fig. 1 allows to better understand how video adaptation works. The trans-
port protocol has a congestion control which gives the rate at which the packets
leave the socket buffer (and afterwards the machine, and enter the network).
When current bandwidth is smaller than video bitrate, the socket buffer fills
with packets. When the buffer becomes full, exceeded packets generated by ap-
plication will fail to be written. We call these packets “failed packets”. The goal of
an adaptive video content application is to readjust video bitrate in this case by
choosing a lower video quality. When new bitrate does not cause failed packets,
application will retry a higher quality to match again the available bandwidth
and to enhance the video quality.

Fig. 1. Video data flow on the sender side.

Our previous paper VAAL (Video Adaptation at Application Layer) [12] is an
example of video adaptation method. It uses transport protocol buffer overflow as
a solution to find out the available bandwidth and to adapt video content bitrate
to the discovered bandwidth. Each 2 seconds, the server application computes
the number of failed packets. This number is used to control the video bitrate
afterwards. A high number means smaller bandwidth and smaller bitrate. Zero
error indicates either a stable or more bandwidth, so bitrate of sent video can
be increased. The experiments presented in this paper use VAAL.

An adaptive application, such as the one presented above, keeps switching
between two qualities: one with bitrate higher than bandwidth and with failed
packets, and another one with bitrate smaller than bandwidth and with no
error. We noticed this phenomenon in our experiments (see Fig. 4(a) for a clear
example, where during the first minute the video bitrate is continuously toggling
between 0.5 and 1 Mb/s). This is what we called “zigzag quality switching”
problem; it has two undesirable effects:

– Numerous bitrate changes, leading to unstable video quality. It is preferable
to keep the video quality stable as much as possible while maximising it.

– Many lost packets (when bitrate is higher than bandwidth), leading to lower
video quality and wasted ressources (CPU and network) for these lost pack-
ets. Indeed, videos are generally more affected by packet losses than lower
bitrate.

4 W. Ramadan, E. Dedu, J. Bourgeois

Note that the problem to be solved is not to reduce the number of quality
changes, for example when such changes use much resources (CPU, disk etc.)
It is neither to use the highest available quality at a certain moment (which
can potentially lead to zigzag, for example when right afterwards the bandwidth
decreases). The problem to be solved is the zigzag, i.e. avoiding to reuse a quality
which has recently been used (one or more times) and has proved unsuccessful.
As such, a solution which does not take into account the recent history somehow
cannot solve this problem.

3 Positioning comparing to related work

We found that our problem has similarities with other problems, and with two
techniques already found in the literature.

3.1 Similar methods

One method which can be used to solve zigzag quality switching is presented in
[10]. It is proposed for multicast streaming video but can be adapted to unicast
transmissions too. The sender sends several layers (base and enhancement), and
the receiver subscribes dynamically to one or several of them. The receiver uses
a timer for each level of subscription (layer). At the beginning the timer is short.
When the timer expires and no loss was experienced, the receiver subscribes to
the next new level and the timer for that level is started. If on the contrary the
level led to lost packets, the receiver goes back to previous level and the timer
for the level with losses is multiplicatively increased.

In this method, there is no superior limit for the timer, which means that the
quality increasing is forbidden for a very long time, even if bandwidth becomes
greater in the meantime. Also, each time, only the timer of the current bitrate
is updated, which means that good conditions for higher levels do not amelio-
rate the timer of lower levels. Both these characteristics are unrealistic. On the
contrary, our EWMA-based algorithm does not have these drawbacks.

A metric to evaluate the jerkiness of a video, given by the number of quality
changes, is given in [4]. It uses a formula to calculate the Effective Frame Rate
(EFR) of a video:

EFR =

N−1∑
i=1

(
fpsi − P ∗ qualitychange(max(i−W, 0), i)

N

)
(1)

where fpsi is the number of frames delivered in the ith second of the video,
W is the window size, P is a weighting factor for variation in frame rate, and
qualitychange(max(i −W, 0), i) is the number of quality changes in the range
i−W to i.

This formula is used to limit the number of quality changes during each
window (W). As such, it counts the number of quality changes, no matter where

Avoiding zigzag quality switching in real content adaptive video streaming 5

they appear inside the window, which is however an important parameter of the
jerkiness. For example, 10 quality changes in the first 2 seconds of a video of
1 minute are worse visually than 10 quality changes dispersed through the whole
video. The goal of EWMA, used in our solution, is exactly to take into account
the time of the change too. Moreover, in [4] the window is static (coarse-grained
moving) and fixed (same size), while in our case we use a sliding and dynamic
window.

Finally, our goal is not to limit the number of quality changes, but to avoid
quality increases which lead to quality decreases right afterwards. For all these
remarks, the formula in this paper is not interesting in avoiding the zigzag prob-
lem we want to tackle.

The adaptation video method described in [3] does not cope directly with
zigzag problem but presents a way for smoothing sent video bitrate and reducing
the frequency of video quality changes. The main idea is that the application
does not switch to a higher video quality (or video layer in a hierarchical video
encoding) until the sender is certain that the video will continue playing even
after a reduction of the congestion window.

This paper presents results for AIMD and SQRT congestion controls for video
streaming. To guarantee the continuous video playing, the sent video quality
should be the highest quality which verify: C < R− βRl, where C is the bitrate
at which the video is encoded, R is the transmission rate and β = 1/2 and
l = 1 for AIMD based congestion control and l = 1/2 for SQRT based one.
This formula implies that the highest video quality does not exceed half of the
transmission rate for AIMD, and it is β

√
R smaller than the bandwidth for

SQRT.
Results given in [3] show that this formula works well for AIMD based con-

gestion control streaming application but the video bitrate is most of the time
very low compared to available bandwidth. On the other hand, it has a little
impact on SQRT based algorithm, i.e. the quality changes are not significantly
reduced. Finally and most importantly, this formula does not really solve the
zigzag quality switching, but merely reduces the bitrate artificially.

3.2 Comparison with bandwidth estimation techniques

These techniques aim to estimate the available bandwidth at the time of the
measurement.

A well-known technique is packet pair [7]. The basic idea is that the sender
sends a pair of packets of the same size to a destination (it could be a spe-
cialised server or simply an aware receiver). The destination host then responds
by sending an echo for each received packet. By measuring the changes in the
time spacing between the two packets, the sender can estimate the available
bandwidth of the network path as following:

bw =
s

t2 − t1
(2)

where:

6 W. Ramadan, E. Dedu, J. Bourgeois

– bw is the bandwidth of the bottleneck link
– s is the packet size
– t1 and t2 are the arrival time of the first and second packet respectively.

The accuracy of this technique depends on several assumptions. The most im-
portant one is that the two packets should be enqueued one after the other at the
bottleneck link, which is not guaranteed when a router has a non FIFO queue
or when another packet is inserted between the two packets. Other variants of
packet pair technique are developed [1, 9, 2] to mitigate this effect.

Another known technique is packet train [8]. A burst of packets is sent be-
tween source and destination. Only packets in the same train are used for mea-
surement. A train is formed by packets for which the spacing between two con-
secutive received packets does not exceed some inter-packet (inter-train) gap.
Like in packet pair, inter-arrival times between packets in the same train are
used for estimating the available bandwidth.

All these methods have several drawbacks:

1. Sending/receiving additional data packets is needed to estimate the available
bandwidth. If video data packets themselves are used for this, receiver must
distinguish them from other data, for example by adding a new field in the
packet header.

2. Probing packets should be specifically dispersed, i.e. they need a specific
timing when they are sent. This makes the use of the video data packets
themselves difficult for probing purposes.

3. If a new connection is used for probing packets, sender/receiver should
send/listen to a different socket (port).

4. Not only the sender application but also the receiver application must be
modified to be able to respond to those probing packets. Changing both
endpoints is known to be very difficult to deploy in reality.

Finally, and the most important, these techniques have a different goal than
ours. As they do not take into account the bitrates used in the past, they cannot
avoid the zigzag.

The previous cited reasons show that current bandwidth estimation tech-
niques are not appropriate to solve the zigzag quality switching problem.

3.3 Comparison with network congestion control

Our problem is similar to classical network congestion control problem, but not
identical. We consider both window-based (written as TCP [11] in the following)
and equation-based (written as TFRC [5] in the following) congestion controls.

In fact, both TCP/TFRC and ZAAL try to solve a multi-criterion opti-
misation problem, but the criteria involved to achieve this goal are not really
identical.

Zigzag: ZAAL aims to avoid the zigzag between two consecutive qualities,
which occurs when (1) the inferior quality is lower than bandwidth, hence no
loss, hence the quality is increased, and (2) the superior quality is higher than

Avoiding zigzag quality switching in real content adaptive video streaming 7

bandwidth, hence a few losses, hence the quality is decreased to the inferior
quality again. TCP/TFRC have fine-grained sending rate; TCP, being a data
transport protocols, does not pay attention to such zigzag, while TFRC smooths
the sending rate, without avoiding the zigzag.

Losses: TCP/TFRC aim to send at the maximum rate, even if this yields a
few losses. On the contrary, ZAAL aims to avoid losses as much as it can. In
reality, losses cannot be completely avoided unless a very low bitrate is used. So
for ZAAL it is better to maintain a quality without or with few losses, instead of
the next higher quality with high loss rate. In fact, ITU.T G.1070 [6] recommends
that the end-to-end IP packet loss rate in video streaming should be less than
10%. As an example, during a video transmission ZAAL prefers a 2Mb/s sending
rate without losses to a 3Mb/s sending rate (50% more packets) with 20% lost
packets.

Sending rate: TCP/TFRC aim to send at the highest possible rate. This
is why they constantly increase sending rate (using various laws, which differ
from one TCP variant to another). VAAL aims that too, but does not increase
quality if ZAAL considers, for zigzag/loss avoidance as shown above, that the
next higher quality should not be tried at this time. Thus VAAL can be seen as
quality increasing/decreasing proposition and ZAAL as quality increasing-only
blocker.

This comparison shows that classical congestion control algorithms have dif-
ferent goals, hence they are not an appropriate to solve the zigzag problem.

4 Zigzag-avoiding algorithm overview

To solve the zigzag quality switching generated by a video adaptation method,
an additional specific algorithm can be used, such as ZAAL. ZAAL algorithm
works by avoiding constantly using bitrates higher than the available bandwidth.
For that, it maintains an average value for each bitrate, called successfulness in
the following. When the adaptive algorithm considers to increase bitrate (and
only in this case), ZAAL checks if the successfulness of the higher bitrate is lower
than a threshold, called β; if this is the case, a higher bitrate cannot be cho-
sen. Otherwise said, application uses a higher bitrate i only if its successfulness
Si > β. After this process, the average successfulness is updated.

Note that ZAAL is not an adaptation method. It is used only to prevent
an adaptation method from frequently switching the video quality. The only
information ZAAL needs comes from the adaptation method, whether some
bitrate causes lost packets or not.

4.1 Algorithm

ZAAL algorithm uses the successfulness value each time an adaptation period
ends, which depends on the adaptation algorithm (e.g. 2 sec. in case of VAAL).
Average successfulness value is calculated separately for each bitrate (with dif-
ferent weights), denoted by Si, which indicates if bitrate of index i can be used

8 W. Ramadan, E. Dedu, J. Bourgeois

for the next period or not. As such, this average value expresses the application
last attempts to use the corresponding bitrate. In brief, when a bitrate gener-
ates failed packets to the transport protocol buffer, corresponding successfulness
value is greatly reduced; when a bitrate was successful, the successfulness value
is greatly increased; finally, when a bitrate is used for a long time, the success-
fulness values corresponding to higher bitrates are slowly increased. As a general
rule, the smaller the successfulness average value, the more the corresponding
bitrate causes failed packets and application must avoid using it.

The average successfulness Si (where i is bitrate index) of each bitrate, which
changes according to the history of that bitrate, is calculated using an EWMA
algorithm (Exponential Weighted Moving Average). Using EWMA allows to
give greater weight to recent history compared to older history, since obviously
current bandwidth is better expressed by recent bitrate usage than by older ones.
Additionally, different weights are used, based on the bitrate involved.

At the beginning of a video transmission, all S values are set to 1. Then they
are calculated each time the application wants to adapt the video bitrate to the
available bandwidth, using the following general formula:

Si = (1− α/d)Si + s(α/d) (3)

where:

– s is the successfulness at the time of measurement (the current “observa-
tion”) and can be either 0 or 1. 0 value is used when the bitrate did not give
good results (hence its successfulness average value will decrease). 1 value is
used when the bitrate gave good results, either because the bitrate did not
cause failed written packets, or because the bitrate was not used recently
(hence its successfulness average value will increase).

– α is the degree of weighting increase/decrease, a constant smoothing factor
between 0 and 1. A higher α discounts older successfulness values faster.

– d is a division factor allowing to speed up or slow down the average value
increasing depending on the bitrate involved. In our algorithm, d has three
values: 1, 2 and 4. For s = 1, the greater the d, the slower the increasing of
the average Si value. They will be explained more later.

S values are arithmetic reals between 0 and 1. They can change in three
cases:

1. First, when the application increases the video bitrate, i.e. the new bitrate k
is higher than the actual one j. This appears when the application does not
sense lost packets for a while with actual video quality. In this case S should
increase (s = 1) for all bitrates i lower than or equal to the current bitrate.
Increasing speed must be high (d = 1). So:

Si|i≤j = (1− α)Si + α (4)

2. Second, when the application maintains the bitrate. This happens either
when some packet losses occur but their rate is acceptable to maintain the

Avoiding zigzag quality switching in real content adaptive video streaming 9

current quality j, or successfulness of the higher bitrate k (Sk) is low and ap-
plication avoids using it. S value increases for all qualities but with different
division factor values (different speeds). So:
– d = 1 and s = 1 (big increase) for all bitrates i lower than the current

one j:
Si|i<j = (1− α)Si + α (5)

– d = 2 and s = 1 (small increase) for current bitrate j:

Sj = (1− α/2)Sj + α/2 (6)

– d = 4 and s = 1 (very small increase) for the bitrate k = j + 1 higher
than the current one j:

Sk(k=j+1) = (1− α/4)Sk + α/4 (7)

3. Third, application decreases the video bitrate. This appears when the avail-
able bandwidth is not enough anymore for the actual bitrate (i.e. bandwidth
decreases during the current period), or when the application tries a bitrate
higher than the bandwidth. In this case, average value must be reduced for
the current bitrate j, other bitrates average values do not change. Hence,
s = 0 and d = 1 (big decrease). So:

Sj = (1− α)Sj (8)

In our experiments we intuitively set α = 0.3 and β = 1 − α = 0.7. Other
values were analysed but either they lead to high number of adaptation iterations
for the algorithm to converge, or they minimize its effects. Determining the best
values of α and β and how they affect the stability and the adaptivity of ZAAL
is still future work.

4.2 Discussion

We present in this section some characteristics of zigzag-avoiding algorithm. To
simplify results, we use α = 0.3 and β = 0.7. We can notice the following:

1. At the beginning, average values are set to 1. They are greater than β = 0.7,
so there is no restriction using any bitrate, i.e. application is authorised to
use all bitrates.

2. Studying the decreasing phase of the algorithm we can notice:
– As mentioned previously, when a bitrate is greater than the available

bandwidth, application avoids to use it for a while by decreasing its
successfulness average value. Based on equation 8, the first time this
occurs, Si = 1 − 0.3 ∗ 1 = 0.7. Hence, a bitrate which causes failed
writing packets cannot be used two consecutive times.

– The smallest S value for a bitrate i can appear when it is used with
Si = 0.7 + ε and it leads to failed packets. So, its new S value is equal
to Si = 0.7 ∗ (0.7 + ε) = 0.49 + ε.

10 W. Ramadan, E. Dedu, J. Bourgeois

– A higher bitrate does not necessarily mean a smaller S value. When
reducing an S value for a bitrate i, higher bitrates do not change.

3. Studying the increasing phase of the algorithm we can notice:
– The maximum number of times ZAAL prevents an application to in-

crease bitrate occurs when the higher bitrate k has the minimal S value
of Sk = 0.49 + ε (see previous point) and ends when Sk becomes > 0.7.
Using equation 7, this corresponds to 7 unsuccessful attempts by the
application for the higher bitrate k, followed by an 8th successful at-
tempt. Fig. 2 shows the evolution of this value: there are 7 unsuccessful
attempts between 0.49 + ε and a value greater than 0.7.

– S values between 0.7 and 1 are only possible when the bitrate does not
cause failed packets in two cases: it increases slowly beyond 0.7 when
the quality is stable (see equation 6), or it increases quickly beyond 0.7
when higher qualities are possible (see equation 5).

4. Finally, using an exponential average rather than a linear average allows to
remember past values for a longer time when increasing average values S,
and to give more weight to recent history than to old history.

 0.528

 0.563

 0.596

 0.626

 0.654

 0.68
 0.704

 0.491 0.528 0.563 0.596 0.626 0.654 0.68 0.704

N
ew

 s
uc

ce
ss

fu
ln

es
s

va
lu

e

Current successfulness value

Successfulness value

Fig. 2. Successfulness average increasing during the biggest period of time.

4.3 ZAAL complexity

– ZAAL is a simple and easy to implement algorithm. Indeed, ZAAL consists
of 3 if clauses with a loop over all bitrates inside each clause.

– ZAAL is scalable, since it has a linear complexity in number of bitrates
(a loop on all bitrates), and also in number of clients (ZAAL is executed
independently for each of them). Moreover, it has a negligible execution time.
Indeed, it needs to calculate just one value per available bitrate during each
adaptation period (e.g. each 2 sec.), using a simple formula, as shown above.
Hence, using ZAAL does not really affect the server processing capacity
when the number of clients increases. The small additional impact of ZAAL
can be easily compensated by its other positive side (i.e. when using ZAAL,
the server avoids processing packets which would otherwise be lost on the
network).

Avoiding zigzag quality switching in real content adaptive video streaming 11

5 Experimental results

Fig. 3 shows the real network used to realise experiments. A video streaming
connection is made between a sender and a receiver with wired interface for both.
An intermediate machine (called shaping machine in the following) is added
between the sender and the receiver. This shaping machine has two interface
cards: a wired interface connected to the sender and a wireless one (54Mb/s)
connected to an access point (AP). The receiver is connected to the same AP
via a wired interface. The video streaming uses a real video, available in four
qualities: 3Mb/s, 2Mb/s, 1Mb/s and 512kb/s. The video has 180s.

Fig. 3. Network topology used for experiments.

Two series of tests are done. For the first series (traffic shaping series), just
one flow is present at any moment during the video transmission, which can thus
use all the available bandwidth. On the other hand, the output bandwidth of
the shaping machine is changed three times to simulate a variable bandwidth:
600kb/s for the first minute, 2300kb/s for the second minute, and traffic shaping
was stopped for the last minute (hence the output bandwidth is the original
wireless bandwidth). This series allows to see the effect of ZAAL in a network
where bandwidth changes over time. For the second series, ten flows are present
during the whole transmission, which clearly exceed the available bandwidth
when using the highest bitrate. This allows to see what happens when multiples
flows sense the available bandwidth, especially to check if this leads to a wide
oscillation in performance (i.e. if some flows monopolise the entire bandwidth).
All the flows use VAAL [12] as adaptation algorithm. Additionally, either all the
flows use ZAAL, or none of them.

This section presents two results: ZAAL avoids zigzag quality switching, and
using ZAAL leads to similar quantitative results.

5.1 Zigzag avoidance

In this section we present the quality variation with and without ZAAL. In the
following figures, the x-axis represents the time from 0 to 180s, the duration of
a video transmission, and the y-axis shows the video bitrate (with or without
ZAAL).

One flow in case of traffic shaping As expected, ZAAL minimises the zigzag
effect: during the first minute in Fig. 4(a) (where ZAAL is not used), the video

12 W. Ramadan, E. Dedu, J. Bourgeois

bitrate is continuously toggling between 0.5 and 1Mb/s, while when ZAAL is
used, in Fig. 4(b), application uses 0.5Mb/s bitrate most of the time. The same
conclusions can be drawn from the second minute. During the last minute, band-
width is wide enough to support 3Mb/s, and ZAAL finally allows this bitrate.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 20 40 60 80 100 120 140 160 180

 0

 20

 40

 60

 80

 100

 120

B
itr

at
e

of
 tr

an
sm

itt
ed

 v
id

eo
 (

M
b/

s)

Time (s)

adapted video bitrate

(a) without ZAAL: many zigzags occur

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 20 40 60 80 100 120 140 160 180

 0

 20

 40

 60

 80

 100

 120

B
itr

at
e

of
 tr

an
sm

itt
ed

 v
id

eo
 (

M
b/

s)

Time (s)

adapted video bitrate

(b) with ZAAL: few zigzag occur

Fig. 4. Quality adaptation for one flow in case of traffic shaping, under the same
network conditions.

Further analysis of Fig. 4(b) (with ZAAL) confirms the useful properties of
ZAAL algorithm. First, application waits for at least 2 periods of time before
trying a bitrate which has recently caused losses (e.g. at the beginning, 1Mb/s
did not work between 0s and 2s, hence it was retried not at 4s, but at 6s). Second,
when a bitrate causes losses for many consecutive times, application waits more
and more time to retry it (e.g. 1Mb/s at 24s, then at 32s, afterwards at 46s,
and finally at 64s). Third, the maximum period during which the video quality
was prevented to increase is 14s, as shown in section 4.2, point 3 (e.g. the first
unsuccessful attempt at 10s followed by the next successful attempt at 24s, the
same for 50s and 64s); during that time there were no losses (bandwidth much
higher than bitrate), however ZAAL correctly prevented the bitrate increasing.

More specifically, Tab. 1 presents the number of zigzags during the first and
the second minute (there is no difference during the third minute). It is clear
that ZAAL leads to much fewer zigzags (4 against 13 in first minute, 1 against

Avoiding zigzag quality switching in real content adaptive video streaming 13

10 in second minute, so about 80% less in total). Naturally, this has a very big
impact on the video quality perceived.

Method First minute Second minute Total

Without ZAAL 13 10 24
With ZAAL 4 1 5

Table 1. Number of zigzags with and without ZAAL.

Ten flows In this experiment, we noticed that all flows have the same tendency
when choosing video bitrates. Fig. 5 shows the tendency of one flow out of the
ten concurrent flows. We can see that the bitrate changes often between 1Mb/s
and 2Mb/s, which indicates that one flow does not stay all the time at a high
bitrate (e.g. 3Mb/s); if this happened, it would reduce the available bandwidth
for other flows. Also, as in the previous test, application adapts often video
quality while avoiding bitrates causing lost packets (e.g. in Fig. 5, 3Mb/s bitrate
causes lost packets at 26s, then it is not used until 68s). At the same time, it
avoids frequent changes in video bitrate during transmission while improving the
use of the bandwidth.

This test checks also the fairness when using ZAAL for ten concurrent flows.
Fig. 6 shows the percentage of sent packets by each flow at application layer when
using ZAAL. It shows that ZAAL maintains the fairness among concurrent flows
on server (i.e. all flows have nearly equal percentage of sent packets). On the
other hand, the fairness on the network is guaranteed by using a TCP-friendly
congestion control.

5.2 Performance comparison

Even if reducing packet loss rate is not the main goal of ZAAL, we investigate
how ZAAL affects it. We consider the number of received packets and the number
of lost packets. Video quality over network transmission is more affected by
packet losses rather than video bitrate value. Table 2 presents numerical results
of the same experiments. For one flow in case of traffic shaping, it is clear that
the number of received packets is lower when ZAAL is used (e.g. only 40263
received packets for ZAAL compared to 42043 without ZAAL), because of ZAAL
preventing high bitrate for some period. On the other hand, when ZAAL is used
the flow has 30% fewer lost packets (under the same network conditions). The
average of the ten concurrent flows gives yet better results for ZAAL, i.e. number
of received packets are about 5% more in case of ZAAL, and the loss rate is about
50% smaller too.

To resume:

– in the first experiment, it cannot be easily decided which is better in terms of
number of sent and received packets, but using ZAAL is more useful because
it avoids the zigzag and leads to a more stable video quality;

14 W. Ramadan, E. Dedu, J. Bourgeois

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 20 40 60 80 100 120 140 160 180

 0

 20

 40

 60

 80

 100

 120

B
itr

at
e

of
 tr

an
sm

itt
ed

 v
id

eo
 (

M
b/

s)

Time (s)

adapted video bitrate

Fig. 5. Quality adaptation with ZAAL for flow number 1 in ten concurrent flows test:
few zigzags occur.

Page 1

Flow1
Flow2
Flow3
Flow4
Flow5
Flow6
Flow7
Flow8
Flow9
Flow10

Fig. 6. Percentage of sent packets by each flow at the application layer using ZAAL:
the percentages are nearly equal.

– in the second experiment, ZAAL is better in terms of sent and received
packets, avoiding the zigzag in the same time.

We can conclude that ZAAL is better and even if sometimes its number of
received packets is lower, it reduces the rate of lost packets while maximising
the use of the bandwidth.

Traffic shaping 10 concurrent flows
Method Sent pkts Received pkts Lost pkts Sent pkts Received pkts Lost pkts

Without ZAAL 47795 42043 5752 (12%) 41191 32307 8884 (21.6%)
With ZAAL 43913 40263 3650 (8.4%) 38105 33889 4216 (11%)

Table 2. Number of sent and received packets (average of all flows) with and without
ZAAL.

Avoiding zigzag quality switching in real content adaptive video streaming 15

6 Conclusions and perspectives

This article has presented a simple brand new method to avoid the undesirable
constant switching in quality occurring during a video streaming using content
adaptation. It is a general solution, since it can be integrated to any adaptation
method, and no matter if the video is encoded in multiple qualities or in multi-
layers. The proposed solution uses a history of quality successfulness to infer if a
quality should be chosen at a given time. It is a non intrusive method, i.e. it does
not change the video transmission and does not need feedbacks from the net-
work. Experiments confirm that with our solution the problem of zigzag quality
switching appears very rarely, without much influence on the video throughput.

A perspective of our work is to consider a hybrid solution, which uses a
bandwidth estimation method (to decide whether to increase or not the qual-
ity) when the maximum period of non-increasing with our method is reached.
However, a very interesting future work is to analyse a more general algorithm
with VAAL/ZAAL constraints, but applicable to the whole class of network
congestion control methods.

References

1. Robert L. Carter and Mark E. Crovella. Measuring bottleneck link speed in packet-
switched networks. Performance Evaluation, 27-28:297–318, October 1996.

2. Constantinos Dovrolis, Parameswaran Ramanathan, and David Moore. Packet-
dispersion techniques and a capacity-estimation methodology. IEEE/ACM Trans.
Netw., 12:963–977, December 2004.

3. Nick Feamster, Deepak Bansal, and Hari Balakrishnan. On the interactions be-
tween layered quality adaptation and congestion control for streaming video. In
11th International Packet Video Workshop, April 2001.

4. Wu-chi Feng. On the efficacy of quality, frame rate, and buffer management for
video streaming across best-effort networks. Journal of High Speed Networks,
11:199–214, 2002.

5. Sally Floyd, Mark Handley, Jitendra Padhye, and Joerg Widmer. TCP Friendly
Rate Control (TFRC): Protocol specification, September 2008. RFC 5348.

6. ITU-T. Opinion model for video-telephony applications, April 2007.
7. V. Jacobson. Congestion avoidance and control. SIGCOMM Comput. Commun.

Rev., 18:314–329, August 1988.
8. Raj Jain and Shawn A. Routhier. Packet trains: Measurements and a new model

for computer network traffic. IEEE Journal on Selected Areas in Communications,
4:986–995, 1986.

9. Srinivasan Keshav. Packet-pair flow control. IEEE/ACM Transactions on Net-
working, February 1995.

10. Steven McCanne, Van Jacobson, and Martin Vetterli. Receiver-driven layered
multicast. SIGCOMM Comput. Commun. Rev., 26:117–130, August 1996.

11. Jon Postel. Transmission control protocol, September 1991. RFC 793.
12. Wassim Ramadan, Eugen Dedu, and Julien Bourgeois. VAAL, video adaptation

at application layer and experiments using DCCP. In WPMC, 13-th Int. Sympo-
sium on Wireless Personal Multimedia Communications, pages 1–5, Recife, Brazil,
October 2010.

