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Abstract

In a model-based testing approach as well as for the verification of properties, B models provide an interesting
modelling solution. However, for industrial applications, the size of their state space often makes them hard to handle.
To reduce the amount of states, an abstraction function can be used. The abstraction is often a domain abstraction of
the state variables that requires many proof obligations tobe discharged, which can be very time consuming for real
applications.

This paper presents a contribution to this problem that complements an approach based on domain abstraction
for test generation, by adding a preliminary syntactic abstraction phase, based on variable elimination. We define a
syntactic transformation that suppresses some variables from a B event model, in addition to three methods that choose
relevant variables according to a test purpose. In this way,we propose a method that computes an abstraction of a
source modelM according to a set of selected relevant variables. Depending on the method used, the abstraction can
be computed as a simulation or as a bisimulation ofM. With this approach, the abstraction process produces a finite
state system. We apply this abstraction computation to a Model Based Testing process. We evaluate experimentally
the impact of the model simplification by variables elimination on the size of the models, on the number of proof
obligations to discharge, on the precision of the abstraction and on the coverage achieved by the test generation.

keywords.Abstraction, Test Generation, (Bi)Simulation, Slicing

1 Introduction

B models are well suited for producing tests of an implementation by means of amodel-based testingapproach [BJK+05,
UL06] as well as to verify dynamic properties by model-checking [LB08]. But both model-checking and test genera-
tion require models to be finite, and of tractable size. This is not usually the case with industrial applications, for which
the exploration of the model executions frequently comes upagainst combinatorial explosion problems. Abstraction
techniques allow for projecting the (possibly infinite or very large) state space of a system onto a small finite set of sym-
bolic states. Abstract models make test generation or model-checking possible in practice [BCDG07]. In [BBJM10],
we have proposed and experimented with an approach of test generation from abstract models. It appeared that the
computation of the abstraction could be very time expensive, as evidenced by the Demoney [MM02] case study. We
had replaced a problem of time for searching in a state graph with a problem of time for discharging proof obligations,
as the abstractions were computed by proving enabledness and reachability conditions on symbolic states [BPS05].

In this paper, we contribute to solving this proving time problem by defining a syntactic abstraction function
by model slicing that requires no proof. Inspired from program slicing techniques [Wei84], the function works by
suppressing some state variables from a model. The variables to keep are chosen according to the tester’s intention. In
order to produce a state space that is both finite and sufficiently small, we still have to perform a semantic abstraction
which is defined as a predicate abstraction. This requires that some proof obligations are discharged, but fewer than
with the initial model, because it has been syntactically reduced. This approach results in a semantic pruning of the
generated proof obligations as proposed in [CGS09].
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Our process for generating tests using successively syntactic and semantic abstractions is sketched in Fig. 1. Given
a source model and a set of abstract variables (the ones to be kept), the model is first reduced by syntactic abstraction.
Then it is abstracted again, semantically, which gives the abstract model. Symbolic tests are extracted from it according
to some selection criteria. For the tests to have the same abstraction level as the source model, they finally are
instantiated on it.

Figure 1: Overview of the Process for Generating Tests by Abstraction

In Sec. 2, we introduce the notion of B event system, some of the main properties of the substitution computation
and the predicate abstraction method. Section 3 presents two small examples that illustrate our approach, an electrical
system and an elevator. In Sec. 4, we define the set of variables to be preserved by the abstraction function. The
abstraction function itself is defined in Sec. 5. We prove that with this function the generated abstract modelA

simulates or bisimulates the initial modelM. Consequently, the abstraction can be used to verify safetyproperties and
to generate tests. In Sec. 6, we present an end to end process that computes test cases according to a set of observed
variables, by using both the syntactic and semantic abstractions. In Sec. 7, we compare this process to a completely
semantic one on several examples, and we evaluate the practical interest for the generation of test cases. Section 8
compares our approach to other syntactic and semantic abstraction methods. Section 9 concludes the paper and gives
some future research directions.

2 Background

2.1 B Event Systems and Refinement

We use the B notation [Abr96b] to describe our models: this section gives the background required for reading the pa-
per. Let us first define the following B notions: primitive forms of substitution, substitution properties and refinement.
Then we will summarize the principles of before-after predicates, and conjunctive form (CF) of B predicates.

First introduced by J.-R. ABRIAL [Abr96a, Abr10], a B event system defines a closed specification of a system by
a set of events. In the sequel, we use the following notations: x, y, zare variables andX, Y, Z are sets of variables.Pred

is the set of B predicates.I ∈ Pred is an invariant andP, P1 andP2 (∈ Pred) denote other predicates. The modifications
of the variables, i.e. the instructions, are calledsubstitutionsin B, following [Hoa69] where the semantics of an
assignment is defined as a substitution. In B, substitutionsaregeneralized: they are the semantics of every kind of
atomic action. We useS, S1 andS2 to denote B generalized substitutions, andE andF to denote B expressions. The
B events are defined as generalized substitutions. All the substitutions allowed in B event systems can be rewritten
by means of the five B primitive forms of substitutions of Def.1. The multiple assignment can be generalized ton
variables. It is commutative, i.e.x, y := E, F ≡ y, x := F, E.

Definition 1 (Substitution) The following five substitutions are primitive:

• single and multiple assignments, denoted by x:= E and x, y := E, F,

• substitution with no effect, denoted bySKIP,

• guarded substitution, denoted by P=⇒ S,

• bounded nondeterministic choice, denoted by S1 [] S2,

• substitution with a local variable z, denoted by@z · S.
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The substitution with a local variable is mainly used for expressing the unbounded nondeterministic choice denoted
by @z· (P =⇒ S). With these primitive substitutions, some usual structures of specification languages can be defined.
For instance, the conditional substitutionIF P THEN S1 ELSES2 END is denoted by(P =⇒ S1) [] (¬P =⇒ S2) with the
primitive forms. Moreover, the parallel composition denoted by|| can be used to make the B models easier to read
by human readers. This substitution is not primitive, sinceit can be defined through the following simplification rules
from [Abr96b]:

x := E || y := F ⇔ x, y := E, F (1)

SKIP || S ⇔ S (2)

(P =⇒ S1) || S2 ⇔ P =⇒ (S1 || S2) (3)

(S1 [] S2) || S3 ⇔ (S1 || S3) [] (S2 || S3) (4)

(@z · S1) || S2 ⇔ @z · (S1 || S2) if z is not free inS2 (5)

S1 || S2 ⇔ S2 || S1 (6)

Given a substitutionSand a post-conditionP, it is possible to compute the weakest precondition such that if it is
satisfied, thenP is satisfied after the execution ofS. The weakest precondition is denoted by[S]P. [x := E]P is the usual
substitution of all the free occurrences ofx in P by E. For the five other primitive forms, the weakest precondition is
computed as indicated by Formulas (7) to (11) below, proved in [Abr96b].

[SKIP]P ⇔ P (7)

[P1 =⇒ S]P2 ⇔ (P1 ⇒ [S]P2) (8)

[S1 [] S2]P ⇔ [S1]P ∧ [S2]P (9)

[@z · S]P ⇔ ∀z · [S]P if z is not free inP (10)

[S](P1 ∧ P2) ⇔ [S]P1 ∧ [S]P2 (11)

Definition 2 defines correct B event systems.

Definition 2 (Correct B Event System) It is a tuple〈D,C,PC,X, I , Init ,Ev〉 where:

• D is a list of sets (with enumerated or deferred1 domains),

• C is a set of constants,

• PC∈ Pred is a predicate defining the constants C,

• X is a set of state variables,

• I ∈ Pred is an invariant predicate over X,

• Init is a substitution calledinitialization, such that the invariant holds in any initial state: PC⇒ [Init ]I,

• Ev is a set of event definitions in the shape of evi =̂ Si such that every event preserves the invariant: PC∧ I ⇒
[Si]I.

To refer to a part of an explicitly given model, we add the nameof that model as a subscript to the associated
symbol.IM is for example the invariant of a modelM.

Def. 3 is the definition of a B event system refinement. It describes the conditions under which a refinement is
correct. A B refinementR is such that the user defines a new data model and its relationship with the data model of
A by means of a gluing invariant. InR, the user redefines the events ofA and possibly introduces new ones. The

1A deferredset is defined only by its name. Such a set is assumed to be finiteand nonempty.
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refinement proof demonstrates on the one hand that the effects on the variables ofR produced by the events already
existing inA are in conformance to their effect inA, and on the other hand that the events that are new inR refine
SKIP, which means that they had no effect on the variables ofA. Intuitively, the events of the refined systemR may be
triggerable less often than in the abstract systemA.

Notice that in our context the refinement relation is used in the opposite direction: what the user gives is the
refined model, from which we compute the abstract one automatically. The gluing invariant (later calledIG) is always
a conjunction of equalities between the preserved variables. In this context, the events that could be considered as
“new” in R are the ones that have been reduced either toSKIP or to P =⇒ SKIP in A. In other words, no event is new
in R w.r.t. A since it appears explicitly inA.

Definition 3 (B Event System Refinement)Let A and R be two correct B event systems. Let IG be their gluing
invariant, i.e. a predicate that indicates how the values ofthe variables inR andA relate to each other.R refinesA if:

• any initialization ofR is associated to an initialization ofA according to IG:
PCA ∧PCR ⇒ [InitR]¬[InitA]¬IG,

• any event ev̂= SR of R is either an event ofA defined by ev̂= SA in EvA or a new event associated to SA =̂ SKIP

in A, that satisfies IG: PCA∧PCR ∧ IA ∧ IG ⇒ [SR]¬[SA]¬IG.

This paper also relies on two more definitions: the before-after predicate and the conjunctive form (CF) of a B
predicate. We denote byPrdX(S) the before-after predicate of a substitutionS. It defines the relation between the
values of the variables of the setX before and after the substitutionS. A primed variable denotes its after value.
From [Abr96b], the before-after predicate is defined by:

PrdX(S) =̂ ¬[S]¬(
∧

x∈X

(x = x′)). (12)

For a convenient reading of this paper, we give the inductiondefinition ofPrdX on the primitive forms of substitu-
tions:

PrdX(x := E) =̂ x′ = E ∧ (
∧

y∈X−{x}(y = y′)) if x∈ X (13)

PrdX(y := E) =̂
∧

x∈X(x = x′) if y /∈ X (14)

PrdX(P =⇒ S) =̂ P ∧ PrdX(S) (15)

PrdX(S1 [] S2) =̂ PrdX(S1) ∨ PrdX(S2) (16)

PrdX(@z · S) =̂ ∃(z,z′) · PrdX∪{z}(S) if z /∈ X (17)

Definition 4 (Conjunctive Form) A B predicate P∈ Pred is in CF when it is a conjunction p1∧ p2∧ . . .∧ pn where
every pi is a disjunction p1i ∨ p2

i ∨ . . .∨ pm
i such that any pji is an elementary predicate in one of the following two

forms:

• E(Y) r F (Z), where E(Y) and F(Z) are B expressions on the sets of variables Y and Z and r is a relational
operator,

• ∀z·P or ∃z·P, where P is a B predicate in CF.

We will define a set of predicate transformation rules in Sec.5. They apply to predicates that are put in CF
according to Def. 4 before their transformation.

2.2 Predicate Abstraction

Predicate abstraction [GS97] is a special instance of the framework of abstract interpretation [CC92] that maps a
potentially infinite state spaceRof a transition system onto a finite state space of asymbolic transition system viaa set
of atomic predicatesAP= {a1,a2, . . . ,an} over model (or program) variables. A state ofR is a valuation of the state
variables of the model. The symbolic transition system has aset of abstract statesQ that contains at most 2n states.
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Each state is a tupleq = (p1, p2, . . . , pn) with pi being eitherai or¬ai . We define an abstraction functionαAP : R→ Q
such thatαAP(r) is an abstract stateq with r |= pi for all i ∈ 1..n.

Let us now define the abstract transitions asmay-transitions. Although this is not required for our formal presen-
tation, this will clarify the forthcoming comparison with related work. A may-transition is such that for two abstract
statesq andq′ and for an eventev, there exists a transition fromq to q′ by ev, denoted byq

ev
→ q′, if and only if there

exists a concrete transitionr
ev
→ r ′ wherer andr ′ are concrete states such thatαAP(r) = q andαAP(r ′) = q′. Such a

transitionq
ev
→ q′ is computed by means of a predicate satisfiability problem. If we assume that an abstract stateq is the

predicate
∧n

i=1 pi and that the eventevis defined by the substitutionS, there is a transitionq
ev
→ q′ iff SAT(¬[S]¬q′∧q).

Some algorithms, based on predicate abstraction and that compute abstractions that are over-approximations, can
be found e.g. in [GS97, BMMR01]. They computemayabstract transitions automatically by means of a theorem
prover. Predicate abstraction is used by Ball in [Bal05] to compute program abstraction for generating tests.

2.3 Syntactical Abstraction

Our work is mainly based on the initial work described in [BW05], that introduces an extension of the program slicing
techniques to models. Program slicing is a technique introduced in [Wei84] which proceeds by removing parts of a
program in order to focus on behaviors of specific parts of theprogram. The slicing method introduced in [BW05] is
based on the CSP-ObjectZ integrated method and is established as a syntactical abstraction method. In order to slice a
model, the technique proceeds in four steps:

1. computing theprogram dependence graph, which represents thecontrol flowanddata flowdependencies of
each part of the program,

2. choosing some nodes of this graph as aslicing criterion,

3. backtracing the graph from the nodes of the slicing criterion in order to compute the set of relevant nodes,

4. removing all the parts of the program (graph) that have no effect on the slicing criterion (i.e. that are not
relevant).

If the slicing criterion is defined as keeping only some variables of a modelM, then this method will produce a
modelA which is an abstraction ofM. In the current paper, we propose an extension of this method.

2.4 Refinement and Simulation

We now discuss about the preservation of properties throughthe refinement process, as it is of importance in the
context of test cases generation. We need for that to briefly introduce the notion of simulation and its relationship with
refinement, as we will refer to it in the forthcoming sections.

With two additional clauses: no deadlock introduction and no livelock introduction by the new events, the B
refinement relation of event systems (see Def. 3) is proven in[BJK00] to be a simulation and, in [DJK03], to preserve
propositional linear temporal logic properties.

In [CGP00], simulation is formally defined on transition systems whose transition relation is total, i.e. whose
executions are infinite. We intuitively say thatA simulatesR if there is a relationS between the set of states ofA and
of R that satisfies the following two conditions:

• two statesa andr related (S (a, r)) have the same values for the variables ofA,

• if S (a, r), for every stater ′ such thatr ′ is a successor ofr by an evente, there is a statea′ that is a successor of
a by eandS (a′, r ′).

By extension, there is a bisimulation relation betweenA andR if A simulatesR and if for all the statesa, r anda′ such
thatS (a, r) holds anda′ is a successor ofa by an evente, there is a stater ′ that is a successor ofr by e and such that
S (a′, r ′).
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Figure 2: Electrical System

In [CGP00], it is proven that the relation “A simulatesR” is a preorder and that every ACTL* formula satisfied by
A is satisfied byR. ACTL* defines temporal logic formulas that hold on all the executions (quantifier A). Intuitively,
as the executions of both systems perform the same actions and that there are more executions inA than inR, it is
obvious that a property that holds onA also holds onR. For a bisimulation, it is proven in [CGP00] that every CTL*
formula holds inA if and only if it holds inR.

But a B event system may be blocking, i.e. define executions that are finite, and in Def. 3, we have defined the B
refinement without the two aforementioned clauses. Thus therefinement can introduce new deadlocks or new livelocks
in the refined system. In such cases, the simulation conditions still hold, but the preservation theorems of [CGP00]
do not apply anymore. It follows that the ACTL* properties ofA are not preserved onR, but it is proven that safety
properties do. Indeed, if nothing bad happens on a set of executions, then nothing bad happens either on a subset of it.
In contrast, liveness and fairness properties are not preserved when some deadlocks or livelocks are introduced.

The reason why we have not added in this paper the no deadlock and no livelock clauses to Def. 3, is because
our problem is not a verification one but a test generation one. Also notice that in our context, since we compute the
abstractionA from the initial systemR and not the contrary, there is no new livelock inR w.r.t. A since no event is
new inR. In contrast, some deadlocks ofR can be removed inA.

3 Examples

We introduce in this section two B event systems that we use asrunning examples to illustrate our propositions in this
paper. The first one describes a simple electrical system by means of a small model. The second one describes an
elevator by modelling its calls, its position, its direction, its doors and its light.

The electrical system generalizes the example from [JSBM10] to an infinite state space. It is simple to read and
well suited for short illustrations. But we also want to exhibit some differences between three methods that we present
in Sec. 4, and that requires the model to be slightly more complicated. This is the reason why we introduce the second
example.

3.1 Electrical System Example

A device D is powered byNBatbatteriesB1,B2, . . . ,BNBat as shown in Fig. 2 withNBat= 3. A switch connects (or
not) a batteryBi to the device D. A clock H periodically sends a signal that causes a commutation of the switches, i.e.
a change of the battery in charge of powering the device D. Thesystem has to satisfy the three following requirements:

• Req1: no short-circuit, i.e. there is only one switch closed at a time,

• Req2: continuous power supply, i.e. there is always one switch closed,

• Req3: a signal from the clock always changes the switch that is closed.

The batteries are subject to electrical failures. If a failure occurs on the battery that is powering D, the system trig-
gers an exceptional commutation to satisfy the requirementReq2. The broken batteries are replaced by a maintenance
service. We assume that it works fast enough for not having more thanNBat−1 batteries down at the same time.
WhenNBat−1 batteries are down, the requirementReq3 is relaxed and the clock signal leaves unchanged the switch
that is closed.

6



This system is modeled in Fig. 3 by means of three variables.H models the clock and takes two values:tic when
it asks for a commutation andtac when this commutation has occurred.Swmodels the state of the switches by an
integer between 1 andNBat: Sw= i indicates that the switchi is closed while the others are opened. This modelling
makes that requirementsReq1 andReq2 necessarily hold.Bat models the electrical failures by a total function. The
ko value for a battery indicates that it is down. In addition to the typing of the variables, the invariantI expresses the
assumption that at least one battery is not down by stating that Bat(Sw) = ok. Notice that the requirementReq3 is
a dynamic property, not formalized inI . The initial state is defined byInit in Fig. 3. The behavior of the system is
described by means of four events:

• Tic sends a commutation request,

• Comperforms a commutation (i.e. changes the closed switch),

• Fail simulates an electrical failure on one of the batteries,

• Repsimulates a maintenance intervention replacing a down battery.

In this model, we use the expressionr ⊲E which denotes a relation where the range is restricted by thesetE. For
example:{1 7→ ok, 2 7→ ko, 3 7→ ok}⊲{ok}= {1 7→ ok, 3 7→ ok}.

C =̂ {NBat}
PC =̂ NBat ∈ N1

X =̂ {H, Sw, Bat}
I =̂ H ∈ {tic, tac} ∧ Sw ∈ 1..NBat ∧ (Bat ∈ 1..NBat →{ok, ko}) ∧ Bat(Sw) = ok

Init =̂ H := tac || Sw := 1 || Bat := (1..NBat)×{ok}

Tic =̂ H = tac =⇒ H := tic

Com =̂ H = tic =⇒ @ns.((ns∈ 1..NBat ∧ Bat(ns) = ok ∧ ns 6= Sw) =⇒ H := tac || Sw:= ns)

Fail =̂ card(Bat⊲{ok}) > 1 =⇒
@nb.((nb∈ 1..NBat ∧ Bat(nb) = ok) =⇒

Bat(nb) := ko ||
IF nb= Sw THEN @ns.((ns∈ 1..NBat ∧ ns 6= Sw ∧ Bat(ns) = ok) =⇒ Sw := ns) END)

Rep =̂ @nb.((nb∈ 1..NBat ∧ Bat(nb) = ko) =⇒ Bat(nb) := ok)

Figure 3: B Specification of the Electrical System

3.2 Elevator Case Study

The event B model in Fig. 4 describes an elevator w.r.t. five parameters: its position (position), the set of floors from
which it can be called (Calls), its movement (statusanddirection), the floor, if any, where its doors are open (Doors)
and the state of the light in the lift cage (light).

The elevator serves the floors betweenminFloor andmaxFloor, as modelled byFLOORS, its set of floors. Thus
its currentpositionis restricted toFLOORS. Its direction is eitherup or down, and itsstatuscan be:movement,stop
or standby. When the elevator is in standby, thelight is off. When it is stopped, the doors (Doors) are either closed
(Doors= ∅) or open (Doors= {position}).

Four types of events can occur in this model:

• the elevator can be called from another floor (call),

• the doors can be opened or closed (open,close),

• the elevator can move (move),

• the elevator can go into standby or be woken up (sleepdown,wakeup).
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D =̂ MODE = {movement, stop, standby} ; MOVEMENT = {up, down} ; ONOFF = {on, off}

C =̂ {minFloor, maxFloor, FLOORS}
P =̂ maxFloor ∈ Z ∧ minFloor ∈ Z ∧ minFloor < maxFloor ∧ FLOORS = minFloor..maxFloor

X =̂ {position,Calls,status,Doors,direction, light}
I =̂ position ∈ FLOORS ∧ Calls ⊆ FLOORS ∧ status ∈MODE ∧ Doors⊆ FLOORS ∧

direction ∈ MOVEMENT ∧ light ∈ ONOFF ∧

((Doors 6= ∅) ⇒ (Doors = {position}∧ status = stop)) ∧
(status = stop ⇒ position 6∈ Calls) ∧
((light = off) ⇔ (status = standby)) ∧
(status = standby ⇒ Doors = ∅)

Init =̂ position := minFloor || Calls := ∅ || status := standby || Doors := ∅ || direction := up || light := off

call =̂ @fl·(fl ∈ FLOORS ∧ fl 6= position =⇒ Calls := Calls∪{fl})

open =̂ Doors = ∅ ∧ status = stop =⇒ Doors := {position}

close =̂ Doors 6= ∅ =⇒ Doors := ∅

move =̂ Doors = ∅ ∧ Calls 6= ∅ ∧ status 6= standby =⇒
IF position∈ Calls THEN

status := stop || Calls := Calls−{position}
ELSE

status := movement ||
IF direction = up THEN

IF (Calls ∩ (position..maxFloor)) = ∅ THEN

position := position−1 || direction := down
ELSE

position := position+1
END

ELSE

IF (Calls ∩ (minFloor..position)) = ∅ THEN

position := position+1 || direction := up

ELSE

position := position−1
END

END

END

sleepdown =̂ Doors = ∅ ∧ status = stop ∧ Calls = ∅ =⇒ status := standby || light := off

wakeup =̂ status = standby ∧ Calls 6= ∅ =⇒
status := stop || light := on ||
IF position∈ Calls THEN Calls := Calls−{position} END

Figure 4: B Specification of the Elevator

4 Choice of the Variables for the Syntactical Abstraction

Our aim is to produce an abstract modelA of a modelM by observing only a subsetXA of the state variablesXM of
M. For instance, to test the electrical system in the particular case where there is only one battery left working, it is
sufficient to observe only the variableBat. However, for preserving the behaviors ofM related to the variables ofXA,
the variables used either to assign the observed variables or to define the conditions under which they are assigned also
have to be kept inA.

The slicing technique that we present in this paper uses as a slicing criterion a set of variables that we denote as
observed variables. We use a two steps method: (i) computing the set of variablesto be kept according to the slicing
criterion, (ii) slicing the model according to this computed set of variables. We present the first step in the current
section, while the second step will be described in Sec. 5.

We first describe in this section the principle of choosing a set of variables to be kept in an abstraction, then we
propose three methods that compute a set ofabstract variablesaccording to a set ofobserved variables, and we finally
compare these three methods.

4.1 Principle

As proposed in [BW05], we make a distinction between the observed variables and the abstract ones. A setXA of
abstract variablesis the union of a set ofobserved variableswith a set ofrelevant variables. In the context of test
generation, the observed variables are the ones used to describe a test purpose, while the relevant variables are the ones
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used to describe the evolutions of the observed variables. More precisely, the possible relevant variables are the ones
used to assign an observed variable (data-flow dependence), augmented with the variables used to express when such
an assignment occurs (control-flow dependence).

A naive method to computeXA is to syntactically collect all the variables that are either on the right side or in
the guard of the assignments of an observed variable. But this method will in most cases collect a very large amount
of variables, mainly because of the guard. For instance, in(y =⇒ x,z := E1,E2)[](¬y =⇒ x := E3), if x is the observed
variable, theny is not relevant ify occurs neither inE1 nor in E3. A similar weakness goes for the unbounded non-
deterministic choice@z· (P =⇒ S). Moreover, since we want to facilitate the computation and minimize its time,
we must keep all the variables assigned to an observed variable. We cannot abstract such assignments with non
deterministic choices as it would require to perform a complex type induction in order to characterize the definition
domain of the abstracted expressions. Consequently, we need to achieve the computation of each set of abstract
variables by means of a fix-point calculus.

Hence our contribution consists of three methods for identifying the relevant variables. The first one only considers
the data-flow (DF) dependence. It is efficient but may select aset too small of relevant variables, resulting in a model
with too many behaviors in the abstracted model. The second one uses both data and control flow (CF) dependencies,
and produces abstract models that have the same set of behaviors as the original model w.r.t. the abstract variables.
But this second method may compute a set with too many relevant variables, because a predicate simplification would
be required to restrict the size ofXA, and predicate simplification is not a decidable problem. Hence we propose a third
method that is a mix between the first two ones, and provides aninteresting trade-off.

4.2 Proposition 1: Data-Flow Dependence Only

The first method considers as relevant only the variables that appear on the right side of an assignment symbol to an
abstract variable. Starting from the set of observed variables, the set of all abstract variables is computed as the least
fix-point when adding the relevant variables. For instance,the set of relevant variables of the electrical system is empty
if the set of observed variables is{Bat} (see Fig. 3). Hence if a test purpose is only based onBat, thenXA = {Bat}. A
drawback of this method is that it can introduce inA new execution traces w.r.t.M. Indeed, it may weaken the guards
of some of the events, that would thus become enabled more often.

4.3 Proposition 2: Data-Flow and Control-Flow Dependencies

The second method first computes a predicate that characterizes a condition under which an abstract variable is modi-
fied, then simplifies it, and finally considers all its free variables as relevant. We express by means of Formula (18) the
modifications really performed by a substitutionSon a setXA:

ModXA
(S) =̂ PrdXA

(S) ∧ (
∨

x∈XA

x 6= x′). (18)

Our intention is that the predicate, that defines the condition under which an abstract variable is modified, only
involves the variables really required to modify it. Hence primed variables are not quantified, but are allowed to be
free. For instance, considerXA = {x} and the substitutionx:=y[](z>0 =⇒ x:=w)[]v:=3. The predicate has to be in
the shape of(x′=y∨ (z>0∧x′=w))∧x 6= x′, where the variablesy, w andzare relevant whereasv is not (see Fig. 5).

Mod{x}(x := y [] (z> 0 =⇒ x := w) [] v := 3)
⇔ Prd{x}(x := y [] (z> 0 =⇒ x := w) [] v := 3) ∧ x 6= x′ – applying (18)
⇔ (Prd{x}(x := y) ∨ Prd{x}((z> 0 =⇒ x := w)) ∨ Prd{x}(v := 3)) ∧ x 6= x′ – applying (16)
⇔ (x′ = y ∨ (z> 0 ∧ Prd{x}(x := w)) ∨ (x = x′)) ∧ x 6= x′ – applying (13, 14, 15)
⇔ (x′ = y ∨ (z> 0 ∧ x′ = w) ∨ (x = x′)) ∧ x 6= x′ – applying (13)
⇔ (x′ = y ∨ (z> 0 ∧ x′ = w)) ∧ x 6= x′ – by simplification

Sincev is not free in this predicate,v is not relevant forx in x := y [] (z> 0 =⇒ x := w) [] v := 3.

Figure 5: Example of aModX Computation

TheModX predicate can also be defined by induction through primitivesubstitutions, as proposed in Table 1. This
second formalization is more suited to an automated simplification. Intuitively, an assignmentx := E is associated
to f alse if and only if eitherx is not in X or x already has the same value asE. The other assignment cases are

9



just generalizations. This implements the data-flow dependence. For the control-flow dependence, a non-deterministic
choice is a union between control-flow branches, thus a disjunction between predicates. A guarded substitutionP=⇒S
is associated to the whole conditionP augmented with the result of the analysis ofS. Once expressed, this predicate
needs to be logically simplified.

Substitution Modification Predicate Condition

ModX(x := E) =̂ f alse x /∈ X
ModX(x := E) =̂ x′ = E ∧

∧
z∈X−{x}(z

′ = z) ∧ x 6= x′ x∈ X

ModX(x, y := E, F) =̂ f alse x /∈ X ∧ y /∈ X
ModX(x, y := E, F) =̂ x′ = E ∧

∧
z∈X−{x}(z

′ = z) ∧ x 6= x′ x∈ X ∧ y /∈ X
ModX(x, y := E, F) =̂ x′ = E ∧ y′ =F ∧

∧
z∈X−{x, y}(z

′ = z) ∧
∨

z∈{x, y}(z 6= z′) x∈ X ∧ y∈ X

ModX(skip) =̂ f alse
ModX(P =⇒ S) =̂ P ∧ ModX(S)
ModX(S1 [] S2) =̂ ModX(S1) ∨ ModX(S2)
ModX(@z·S) =̂ ∃(z, z′) ·ModX∪{z}(S)

Table 1:ModX(S) Predicate Defined through Primitive Substitutions

Property 1 ModX(S) as defined in Table 1 satisfies the definition of Formula (18).

Proof (of property 1). For any case of primitive substitutionS, we prove thatModX(S) as defined by Formula (18)
is equal to its value in Table 1. We replace for thatPrdX(S) by its definition given in Formula (12) and we transform
it according to the Formulas (7) to (10). �

Finally, XA is computed as a least fix-point, by iteratively incrementing for each event the initial set of observed
variables with the relevant variables. This process necessarily terminates since the set of variables is finite and growing.
For instance,Mod{Bat} gives an empty set of relevant variables when applied to the electrical system example, as shown
in Fig. 6, whileMod{H} givesXA = {Bat,H}.

Mod{Bat}(Init ) ⇔ Bat′ = (1..NBat)×{ok}
Mod{Bat}(Tic) ⇔ f alse(no assignment ofBat)
Mod{Bat}(Com) ⇔ f alse(no assignment ofBat)
Mod{Bat}(Fail) ⇔ card(Bat⊲{ok}) > 1 =⇒ ∃nb· (nb∈ 1..NBat ∧ Bat(nb) = ok ∧ Bat′(nb) = ko)
Mod{Bat}(Rep) ⇔ ∃nb· (nb∈ 1..NBat ∧ Bat(nb) = ko ∧ Bat′(nb) = ok)

Figure 6:Mod{Bat} Computation Applied to the Power System Example

TheModX(S) predicate aims at computing a set of abstract variables for syntactically abstracting a model. But
applying the rules of Table 1 to computeModX will in most cases require the use of a constraint solver. Since
the computation time of such a tool is comparable to the one ofan automatic theorem prover, the gain w.r.t. the
computation of Formula (18) is not obvious. However, some “easy simplifications” can be performed, that require
no computation. This is the case for example for the first and third rules of Table 1. Additionally, it is possible to
make use of information that appear in constructions such asthe IF or the SWITCH structures, that the B language
offer as syntactic sugar. See for example the IF rules that wepropose in Fig. 7. Hence, at least in the the first case,
IF structures can be syntactically simplified. This is why weclaim that the computation ofModX can be performed
syntactically, which makes it light to use in practice.

Substitution Modification Predicate Condition
ModX(IF C THEN S1 ELSE S2 THEN) =̂ ModX(S1) ∨ ModX(S2) free(ModX(S1)) = free(ModX(S2))
ModX(IF C THEN S1 ELSE S2 THEN) =̂ ModX((C =⇒ S1) [] (¬C =⇒ S2)) free(ModX(S1)) 6= free(ModX(S2))

Figure 7:Mod{Bat} Computation Applied to IF Substitution

4.4 Proposition 3: Data-Flow and Partial Control-Flow Dependencies

Intuitively, the most relevant variables to describe the evolutions of the observed variables are the ones on which the
observed variables directly depend, through control flow ordata flow. They are computed by the first iteration of the
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fix-point calculus. The variables computed by the second iteration are less relevant. So are the variables added by
further iterations, that become less and less relevant. Hence we propose to mix the first two propositions, in order
to have as much as possible strongly relevant variables and as less as possible weakly relevant variables. Our third
proposition is:

• first, useModX to characterize the setR1 of variables directly relevant to the observed variables,

• then computeXA as a fix-point w.r.t. DF dependence only, starting withXA ∪R1.

4.5 Comparison Between the Three Propositions on the Elevator Example

Figure 8 illustrates the differences between the three propositions by describing all the variables dependencies on the
Elevator example, according to each of the propositions. Table A in Fig. 8 gives, for each event and each variable, the
set of relevant variables by using either Proposition 1 or Proposition 2. It has been computed by means of a single pass
on the B model, i.e. without fix-point. The rows where both thepropositions returned no relevant variable have been
removed. Table B shows the results of the fix-point computations, according to each of the different propositions. The
results are given for the system as a whole, i.e. not event by event, since the fix-point computation involves all the
events.

A. For each event, without fix-point
Event Observed Relevant var. Relevant var.

variables w.r.t. Prop. 1 w.r.t. Prop. 2
call Calls ∅ {position}
open Doors {position} {position, status}
move position ∅ {Calls, status, Doors}

Calls {position} {position, status, Doors}
status ∅ {position, Calls, Doors}
direction ∅ {position, Calls, status, Doors}

sleepdown status ∅ {Calls, Doors}
light ∅ {Calls, Doors, status}

wakeup Calls {position} {position, status}
status ∅ {Calls}
light ∅ {Calls, status}

B. For the whole system, with fix-point
Observed Relevant var. Relevant var. Relevant var.
variables w.r.t. Prop. 1 w.r.t. Prop. 2 w.r.t. Prop. 3
position ∅ {Calls, status, Doors} {Calls, status, Doors}
Calls {position} {position, status, Doors} {position, status, Doors}
status ∅ {position, Calls, Doors} {position, Calls, Doors}
Doors {position} {position, Calls, status} {position, status}
direction ∅ {position, Calls, status, Doors} {position, Calls, status, Doors}
light ∅ {position, Calls, status, Doors} {position, Calls, status, Doors}

Figure 8: Variables Dependencies in the Elevator System

Let {Doors} be for example the set of observed variables. Table B in Fig. 8indicates that the set of abstract
variables is:

• XA = {position} with Proposition 1,

• XA = {position,Calls,status} with Proposition 2,

• XA = {position,status} with Proposition 3.

Hence the set of abstract variables, on which depends the size and the precision of the abstraction, can be finely
controlled by the choice of the method to compute the abstract variables.

5 B Event Model Slicing

This section introduces an abstraction method of B models using a set of abstract variables as slicing criterion. Similar
rules could be adapted for more generic formalisms such as pre-post models or symbolic transition systems. We first
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TX(E(Y) r E(Z)) =̂ E(Y) r E(Z) if Y ⊆ X andZ ⊆ X (R1)
TX(E(Y) r E(Z)) =̂ true if Y 6⊆ X or Z 6⊆ X (R2)

TX(P1 ∨ P2) =̂ TX(P1) ∨ TX(P2) (R3)
TX(P1 ∧ P2) =̂ TX(P1) ∧ TX(P2) (R4)

TX(αz·P) =̂ αz·TX∪{z}(P) (R5)

Figure 9: CF Predicate Slicing Rules

T{Bat}(H ∈ {tic, tac} ∧ Sw ∈ 1..NBat ∧ Bat ∈ 1..NBat →{ok, ko} ∧ Bat(Sw) = ok)

=
T{Bat}(H ∈ {tic, tac}) ∧ T{Bat}(Sw ∈ 1..NBat)

∧ T{Bat}(Bat ∈ 1..NBat →{ok, ko}) ∧ T{Bat}(Bat(Sw) = ok)
–applying (R4)

= Bat ∈ 1..NBat →{ok, ko} –applying (R1) and (R2)

Figure 10: Example of Predicate Slicing

define slicing functions for the predicates and the substitutions w.r.t. a set of abstract variables. We then define the
abstraction of a B event modelM as the abstraction of its clauses, and we establish some properties of simulation
and bisimulation between the computed abstract model andM, according to the method used to select the abstract
variables (see Sec. 4).

5.1 Predicate Slicing

Once the set of abstract variablesXA(⊆ XM) is defined, we have to describe how to abstract a model according toXA.
We first define the slicing functionTXA

(P) that abstracts a predicateP according toXA. We defineTX on predicates in
the conjunctive form (see Def. 4) by induction with the rulesgiven in Fig. 9.

An elementary predicate is left unchanged when all the variables used in the predicate are considered in the
abstraction (see the ruleR1). Otherwise, when an expression depends on some variables not kept in the abstraction,
the truth value of an elementary predicate is undetermined (see the ruleR2). As we want to weaken the predicate, we
replace an undetermined elementary predicate bytrue. Consequently, a predicateP1∧P2 is transformed intoP1 when
P2 is undetermined, and a predicateP1∨P2 is transformed intotrue whenP1 or P2 is undetermined (see the rulesR3

andR4). Finally, the slicing of a quantified predicate is the slicing of its body w.r.t. the abstract variables, augmented
with the quantified variable (see the ruleR5).

For example the invariantI of the electrical system is transformed, according to the single variableBat, into
T{Bat}(I) = Bat∈ 1..NBat→{ok, ko} as in Fig. 10.

Property 2 Let P be a CF predicate inPred and let X be a set of variables. P⇒ TX(P) is valid.

Proof (of property 2). As aforementioned,TX(P) is weaker thanP. Indeed, for any predicateP in CF there existp1

and p2 such thatP = p1∧ p2 and such that it is transformed either intop1∧ p2, or into p1, or into p2, or into true,
by application of the slicing rulesRi . For any disjunctive predicateP there existp1 andp2 such thatP = p1∨ p2 and
p1∨ p2 is transformed either intop1∨ p2 or into true. �

5.2 Substitution Slicing

The abstraction of substitutions is defined through cases inFig. 11 on the primitive forms of substitutions. Intuitively,
any assignmentx := E is preserved into the sliced model if and only ifx is an abstract variable. According to any of
the three methods described in sec. 4.1, ifx is an abstract variable, then so are all the variables inE. Therefore, in
rulesR6 to R11, we do not transform the expressionsE andF.

A substitution is abstracted bySKIP when it does not modify any variable fromX (see rulesR6, R8, R9 andR10 in
which y := F is abstracted bySKIP). The assignment of a variablex is left unchanged ifx is an abstract variable (see
rulesR7, R10, R11). The slicing of a guarded substitutionS is such thatTX(S) is enabled at least as often asS, since
TX(P) is weaker thanP from Prop. 2 (see ruleR12). The bounded non deterministic choiceS1 [] S2 becomes a bounded
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TX(x := E) =̂ SKIP if x /∈ X (R6)
TX(x := E) =̂ x := E if x∈ X (R7)

TX(SKIP) =̂ SKIP (R8)

TX(x, y := E, F) =̂ SKIP if x /∈ X andy /∈ X (R9)
TX(x, y := E, F) =̂ x := E if x∈ X andy /∈ X (R10)
TX(x, y := E, F) =̂ x, y := E, F if x∈ X andy∈ X (R11)

TX(P =⇒ S) =̂ TX(P) =⇒ TX(S) (R12)

TX(S1 [] S2) =̂ TX(S1) [] TX(S2) (R13)

TX(@z·S) =̂ @z·TX∪{z}(S) (R14)

Figure 11: Primitive Substitution Slicing Rules

non deterministic choice between the abstraction ofS1 and the one ofS2 (see ruleR13). The quantified substitution is
sliced by inserting the bound variable into the set of abstract variables (see ruleR14).

Notice that a conditional substitution defined by a non deterministic choice between two exclusive guarded substi-
tutions (P=⇒S1[]¬P=⇒S2) can be transformed into an actual non deterministic choice, sinceTX(P) andTX(¬P) can
respectively become weaker thanP and¬P. For example,T{x,y}(x = y∧z> x =⇒ x := 3 [] x 6= y∨z≤ x =⇒ x := 4)
is equal to(x = y =⇒ x := 3 [] TRUE=⇒ x := 4).

5.3 Model Slicing

According to the predicate and substitution slicing functions (see Fig. 9 and Fig. 11), we define the slicing of a B event
model according to a set of abstract variables (see Sec. 4.1)in Def. 5. It translates a correct modelM into a modelA
that simulatesM (see Sec. 5.4).

Definition 5 (B Event System Slicing)Let XA be a set of abstract variables, defined as in Sec. 4.1 from a setof
observed variables X with X⊆ XM. A correct B event systemM = 〈DM, CM, PCM, XM, IM, InitM, EvM〉 is abstracted
as the B event system
A = 〈DM, CM, PCM, XA, IA, InitA, EvA〉 as follows:

• XA ⊆ XM, the set of abstract variables is a subset of the state variables,

• IA = TXA
(IM), the invariant is sliced,

• InitA = TXA
(InitM), the initialization is sliced,

• to each event ev̂= SM in EvM is associated the sliced event ev=̂ TXA
(SM) in EvA.

In Def. 5, the sets of sets (D), constants (C) and properties (PC) are kept unchanged in the abstraction. Indeed these
clauses are not in the right part of proof obligations of formulas from Def. 2. Hence, slicing these clauses reduces
neither the number, nor the complexity of the generated proof obligations.

By applying Def. 5, the electrical system is transformed as shown in Fig. 12 for the set of abstract variables{Bat}.

5.4 Properties of the Generated Abstractions

In this section, we discuss the preservation of properties by the various abstractions that we produce, as well as the
instanciability of the tests generated from them. We distinguish between Proposition 2 and Propositions 1 and 3.

5.4.1 Proposition 2

When the set of abstract variablesXA preserves both the data and control flows as defined in Sec. 4.3(Proposition
2), the transition relation, projected onXA, is preserved, as established by Theorem 1. In other words,A andM are
bisimilar, since they have an equivalent before-after relation moduloXA (PrdXA

). Hence when a CTL* property is
verified onA it holds onM and the test cases generated fromA can always be instantiated onM.
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C =̂ {NBat}
PC =̂ NBat ∈ N1

X =̂ {Bat}
I =̂ Bat ∈ 1..NBat→{ok,ko}

Init =̂ Bat := (1..NBat)×{ok}

Tic =̂ skip

Com =̂ @ns.(ns∈ 1..NBat ∧ Bat(ns) = ok =⇒ skip)

Fail =̂ card(Bat⊲{ok}) > 1 =⇒
@nb.(nb∈ 1..NBat ∧ Bat(nb) = ok=⇒ Bat(nb) := ko)

Rep =̂ @nb.(nb∈ 1..NBat ∧ Bat(nb) = ko =⇒ Bat(nb) := ok)

Figure 12: B Variable Slicing of the Electrical System

Theorem 1 Let S be a substitution. Let X be a set of abstract variables composed of any free variable of ModX(S).
We have PrdX(S) ⇔ PrdX(TX(S)).

Proof (of theorem 1). We are in the case of Proposition 2 as defined in Sec. 4.1. We prove that the following formula
holds:PrdX(S) ⇔ PrdX(TX(S)).

SincePrdX(S) =̂ ¬[S]¬
∧

x∈X x = x′ andPrdX(TX(S)) =̂ ¬[TX(S)]¬
∧

x∈X x = x′ (see Formula (12) in Sec. 2), we
verify it by induction through primitive substitutions by proving that[S]P⇔ [TX(S)]P holds whenP is defined only in
terms of abstract variables inX (as inPrdX definition). Let[TX(S)]P ⇔ [S]P be the induction hypothesis. A proof by
induction on primitive substitutions that[TX(S)]P ⇔ [S]P holds is the following:

[TX(S)]P ⇔ [S]P Condition or justification
[SKIP]P ⇔ [y := E]P ⇔ P if y /∈ X

[x := E]P ⇔ [x := E]P if x∈ X
[SKIP]P ⇔ [SKIP]P ⇔ P
[SKIP]P ⇔ [z, y := E, F ]P ⇔ P if z /∈ X andy /∈ X

[x := E]P ⇔ [x, y := E, F]P if x∈ X andy /∈ X
[x := F]P ⇔ [y, x := E, F ]P if y /∈ X andx∈ X

[x1, x2 := E, F]P ⇔ [x1, x2 := E, F ]P if x1 ∈ X andx2 ∈ X
TX(P1) ⇒ [TX(S)]P ⇔ [P1 =⇒ S]P by Formula (8), induction hypothesis

and sinceTX(P1) = P1 according to

ModX(P1 =⇒ S) definition.
[TX(S1) [] TX(S2)]P ⇔ [S1 [] S2]P by Formula (9) and by induction hypothesis

[@z·TX∪{z}(S)]P ⇔ [@z·S]P by Formula (10) and[TX∪{z}(S)]P⇔ [S]P

according toModX(@z·S) definition.

Notice that the hypothesis whenP is defined only in terms of abstract variablesX induces that[y := E]P= P when
y /∈ X because there is no occurrence ofy in P.

We can then conclude that the set of behaviors on the set of abstract variablesX of an eventev is unchanged when
we simplify it byTX. �

5.4.2 Propositions 1 and 3

When the set of abstract variablesXA is computed by using either Proposition 1 (see Sec. 4.2) or Proposition 3 (see
Sec. 4.4), some new behaviors may potentially be introducedin the transition relation projected onXA.

As a consequence of theorems 2 and 3, with the methods defined in Sec. 4.2 (Proposition 1) and Sec. 4.4 (Proposi-
tion 3),M refinesA. Consequently and according to Sec. 2.4, whenA does not remove the deadlocks ofM, the ACTL*
properties established onA are preserved onM. Otherwise, only the safety properties established onA are preserved on
M. However, some tests generated fromA might be impossible to instantiate onM sinceA is an over-approximation,
which means that some of its executions may not exist inM.

The refinement theory as defined in B [Abr96b] requires that the variable sets of the abstraction and of the refine-
ment are disjoint. Consequently, when a variablex is preserved through the refinement process, it has to be renamed,
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e.g. byxrenamed, and the values of both versions of the variable have to be associated by means of a gluing invariant,
such for example asx = xrenamed. In order to formally express and prove the correctness of the refinement, we intro-
duce theRen() function, which renames every variable of a substitution ora predicate. Hence, the substitutionSA

abstracted from a substitutionSM, and the gluing invariantIG are defined as follows:
SA =̂ Ren(TX(SM)) IG =̂

∧
xi∈X(xi = Ren(xi))

Theorem 2 Let IM be an invariant in CF of a correct B event systemM, let SM be a substitution ofM and let X be a
set of abstract variables computed by one of the three methods proposed in section 4.1. The slicing rules R6 to R14 are
such that SM refines SA according to the invariant IG.

Proof (of theorem 2).
To prove thatSM is a correct refinement ofSA, we need to prove (Def. 3):

PCA ∧PCM ∧ IA ∧ IM ∧ IG ⇒ [SM]¬[SA]¬(IM ∧ IG) (19)

where the invariantIA abstracted fromIM is defined byIA =̂ Ren(TX(IM)). In order to prove formula (19), it is sufficient
to establish that the following two formulas hold:

PCA ∧PCM ∧ IA ∧ IM ∧ IG ⇒ [SM]¬[SA]¬IM (20)

PCA∧PCM ∧ IA ∧ IM ∧ IG ⇒ [SM]¬[SA]¬IG (21)

Since the sets of free variables fromIA and IM are strictly disjoint, (20) can be rewritten as:PCA ∧PCM ∧ IA ∧
IM ∧ IG ⇒ [SM]IM, that holds, since the initial modelM is correct. Hence, we only have to establish (21) to prove
Theorem 2. The proof is by induction on the five primitive forms of substitutions. We make a case analysis for each
rule of Fig. 11. We use Prop. 2 of Sec. 5.1 and axioms (7 to 11) defined in Sec. 2.

We denote byHypsthe repetitive predicateHyps=̂ PCA ∧PCM∧ IA ∧ IM ∧ IG.

CaseSM =̂ x := E

Rule R6 SA =̂ SKIP when x6∈ X
is Hyps ⇒ [x := E]¬[SKIP]¬IG valid ?
It is valid, according to (7), sincex is not free inIG.

Rule R7 SA =̂ Ren(x) := Ren(E) when x∈ X
is Hyps ⇒ [x := E]¬[Ren(x) := Ren(E)]¬IG valid ?
It is valid since RuleR7 is the identity.

CaseSM =̂ SKIP

Rule R8 SA =̂ SKIP

Hyps ⇒ [SKIP]¬[SKIP]¬IG is obviously valid according to (7).

CaseSM =̂ x, y := E, F

RulesR9 to R11 proofs are similar to the first case.

CaseSM =̂ P =⇒ S

Rule R12 SA =̂ Ren(TX(P)) =⇒ Ren(TX(S))
is Hyps ⇒ [P =⇒ S]¬[Ren(TX(P)) =⇒ Ren(TX(S))]¬IG valid ?
≡ Hyps ⇒ (P =⇒ [S](Ren(TX(P)) ∧ ¬[Ren(TX(S))]¬IG)) – applying (8)

≡

{
(A.) (Hyps∧ P ⇒ [S]Ren(TX(P)))

∧ (B.) (Hyps∧ P ⇒ [S]¬[Ren(TX(S))]¬IG)
– applying (11)

According to Prop 2, (A) holds sinceSvariables are not free inRen(TX(P)) and sinceIG is in Hyps. (B) is valid w.r.t.
the induction hypothesis:Hyps ⇒ [S]¬[Ren(TX(S))]¬IG.

CaseSM =̂ S1 [] S2
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Rule R13 SA =̂ Ren(TX(S1)) [] Ren(TX(S2))
is Hyps ⇒ [S1 [] S2]¬[Ren(TX(S1)) [] Ren(TX(S2))]¬IG valid ?
≡ Hyps ⇒ [S[] S2](¬[Ren(TX(S))]¬IG ∨ ¬[Ren(TX(S2))]¬IG) – applying (9)

≡

{
(Hyps ⇒ [S1](¬[Ren(TX(S1))]¬IG ∨ ¬[Ren(TX(S2))]¬IG))

∧(Hyps ⇒ [S2](¬[Ren(TX(S1))]¬IG ∨ ¬[Ren(TX(S2))]¬IG))
– applying (9)

This formula is valid because the two induction hypotheses are valid:

1. Hyps ⇒ [S1]¬[Ren(TX(S1))]¬IG,
2. Hyps ⇒ [S2]¬[Ren(TX(S2))]¬IG.

CaseSM =̂ @z·S

Rule R14 SA =̂ Ren(@z·TX∪{z}(S))
is Hyps ⇒ [@z·S]¬[Ren(@z·TX∪{z}(S))]¬IG valid ?
≡ Hyps ⇒ ∀z· [S]¬∀Ren(z) · [Ren(TX∪{z}(S))]¬IG – applying (10)

It is valid since the following formula is implied by the induction hypothesis:
Hyps ⇒ ∀z· ∃Ren(z) · (z= Ren(z) ∧ [S]¬[Ren(TX∪{z}(S))]¬(IG ∧ z= Ren(z)))

Hence, Theorem 2 holds. �

Theorem 2 establishes that any substitutionS refines its slicingTX(S) for a set of abstract variablesX computed
by one of the propositions described in sec 4.1. Theorem 3 establishes that a B event systemM refines the B abstract
system obtained according to Def. 5 by applying toM the slicing rules of Fig. 9 and Fig. 11.

Theorem 3 Let X be a set of abstract variables defined as in Proposition 1or in Proposition 3. Let TX be the slicing
defined in Fig. 11, and letA be an abstraction of an event systemM defined according to Def. 5.A is refined byM in
the sense of Def. 3.

Proof (of theorem 3). This is a direct consequence of theorem 2 and Def. 5 since the substitutionInitA =̂ TX(InitM)
is refined byInitM, and that for any eventev=̂ SM, the substitutionSA =̂ TX(SM) is refined bySM. �

Notice that the set of abstract variables obtained when applying Proposition 3 is bounded between the sets of
Propositions 1 and 2. This means that the abstractionA obtained is either a bisimulation ofM whenXA of Proposition 3
is equal toXA of Proposition 2, or a simulation whenA does not remove deadlocks ofM and thatXA of Proposition 3
is strictly included intoXA of Proposition 2 .

6 Application of the Method to a Testing Process

We show in this section how to use the variable abstraction ina model-based testing approach.

6.1 Test Generation from an Abstraction

We have described in [BBJM10] a model-based testing processusing an abstraction as input. It can be summarized as
follows. A validation engineer describes by means of a handwritten test purposeTP how he intends to test the system,
according to his know-how. We have proposed in [JMT08] a language based on regular expressions to describe aTP

as a sequence of actions to fire and states to reach (targeted by these actions). The actions can be explicitly called
in the shape of event names, or left unspecified by the use of a generic name. The unspecified calls then have to be
replaced with explicit event names. However, a combinatorial explosion problem occurs, when searching in a concrete
model for the possible replacements that lead to the target states. This led us to use abstractions instead of concrete
models. Figure 13 shows our approach.

We compute the symbolic abstract tests as selected executions of the abstraction, by covering all the transitions of
the synchronized productSP between the abstractionA and theTP (see Fig. 13). This provides a set of paths such
that every transition ofSP is covered at least once. Every path is a symbolic abstract test that terminates in a final state
of SP. It is a sequence of non parameterized action calls. We stillhave to instantiate the tests, i.e. to find parameter
values that make these sequencings of actions possible according to the behavioral modelM.
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Figure 13: Generating Tests from Test Purpose by Abstraction

Figure 14: Comparison of Two Abstraction Processes

6.2 Abstraction Computation

We show in this section a process that compares two ways of producing an abstractionA that can be used as an input
of the process of Fig. 13. One of these two ways relies on the variable abstraction presented in Sec. 4.

Before we compute the synchronized product of an abstraction A with the automaton of aTP, we first compute
the semantics ofA as a labelled transition system. This is obtained by means ofan algorithm that performs a semantic
abstraction by predicate abstraction, and results in a symbolic labelled transition system as explained in Sec. 2.2.
The algorithm proceeds by removing from all the potential transitions the ones whose unfeasibility is proved. This
is achieved by computing a set of proof obligations (POs), that are tried to be discharged automatically. It results in
transitions being proved not to exist when the proof terminates. When a PO fails to be discharged automatically, the
existence or not of the corresponding transition remains uncertain.

The two main drawbacks of this semantic abstraction processare its time cost and the proportion of POs not
automatically discharged. Indeed, each failed PO results in a transition that is kept in the symbolic labelled transition
system, although it is possibly unfeasible. An abstract symbolic test going through such a transition may not be
possible to instantiate from the concrete modelM. Our intention is to reduce the impact of that problem by reducing
the number and the size of the POs. For this, we apply a preliminary phase of syntactic abstraction, for the (semantic)
predicate abstraction to operate on an already abstracted model. For example, no proof obligation is generated for an
event reduced toSKIP, that becomes a reflexive transition on any symbolic state.

In Fig. 14 we confront two processes for computing an abstraction. In Fig. 14/Process 1, an abstractionAM is
computed by a completely semantic process, i.e. by applyingdirectly the predicate abstraction to the source model.
In Fig. 14/Process 2, an abstractionAA is computed in two steps. First, a static variable slicing isapplied to the source
model, and then the semantic abstraction is applied to the resulting model. Notice that the observed variables are the
free variables of the abstraction predicates that are issued from a test purpose.

We have compared these two processes experimentally. The results appear in Sec. 7.

7 Experimentations

We have applied our method to six case studies, that are various cases of reactive systems: an automatic conveying sys-
tem (Robot [BBJM09]), a reverse phone book service (QuiDonc[UL06]), the electrical system (Electr., see Sec. 3.1),
an electronic purse (DeMoney [MM02]), the elevator specification (see Sec. 3.2) and a laptop daemons management

17



specification2.
In our experiments, we compute and compare tests issued fromfour abstractions of each source model. The first

abstraction is obtained by applying directly a semantic abstraction to the source model (see Process 1 of Fig. 14). The
three other ones are obtained by preliminarily reducing themodel by means of variable slicing, before the semantic
abstraction is applied (see Process 2 of Fig. 14). This givesthree abstractions according to the three propositions to
compute the abstract variables (see Sec. 4). We evaluate theresults by computing the ratio of the number of instantiated
steps of test on the total number of steps of test, and by measuring the state and transition coverage of the abstract
models by the tests. All our abstraction predicates are issued from a very small set of observed variables. In Process 2,
each set of observed variables gives three sets of abstract variables, according to Propositions 1, 2 and 3 defined in
Sec. 4.1.

We present in Sec. 7.1 the tools that we have used for the experimentations and in Sec. 7.2 the experimental results.
In Sec. 7.2.1 we present an experimental evaluation of the syntactic abstraction on the size of the models. Then, in
Sec. 7.2.2, we compare the execution time to computeAM andAA respectively by the semantic abstraction process
(Process 1) or by its combination with the syntactic one (Process 2). We also compare the sets of execution paths of
the abstractions. Finally, in Sec. 7.2.3, we compare the impact of the abstraction, computed with each of the three
propositions defined in Sec. 4.1, on the generated tests. We conclude about these experimental results in Sec. 7.2.4.

7.1 Tools Used for the Experimentation

The experimental results presented in this section were obtained by using a set of tools that we present here.

7.1.1 Semantic Abstraction Generation

We have usedGeneSyst3 [BPS05] to generate an abstraction from a behavioral modelM and a set of abstraction
predicates. This abstraction is a symbolic labelled transition system (LTS) that is an over-approximation ofM: it
simulates all the executions ofM, but possibly adds new ones.GeneSystcomputes the abstract states according to
a set of abstraction predicates, and tries to prove automatically thenon feasibility of transitions between any two
abstract states. It proceeds by weakest precondition computations and satisfiability evaluations over first order logical
formulas.GeneSysttakes B specifications as input. As indicated in Sec. 2, the weakest precondition of a statementS
that leads to the abstract stateq′, as defined by the B substitution calculus, is denoted by[S]q′. If q⇒ [S]¬q′ is valid
then no transition fromq to q′ is feasible byS, hence no transition bySfrom q to q′ is added to the LTS. If the validity
of q⇒ [S]¬q′ cannot be established, including the case where the proof isinconclusive, then the transition is added to
the LTS, although it is possibly not feasible.

Thus, some of the symbolic tests that we generate from the abstraction may not be possible to instantiate as
executions of the behavioral model. This would result in a bad coverage of the abstraction by the instantiated tests.
It is possible to use an interactive prover to try to get rid ofthe proof failures. To keep the process as automatic as
possible, we have chosen another alternative: using constraint solving techniques makes it possible to automatically
check the feasibility (i.e. the satisfiability ofq∧¬[S]¬q′) of the unproved transitions when the state space is finite. We
have used the CLPS-B [BLP04] constraint solver, able to dealwith B specifications, for that purpose. The applicability
of this technique depends on the size of the domains, as it proceeds by partial consistency checking and domain
enumeration. The semantic abstractions considered in thispaper were obtained by usingGeneSystenhanced with a
CLSP-B constraint solving phase.

7.1.2 Test Generation and Instantiation

To compute the symbolic abstract tests, we cover every transition of the abstraction but the reflexive ones by running
the implementation presented in [Thi03] of the chinese postman algorithm.

We have implemented the symbolic animation of the tests onM to instantiate them. It is possible that a sequence
can not be instantiated as it is: an action might not be enabled on a given instance of a symbolic state. Thus we will
use a version of the abstraction augmented with its reflexivetransitions to complete the instantiation. Indeed, these

2seehttp://lifc.univ-fcomte.fr/testAndAbs/laptop.html
3seehttp://perso.citi.insa-lyon.fr/nstouls/?ZoomSur=GeneSyst
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transitions may lead to another instance of the same symbolic state, from which the action could be enabled. As a
result, we insert bounded sub-sequences of (reflexive) action calls into the original sequence. We have implemented
this instantiation procedure. Although non optimized and incomplete (invoking reflexive transitions is not always
sufficient, sometimes cycles are necessary), our algorithmgave satisfactory instantiation results on our case studies,
as shown by our experiments in Table 4.

7.2 Experimental Study

In this section we show the results of the first experiments onthe propositions presented in this paper. These are early
experiments since not all the tools have been developed yet to allow for dealing with larger examples. In particular,
we have no tool yet to compute the sets of abstract variables from the observed ones according to each of the three
propositions, nor to perform the resulting slicing on the models. These early experiments nevertheless reveal some
tendencies, that we present hereafter.

7.2.1 Impact of the Syntactic Abstraction on the Models

Table 2 indicates the sizes4 of the source and syntactically abstracted models of the case studies. The symbols “♯”,
“Var.”, “Ev.”, “Pot.”, “Prop.” respectively stand fornumber of, Variables, Events, PotentialandProposition. The
Robot for example, is modelled with six variables and nine events. It is abstracted w.r.t. two observed variables, which
gives three sets of abstract variables, one by proposition.

Case
ModelM Syntactically Abstracted ModelA

Study ♯Var. ♯Ev.
♯Pot. ♯B ♯Observed

Prop.
♯Abstract ♯Skip ♯Pot. ♯B

States Lines Var. Var. Ev. States Lines

Robot 6 9 576 110 2
1 3 0 48 100
2 6 0 576 110
3 6 0 576 110

QuiDonc 3 4 36 180 2
1 2 0 18 170
2 3 0 36 180
3 3 0 36 180

Electr. 3 4 ∞ 90 1
1 1 2 ∞ 60
2 2 0 ∞ 70
3 2 0 ∞ 70

DeMoney 8 11 1030 330 1
1 4 4 1020 150
2 8 0 1030 330
3 6 3 1025 280

Elevator 6 5 ∞ 140 1
1 2 1 ∞ 90
2 4 0 ∞ 110
3 3 0 ∞ 100

Laptop 5 6 ∞ 200 1
1 2 3 ∞ 160
2 4 0 ∞ 190
3 3 0 ∞ 180

Table 2: Size of the Case Studies and of their Syntactical Abstractions

A direct observable result of the syntactic abstraction is areduction of the number of variables kept in the model,
at least with Propositions 1 and 3. We see that Proposition 1 syntactically removes more variables than the other two
propositions, which results in less potential states when there is not an infinity of them. So the models abstracted by
means of Proposition 1 are the smallest ones. This is not surprising since only the data flow of the abstract variables is
preserved by Proposition 1. As for Proposition 2, by preserving both the data and control flow of the abstract variables,
there is on the contrary a risk that all the variables become mutually dependent. This is confirmed by our experimental
results: in half of the cases, no variable has been removed byProposition 2. Proposition 3 offers a good compromise
by partially preserving the control flow in addition to the data flow. It has simplified four models out of six, without
too much loss of precision of the abstraction as Sec. 7.2.2 and Sec. 7.2.3 show.

4The 90 lines length of the electrical system model, in Table 2, refers to a “verbose” version of the model, much more readable than our version
of Fig. 3.
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Table 2 also shows that the simplification reduces by 10% up to55% the number of lines of the models, when some
variables are removed. The next two sub-sections (7.2.2 and7.2.3) study the impact of the syntactical simplifications
on the time and number of proof obligations to generate the abstractions, and on their precision.

7.2.2 Impact of the Processes on the Abstractions and their Computation

Case ♯Symb.
Process 1 :AM Process 2 :AA

Set of Traces
study States ♯Trans.

♯Unau.
♯PO

Time
Prop. ♯Trans.

♯Unau. Trans.
♯PO

Time
Comparison

Trans. (s)
Over- Proof

(s)
Approx. Failure

Robot 6 41 5 263 71
1 36 0 0 143 34 AA ⊂ AM
2 41 0 5 263 71 AM = AA
3 41 0 5 263 71 AM = AA

QuiDonc 5 19 2 71 21
1 21 4 0 85 25 AM 6= AA
2 19 0 2 71 21 AM = AA
3 19 0 2 71 21 AM = AA

Electr. 2 10 2 24 8
1 10 0 2 12 4 AM = AA
2 10 0 1 24 7 AM = AA
3 10 0 1 24 7 AM = AA

DeMoney 3 35 1 78 400
1 35 0 1 33 19 AM = AA
2 35 0 1 78 392 AM = AA
3 35 0 1 48 292 AM = AA

Elevator 3 14 2 59 17
1 12 0 0 35 8 AA ⊂ AM
2 14 0 2 59 15 AM = AA
3 14 0 2 55 13 AM = AA

Laptop 3 19 2 64 22
1 20 1 2 30 11 AM ⊂ AA
2 19 0 2 64 21 AM = AA
3 19 0 2 64 16 AM = AA

Table 3: Comparison of the Semantic and Syntactic/SemanticAbstraction Processes

Table 3 compares the abstractions computed either directlyfrom the behavioral models (see Process 1 in Fig. 14),
or from their syntactic abstractions (see Process 2 in Fig. 14). The abbreviations “Symb.”, “Trans.” and “Unau.” stand
respectively forsymbolic, transitionsandunauthorized.

We see on our examples that there is up to 2.5 fewer POs to compute with Process 2 than with Process 1. In most
of the cases, there are less POs after a syntactic abstraction because some events have been reduced toSKIP or to
P=⇒ SKIP. Unsurprisingly, the better reduction is obtained in five cases out of six with Proposition 1, but there is also
a risk that on the contrary the number of POs grows, if for example an event becomes so much simplified that it can
occur all the time, as was the case with the QuiDonc example. The number of POs never grows with Propositions 2
and 3 on our examples.

A gain in the number of POs directly results in a better time tocompute the abstractions. With Demoney and
Proposition 1, the gain amounts to 95%. More generally, Process 2 takes twice less time in average than Process 1,
where no previous syntactic abstraction is performed. We notice that there is no significative gain of time by using
Proposition 2 to preliminarily abstract the models.

The unauthorized transitions are an indication of the precision of an over-approximation: the more unauthorized
transitions are added, the more the approximation will define unfeasible paths. By too much over-approximating the
source model, Proposition 1 can add new unfeasible transitions: 4 with QuiDonc and 1 with the Laptop case study.
But neither Proposition 2 (that bisimulates the source model) nor Proposition 3 have added unfeasible transitions in
our experiments. In particular Proposition 3, that nevertheless offered a gain of time in the abstraction computation.

The last result to observe in Table 3 is that, in most of the cases, the abstractions computed by the two processes are
identical in terms of their sets of traces, although they arenot comparable in the general case. We have obtained all the
cases on our examples:AM = AA (in 78% of the cases),AM ⊂ AA, AA ⊂ AM andAM 6= AA. Only with Proposition 1
we have observed a difference in the set of traces.

Let us now look more closely at each of these different cases of traces inclusion. For the Laptop case study
abstracted with Proposition 1, the set of traces ofAM is included into that ofAA. This is explained by the fact that
one transition ofAA results only of the syntactic over-approximation of the model with Proposition 1. In this case, the
model is too much simplified by the slicing, so that events that could not be triggered before become triggerable in the
syntactically abstracted model. We also observe the dual case (AA ⊂ AM) on the Robot and the Elevator abstracted
with Proposition 1. In these examples, the syntactically abstracted model creates less and simpler POs than the source
one. This results in less proof failures, so that the abstraction computed from the syntactically abstracted model is
more precise than the one computed from the source model. Thelast case is when the sets of traces ofAA and ofAM

can not be compared. It appears in the QuiDonc abstracted with Proposition 1. In this example, some transitions result
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from the over-approximation of the syntactic abstraction in Process 2, but some other transitions that existed due to
proof failures in Process 1 have been eliminated because their proof succeeds on the syntactically abstracted model.

So as a conclusion, Proposition 1 gives the best times to compute the abstractions, but they might be too imprecise.
Proposition 2, the most precise, did not produce an observable gain of time in our experiments and so Proposition 3
seems to offer a good trade-off as no loss of precision has been observed though the abstractions were produced faster
than with Process 1. Demoney, the largest of our examples, isthe most demonstrative of that point.

7.2.3 Impact of the Abstractions on the Generated Tests

Table 4 compares the test generation and instantiation results of Processes 1 and 2, but also of the three propositions
of syntactic abstraction.

Case
Process 1 :AM Process 2 :AA

Study
♯Inst. Steps / State cov. Trans. cov.

Prop.
♯Inst. Steps / State cov. Trans. cov.

♯Steps onAM onAM ♯Steps onAA onAA

Robot
29/40 5/6 29/36

1 37/40 (93%) 6/6 (100%) 34/36 (95%)

(72%) (83%) (81%)
2 29/40 (72%) 5/6 (83%) 29/36 (81%)
3 29/40 (72%) 5/6 (83%) 29/36 (81%)

QuiDonc
20/29 5/5 14/19

1 18/27 (67%) 5/5 (100%) 13/21 (62%)

(69%) (100%) (74%)
2 20/29 (69%) 5/5 (100%) 14/19 (74%)
3 20/29 (69%) 5/5 (100%) 14/19 (74%)

Electr.
8/8 2/2 8/8

1 8/8 (100%) 2/2 (100%) 8/8 (100%)

(100%) (100%) (100%)
2 8/8 (100%) 2/2 (100%) 8/8 (100%)
3 8/8 (100%) 2/2 (100%) 8/8 (100%)

DeMoney
64/64 3/3 34/34

1 64/64 (100%) 3/3 (100%) 34/34 (100%)

(100%) (100%) (100%)
2 64/64 (100%) 3/3 (100%) 34/34 (100%)
3 64/64 (100%) 3/3 (100%) 34/34 (100%)

Elevator
12/12 3/3 12/12

1 12/12 (100%) 3/3 (100%) 12/12 (100%)

(100%) (100%) (100%)
2 12/12 (100%) 3/3 (100%) 12/12 (100%)
3 12/12 (100%) 3/3 (100%) 12/12 (100%)

Laptop
20/20 3/3 17/17

1 20/20 (100%) 3/3 (100%) 17/17 (100%)

(100%) (100%) (100%)
2 20/20 (100%) 3/3 (100%) 17/17 (100%)
3 20/20 (100%) 3/3 (100%) 17/17 (100%)

Table 4: Impact of the Abstraction Process on the Test Generation

It appears that for the QuiDonc example, the transitions coverage ratio by the tests is lower on the semantic
abstractionAA obtained after the source model has been reduced by Proposition 1 than onAM, obtained by directly
applying the semantic abstraction on the source model. Thisis not surprising: it corresponds to the case where
AA 6= AM. In contrast for the Robot example, this transition coverage ratio is greater. In this case, the set of traces of
AA is included in the set of traces ofAM.

Proposition 2 gives satisfactory results in terms of precision of the abstraction, but the drawback is that often, there
is no simplification at all. This happens when all the variables are mutually dependent, as indicated by Table 2 and
Table 3. In the QuiDonc case, both Proposition 2 and Proposition 3 give better test coverage ratios than Proposition 1.
We note that Proposition 3 is lighter to compute than Proposition 2.

There again, Proposition 3 appears to provide a good trade-off between the efficiency of the simplification and the
precision of the abstraction computed. In our examples, thetest coverage produced on one hand with Process 1, and
on the other hand with Process 2 and Proposition 3 are always the same. But the gain is in terms of number of POs
generated, of easiness to discharge them, and of time to compute the abstractions, as indicated in Sec. 7.2.2.

7.2.4 Conclusion of the Experiments

These early experimental results confirm the interest in first performing a syntactic slicing of the model before produc-
ing the semantic abstraction. This globally accelerates the process of computing the final abstraction. But this shows
that Proposition 1 should be used with care since it might toomuch over-approximate the source model. It can be used
to quickly get an abstraction that gives a first graphical overview of the behavior of the system. Using Proposition 2
was not very conclusive on our case studies since it did not produce a benefit in the time to get the abstraction. It
should however be further experimented with larger examples, in particular when not all the variables are mutually
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dependent. This could occur with a system made of several independent parts. Finally Proposition 3 appears to be the
most promising as a compromise between efficiency of the abstraction computation and precision of the abstraction.

8 Related works

The works related to the ones presented in this paper are about program slicing and abstraction methods for test
generation.

Our method is an adaptation to model slicing of the program slicing techniques that were introduced in [Wei84].
A survey of these techniques can be found in [Tip95]. Our approach performs a static slicing. The control and data
dependencies computation are different in our method than in the program slicing as defined in [Wei84]. In [Wei84],
the dependencies are evaluated syntactically by means of data and control dependencies equations whereas in our
approach, they are evaluated semantically by simplification of the predicateModX based on the before-after predicates
of the events. Hence we only take into account the cases wherethe variables are actually modified. In program slicing,
the static slicing criterion is a pair made of a value of the program counter and of a set of variables. Our model
slicing criterion is only a set of state variables. Hence theprogram slicing preserves the variables computation in the
state given by the value of the program counter, whereas our model slicing preserves the variables computation in any
observable state. Moreover, notice that in the case of Data-Flow dependency only as well as in the case of Data and
partial Control-Flow dependencies, the system can be over-approximated by adding new executions, but it has a very
low computation cost.

Slicing has also been used for state-based system models, e.g. for extended hierarchical automata [HW97,
DHH+06] or for input/output transitions systems [LGP07]. But most of these approaches work on relatively low-
level model representations, in contrast to B models that capture the high-level design intuition.

Our contribution is mainly inspired by [BW05] that proposesa model slicing method based on the CSP-ObjectZ
integrated method. Our goal is similar. It is to reduce the size of the specification in order to simplify further verifica-
tions. However, we propose new original approaches to compute the set of relevant variables. We don’t have the same
restrictions since an over approximation of a model allows to generate tests, to check their concrete execution and to
instantiate them on the initial model.

Many other works define model abstraction methods to verify properties or to generate tests. The method of [FHNS02]
uses an extension of the model-checker Murφ to compute tests from projected state coverage criteria that eliminate
some state variables and project the others on abstract domains. In [DF93], an abstraction is computed by partition
analysis of a state-based specification, based on the pre andpost conditions of the operations. Constraint solving tech-
niques are used. The methods of [GS97, BLO98, CU98] use theorem proving to compute the abstract model, which
is defined over boolean variables that correspond to a set of predicates fixeda priori. In contrast, our method first
introduces a syntactical abstraction computation from a set of observed variables, and further abstracts it by theorem
proving. [CABN97] also performs a syntactic transformation, but requires the use of a constraint solver during a model
checking process.

Other automatic abstraction methods [CGL94] are limited tofinite state systems. The deductive model checking
algorithm of [SUM99] produces an abstraction w.r.t. a LTL property by an iterative refinement process that requires
human expertise. Our method can handle infinite state space specifications. The paper [NK00] presents a syntactic
abstraction method for guarded command programs based on assignment substitution. The method is sound and
complete for programs without unbounded non determinism. However, the method is iterative and does not terminate
in the general case. It requires the user to give an upper-bound of the number of iterations. The paper also presents an
extension for unbounded non deterministic programs that issound but not complete, due to an exponential number of
predicates generated at each iteration step. In contrast, our syntactic method is iterative on the syntactic structureof
the specifications. It is sound but not complete. It handles unbounded non deterministic specifications with no need
for other iterative process and always terminates. Above all, our method does not compute any weakest precondition
whereas the approach in [NK00] does, which possibly introduces infinitely many new predicates.
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9 Conclusion and Further works

We have presented in the B framework a method for abstractingan event system by elimination of some state variables.
In this context, we have proposed three methods to compute the set of variables kept in the abstraction according to
a set of observed variables. We have proved that when using the first and the third method, the generated abstraction
simulates the concrete model, while when using the second method, the generated abstraction bisimulates the concrete
model. This is useful for verifying safety properties and generating tests.

In the context of test generation, our method proceeds by initializing the test generation process described in [BBJM10]
with a B event model reduced by a syntactic abstraction. Since the syntactic abstraction reduces the size of the model
in general, the main advantage of this method is that it generally reduces the set of non instantiable tests, by reducing
the level of abstraction. It reduces the number of POs generated and facilitates the proof of the remaining POs. More-
over, this results in a gain of computation time. We believe that the bigger the ratio of the number of state variables
to the number of observed variables is, the bigger the gain is. This conjecture, exemplified by the experimental results
on the Demoney case study, needs to be confirmed by experiments on industrial size applications.

The syntactic method that we have presented is correct but, in the case of Proposition 1 and Proposition 3, may
sometimes produce imprecise over-approximations due to a too strong abstraction (see for example the experiments on
the QuiDonc). Proposition 2 produces a bisimulation, but may leave the initial model unchanged, i.e. not abstracted,
if all the variables are computed as abstract. We propose by means of Proposition 3 a compromise between the
two propositions, that aims at reducing the number of abstract variables, while keeping at least partially the control
structure of the operations. Hence this method produces a more precise approximation that improves the results of the
test generation application.

Since our main motivation is to propose a method that reducesthe time for computing an abstraction of a model,
the definition ofModX(S) can be seen as out of scope. Indeed, its definition is given in the general case and requires
a constraint solver to be fully usable. However, the proposition made in Fig. 7 shows that some syntactic rules can
provide a good trade-off between the computation cost of an abstraction and its full simplification. Similarly to the IF
substitution, other rules have to be proposed for exploiting all the information provided by the B syntactical sugar.

Also, we think that the transformation rules could be improved in order to get more precise approximations,
possibly with a type induction process in order to ease the withdrawing of non-abstract variables. For instance,
improving the rules is possible when the invariant containsan equivalence such asx= c⇔ y= c′. If y is an eliminated
variable andx is an observed one, we could substitute all the occurrences of the elementary predicatey= c′ with x= c.
This would preserve the property in the syntactic abstractionAA, so that the following semantic abstraction would be
more precise. Such rules should prevent the addition of transitions in the QuiDonc abstractionAA w.r.t. AM.

We think that extending the test generation method introduced in [BBJM10] by using a combination of syntactic
and semantic abstractions will improve the method, since the abstraction is more precise if there are less unproved
POs. Moreover, as aforementioned, the time for computing the semantic abstraction is reduced by a static slicing of
the models.
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