‘ Appears inSoftware Quality Journal, Online FirSY, 20 September 201Springer. DOI: 10.1007/511219-011-9161-8

B Model Slicing and Predicate Abstraction to Generate Tests

J. Julliand N. Stoul€ P.-C. Bué P.-A. Massoh

1. LIFC, Université de Franche-Comté, 16, route de Gr&y8PBesancon Cedex, France
2. INSA-Lyon, CITI, 69621, Villeurbanne, France

Abstract

In a model-based testing approach as well as for the veidicaf properties, B models provide an interesting
modelling solution. However, for industrial applicatiotise size of their state space often makes them hard to handle
To reduce the amount of states, an abstraction function earséd. The abstraction is often a domain abstraction of
the state variables that requires many proof obligatioristdischarged, which can be very time consuming for real
applications.

This paper presents a contribution to this problem that éements an approach based on domain abstraction
for test generation, by adding a preliminary syntactic i@usion phase, based on variable elimination. We define a
syntactic transformation that suppresses some varialoless B event model, in addition to three methods that choose
relevant variables according to a test purpose. In this waypropose a method that computes an abstraction of a
source modeM according to a set of selected relevant variables. Depgratirthe method used, the abstraction can
be computed as a simulation or as a bisimulatiooith this approach, the abstraction process producesta fini
state system. We apply this abstraction computation to aéMBdsed Testing process. We evaluate experimentally
the impact of the model simplification by variables elimioaton the size of the models, on the number of proof
obligations to discharge, on the precision of the abstaaind on the coverage achieved by the test generation.

keywords. Abstraction, Test Generation, (Bi)Simulation, Slicing

1 Introduction

B models are well suited for producing tests of an implemi@ridy means of anodel-based testirgpproach [BJK 05,
ULO6] as well as to verify dynamic properties by model-chiagfLB08]. But both model-checking and test genera-
tion require models to be finite, and of tractable size. Téiwit usually the case with industrial applications, forethi
the exploration of the model executions frequently comeagginst combinatorial explosion problems. Abstraction
techniques allow for projecting the (possibly infinite orykarge) state space of a system onto a small finite set of sym-
bolic states. Abstract models make test generation or madutking possible in practice [BCDGO07]. In [BBIM10],
we have proposed and experimented with an approach of tastajen from abstract models. It appeared that the
computation of the abstraction could be very time expensisevidenced by the Demoney [MMO02] case study. We
had replaced a problem of time for searching in a state grathhevproblem of time for discharging proof obligations,
as the abstractions were computed by proving enabledndsgachability conditions on symbolic states [BPS05].

In this paper, we contribute to solving this proving time ldeam by defining a syntactic abstraction function
by model slicing that requires no proof. Inspired from paogrslicing techniques [Wei84], the function works by
suppressing some state variables from a model. The vasitibleep are chosen according to the tester’s intention. In
order to produce a state space that is both finite and suffigiemall, we still have to perform a semantic abstraction
which is defined as a predicate abstraction. This requissttime proof obligations are discharged, but fewer than
with the initial model, because it has been syntacticaljuoed. This approach results in a semantic pruning of the
generated proof obligations as proposed in [CGS09].

Our process for generating tests using successively gim#anl semantic abstractions is sketched in Fig. 1. Given
a source model and a set of abstract variables (the ones &plbe the model is first reduced by syntactic abstraction.
Then itis abstracted again, semantically, which gives ldséract model. Symbolic tests are extracted from it acogrdi
to some selection criteria. For the tests to have the santeaatisn level as the source model, they finally are
instantiated on it.

Source
Model
Y
Variables Syntactic Reduced Semantic Abstract Test Symbolic Test Instantiated
to keep Abstraction Model Abstraction Model Selection Tests Instanciation Tests

Figure 1: Overview of the Process for Generating Tests byrabson

In Sec. 2, we introduce the notion of B event system, someseoffithin properties of the substitution computation
and the predicate abstraction method. Section 3 preseatsnall examples that illustrate our approach, an elettrica
system and an elevator. In Sec. 4, we define the set of vasiaéblbe preserved by the abstraction function. The
abstraction function itself is defined in Sec. 5. We prové thith this function the generated abstract model
simulates or bisimulates the initial moddl Consequently, the abstraction can be used to verify spfefyerties and
to generate tests. In Sec. 6, we present an end to end prbetseinputes test cases according to a set of observed
variables, by using both the syntactic and semantic atigirsc In Sec. 7, we compare this process to a completely
semantic one on several examples, and we evaluate thegatdnterest for the generation of test cases. Section 8
compares our approach to other syntactic and semanti@abistr methods. Section 9 concludes the paper and gives
some future research directions.

2 Background

2.1 B Event Systems and Refinement

We use the B notation [Abr96b] to describe our models: thitise gives the background required for reading the pa-
per. Let us first define the following B notions: primitive fiog of substitution, substitution properties and refinement
Then we will summarize the principles of before-after peatiés, and conjunctive form (CF) of B predicates.

First introduced by J.-R. BRIAL [Abr96a, Abr10], a B event system defines a closed specificati a system by
a set of events. In the sequel, we use the following notatigryszare variables and, Y, Z are sets of variable®red
is the set of B predicatet.€ Pred is an invariant ané, P, andP, (€ Pred) denote other predicates. The modifications
of the variables, i.e. the instructions, are calfddstitutionsn B, following [Hoa69] where the semantics of an
assignment is defined as a substitution. In B, substituttmageneralized they are the semantics of every kind of
atomic action. We us8, S and$S, to denote B generalized substitutions, &edndF to denote B expressions. The
B events are defined as generalized substitutions. All thetigutions allowed in B event systems can be rewritten
by means of the five B primitive forms of substitutions of D&f. The multiple assignment can be generalized to
variables. It is commutative,i.& y:=E,F = y,x:=F, E.

Definition 1 (Substitution) The following five substitutions are primitive:

¢ single and multiple assignments, denoted by ¥ and xy :=E, F,

substitution with no effect, denoted gx1p,

guarded substitution, denoted by-P= S,

bounded nondeterministic choice, denoted by} Sy,

substitution with a local variable z, denoted @z - S.

The substitution with a local variable is mainly used foregsing the unbounded nondeterministic choice denoted
by @z- (P = 9). With these primitive substitutions, some usual strudwfespecification languages can be defined.
For instance, the conditional substitutidhP THEN S; ELSES, END is denoted byP =) || (-P = %) with the
primitive forms. Moreover, the parallel composition desbby || can be used to make the B models easier to read
by human readers. This substitution is not primitive, simcan be defined through the following simplification rules
from [Abro6b]:

x:=E||ly:=F & x,y:=E,F (2)
SKIP||S & S 2

P= 9IS ¢ P= (S9) ®3)
&IIS ¢ SIS (IS 4)

(@ -9)]S ¢ @z (9]|S) if zis not free iINS, (5)

sl & ss ®)

Given a substitutiors and a post-conditioP, it is possible to compute the weakest precondition suchitlitas
satisfied, the is satisfied after the execution&f The weakest precondition is denoted ByP. [x:= E|P is the usual
substitution of all the free occurrencesxoih P by E. For the five other primitive forms, the weakest precondii®
computed as indicated by Formulas (7) to (11) below, prord&bro6b].

[sKIPIP < P @)
PL= 9P < (PL= [9P) ®)
S]SIP < [S]P A [S]P)
[@z- 9P < vz [P if zis not free inP (10)
[SPLAP) < [SPLA SR (11)

Definition 2 defines correct B event systems.
Definition 2 (Correct B Event System) It is a tuple(D,C,PC, X, 1, Init,Ev) where:
e Dis a list of sets (with enumerated or defertatbmains),

C is a set of constants,

PC € Predis a predicate defining the constants C,

X is a set of state variables,

| € Predis an invariant predicate over X,

Init is a substitution callednitialization, such that the invariant holds in any initial state: P€ [Init]I,

Ev is a set of event definitions in the shape @& such that every event preserves the invariant:/ HC=

[S]I.

To refer to a part of an explicitly given model, we add the navhéhat model as a subscript to the associated
symbol.ly is for example the invariant of a model.

Def. 3 is the definition of a B event system refinement. It dbssrthe conditions under which a refinement is
correct. A B refinemenR is such that the user defines a new data model and its relaipowith the data model of
A by means of a gluing invariant. IR, the user redefines the eventsfofind possibly introduces new ones. The

1A deferredset is defined only by its name. Such a set is assumed to bedirdtaonempty.

refinement proof demonstrates on the one hand that the £fiadhe variables dR produced by the events already
existing inA are in conformance to their effect i, and on the other hand that the events that are nelwrigfine
SKIP, which means that they had no effect on the variablégs. dfituitively, the events of the refined syst&may be
triggerable less often than in the abstract syséem

Notice that in our context the refinement relation is usedhim dpposite direction: what the user gives is the
refined model, from which we compute the abstract one aufoatigt The gluing invariant (later callelg) is always
a conjunction of equalities between the preserved vasalle this context, the events that could be considered as
“new” in R are the ones that have been reduced eithekte or to P = skiP in A. In other words, no event is new
in R w.r.t. A since it appears explicitly iA.

Definition 3 (B Event System Refinement)Let A and R be two correct B event systems. Lgthe their gluing
invariant, i.e. a predicate that indicates how the valuethefvariables inR and A relate to each otherR refinesA if:

e any initialization ofR is associated to an initialization of according to &:
PCAAPCr = [lnitR]—‘[lnitA]—‘le,

e any event e Sg of Ris either an event ofl defined by e S, in Ev, or a new event associated tg S SKIP
in A, that satisfiesd: PCAAPCgAls A lg = [Sg]—[Sa]-l6.

This paper also relies on two more definitions: the befotergfredicate and the conjunctive form (CF) of a B
predicate. We denote Hyrdx (S) the before-after predicate of a substituti®n It defines the relation between the
values of the variables of the sktbefore and after the substitutidh A primed variable denotes its after value.
From [Abr96b], the before-after predicate is defined by:

Prdx(S) = ~[§-(A (x=X)). (12)
xeX
For a convenient reading of this paper, we give the indua&fimition of Prdx on the primitive forms of substitu-
tions:

Prd(x:=E) = X =E A (Ayex—pq(y=Y)) ifxeX (13)
Prax(y:=E) = Axex(x=X) ifyégX (14
Prdx(P = S) = P A Prdy(S) (15)
Prdx(S1 [| $) = Prdx(S) v Prdx(S) (16)
Prdx(@z - S) = 3(z7Z) - Prdyy(»(S) if z¢ X a7)

Definition 4 (Conjunctive Form) A B predicate Re Pred is in CF when it is a conjunctionp\ p2 A ... A pn, where
every pis a disjunction pv p? V...V pM such that any bis an elementary predicate in one of the following two
forms:

e E(Y)r F(Z), where EY) and F(Z) are B expressions on the sets of variables Y and Z and r is éioak
operator,

e Vz-P or3z-P,where P is a B predicate in CF.

We will define a set of predicate transformation rules in Sec.They apply to predicates that are put in CF
according to Def. 4 before their transformation.

2.2 Predicate Abstraction

Predicate abstraction [GS97] is a special instance of #adwork of abstract interpretation [CC92] that maps a
potentially infinite state spadeof a transition system onto a finite state space ®frabolic transition system vaset

of atomic predicatedP = {aj,ay,...,a,} over model (or program) variables. A statePis a valuation of the state
variables of the model. The symbolic transition system hsastaf abstract stateé3 that contains at most"Xtates.

Each state is a tuplg= (p1, p2,-. ., Pn) With p; being eitheig; or —a;. We define an abstraction functionp: R— Q
such thatiap(r) is an abstract stagwith r = p; foralli € 1..n.

Let us now define the abstract transitionsvasy-transitions Although this is not required for our formal presen-
tation, this will clarify the forthcoming comparison witklated work. A may-transition is such that for two abstract
stateqg andq’ and for an evengy, there exists a transition fromto g’ by ey, denoted byg X g, if and only if there
exists a concrete transition> r’ wherer andr’ are concrete states such tag(r) = q andaap(r’) = . Such a
transitionq i g is computed by means of a predicate satisfiability problémelassume that an abstract stats the
predicate\! ; p; and that the everavis defined by the substitutid® there is a transitiog > o iff SAT(—[S—q AQ).

Some algorithms, based on predicate abstraction and thgiude abstractions that are over-approximations, can
be found e.g. in [GS97, BMMRO1]. They computey abstract transitions automatically by means of a theorem
prover. Predicate abstraction is used by Ball in [BalO5]dmpute program abstraction for generating tests.

2.3 Syntactical Abstraction

Our work is mainly based on the initial work described in [BS}(hat introduces an extension of the program slicing
techniques to models. Program slicing is a technique inired in [Wei84] which proceeds by removing parts of a
program in order to focus on behaviors of specific parts optlogram. The slicing method introduced in [BWO05] is
based on the CSP-ObjectZ integrated method and is estathiésha syntactical abstraction method. In order to slice a
model, the technique proceeds in four steps:

1. computing theprogram dependence graptvhich represents theontrol flowanddata flowdependencies of
each part of the program,

2. choosing some nodes of this graph ati@ng criterion,
3. backtracing the graph from the nodes of the slicing ddtein order to compute the set of relevant nodes,

4. removing all the parts of the program (graph) that have ffeceon the slicing criterion (i.e. that are not
relevant).

If the slicing criterion is defined as keeping only some Jalga of a modeM, then this method will produce a
modelA which is an abstraction d¥l. In the current paper, we propose an extension of this method

2.4 Refinement and Simulation

We now discuss about the preservation of properties throlighrefinement process, as it is of importance in the
context of test cases generation. We need for that to brigfigduce the notion of simulation and its relationship with
refinement, as we will refer to it in the forthcoming sections

With two additional clauses: no deadlock introduction amdlimelock introduction by the new events, the B
refinement relation of event systems (see Def. 3) is provfBIK00] to be a simulation and, in [DJKO03], to preserve
propositional linear temporal logic properties.

In [CGPO0O0], simulation is formally defined on transition ®res whose transition relation is total, i.e. whose
executions are infinite. We intuitively say thasimulatesR if there is a relation” between the set of statesAdfand
of R that satisfies the following two conditions:

e two states andr related (#(a,r)) have the same values for the variablegof

e if (a,r), for every state’ such that’ is a successor afby an eveng, there is a state’ that is a successor of
abyeand.(a,r').

By extension, there is a bisimulation relation betwdeandR if A simulatesk and if for all the states, r anda’ such
that.#(a,r) holds andd is a successor @by an eveng, there is a state that is a successor ofby e and such that
L@, r).

Figure 2: Electrical System

In [CGPOO], it is proven that the relatiod\"simulatesR” is a preorder and that every ACTL* formula satisfied by
A is satisfied byR. ACTL* defines temporal logic formulas that hold on all theeentions (quantifier A). Intuitively,
as the executions of both systems perform the same actiehthanthere are more executionsArthan inR, it is
obvious that a property that holds dnalso holds orR. For a bisimulation, it is proven in [CGPO0Q] that every CTL*
formula holds inA if and only if it holds inR.

But a B event system may be blocking, i.e. define executicatsatte finite, and in Def. 3, we have defined the B
refinement without the two aforementioned clauses. Thussfiviement can introduce new deadlocks or new livelocks
in the refined system. In such cases, the simulation conditstill hold, but the preservation theorems of [CGPO0OQ]
do not apply anymore. It follows that the ACTL* propertiesfofare not preserved oR, but it is proven that safety
properties do. Indeed, if nothing bad happens on a set ofiigas, then nothing bad happens either on a subset of it.
In contrast, liveness and fairness properties are not pregevhen some deadlocks or livelocks are introduced.

The reason why we have not added in this paper the no deadfmchalivelock clauses to Def. 3, is because
our problem is not a verification one but a test generation &g notice that in our context, since we compute the
abstractionA from the initial systenR and not the contrary, there is no new livelockRnw.r.t. A since no event is
new inR. In contrast, some deadlocks®fcan be removed iA.

3 Examples

We introduce in this section two B event systems that we userasng examples to illustrate our propositions in this
paper. The first one describes a simple electrical systemdanmof a small model. The second one describes an
elevator by modelling its calls, its position, its directjdts doors and its light.

The electrical system generalizes the example from [JSBMil&n infinite state space. It is simple to read and
well suited for short illustrations. But we also want to ebihsome differences between three methods that we present
in Sec. 4, and that requires the model to be slightly more dicatpd. This is the reason why we introduce the second
example.

3.1 Electrical System Example

A device D is powered biNBatbatteriesB;,B,, .. .,Bngat @as shown in Fig. 2 wittNBat= 3. A switch connects (or
not) a batteryB; to the device D. A clock H periodically sends a signal thatsega commutation of the switches, i.e.
a change of the battery in charge of powering the device D sybm has to satisfy the three following requirements:

e Req: no short-circuit, i.e. there is only one switch closed atreet
e Reg: continuous power supply, i.e. there is always one switokexd,
e Req: a signal from the clock always changes the switch that isazlo

The batteries are subject to electrical failures. If a failaccurs on the battery that is powering D, the system trig-
gers an exceptional commutation to satisfy the requirefRegt The broken batteries are replaced by a maintenance
service. We assume that it works fast enough for not havingerttmnNBat— 1 batteries down at the same time.
WhenNBat— 1 batteries are down, the requirem®g; is relaxed and the clock signal leaves unchanged the switch
that is closed.

This system is modeled in Fig. 3 by means of three varialtlaniodels the clock and takes two valugéis:when
it asks for a commutation antdc when this commutation has occurreBwmodels the state of the switches by an
integer between 1 andBat Sw= i indicates that the switchis closed while the others are opened. This modelling
makes that requiremeni&eqg andReg necessarily holdBat models the electrical failures by a total function. The
kovalue for a battery indicates that it is down. In additiontte typing of the variables, the invariangéxpresses the
assumption that at least one battery is not down by statiagBht(Sw) = ok. Notice that the requiremeiReg is
a dynamic property, not formalized In The initial state is defined binit in Fig. 3. The behavior of the system is
described by means of four events:

e Tic sends a commutation request,

Comperforms a commutation (i.e. changes the closed switch),
e Fail simulates an electrical failure on one of the batteries,
e Repsimulates a maintenance intervention replacing a dowetyatt

In this model, we use the expression E which denotes a relation where the range is restricted bgdtte. For
example:{1+— ok, 2 ko, 3 ok} > {ok} = {1~ ok, 3+ ok}.

C = {NBat}
PC = NBateN;
X = {H, Sw, Bat}
| = He({tic, tac} A Swe 1.NBat A (Bate 1..NBat— {ok, ko}) A Bat(Sw)= ok
Init = H:=tac|| Sw:=1|| Bat:=(1..NBat) x {ok}
Tic = H=tac = H:=tic
Com = H=tic = @ns((nse1l.NBat A Bat(ns)=0k A ns#Sw = H :=tac || Sw:=n9)
Fail = card(Bat>{ok}) >1 =
@nb.((nbe 1..NBat A Bat(nb) =ok) =

Bat(nb) := ko ||

IF nb=Sw THEN @ns((nsc 1..NBat A ns# Sw A Bat(ns) =o0k) = Sw:=ns) END)
Rep = @nb((nbe 1.NBat A Bat(nb) =ko) = Bat(nb) := ok)

Figure 3: B Specification of the Electrical System

3.2 Elevator Case Study

The event B model in Fig. 4 describes an elevator w.r.t. fivapaters: its positiorpositior), the set of floors from
which it can be called@alls), its movementgtatusanddirection), the floor, if any, where its doors are opddoprs)
and the state of the light in the lift cagiéght).

The elevator serves the floors betwasimFloor andmaxFloor as modelled by LOORS, its set of floors. Thus
its currentpositionis restricted tdFLOORS. Its directionis eitherup or down and itsstatuscan be:movemenstop
or standby When the elevator is in standby, thght is off. When it is stopped, the doorBgors) are either closed
(Doors= @) or open Doors= {position}).

Four types of events can occur in this model:

o the elevator can be called from another flogal(),
e the doors can be opened or closegénclose,

¢ the elevator can mover(ove,

the elevator can go into standby or be woken slpépdownwvakeup.

= MODE = {movement, stop, standby} ; MOVEMENT = {up, down} ; ONOFF = {on, off}

{minFloor, maxFloor, FLOORS}
maxFloor € Z N minFloor € ZZ A minFloor < maxFloor A FLOORS = minFloor..maxFloor

1D

{position, Calls, status, Doors, direction, light}
position € FLOORS A CallsC FLOORS A status€ MODE A Doors C FLOORS A
direction € MOVEMENT A light € ONOFF A

((Doors# &) = (Doors = { position} A status = stop)) N\
(status = stop = position & Calls) N\

((light = off) & (status = standby)) A

(status = standby = Doors = &)

—X TVO O

11

1

Init position := minFloor || Calls:= & || status:= standby || Doors:= & || direction:= up || light := off
@fl-(fle FLOORS A fl# position = Calls:= CallsU{fl})

Doors= @ N status=stop = Doors:= {position}

call
open

close Doors # & = Doors:= &

Doors=@ A Calls# @ A status# standby —
IF position € Calls THEN
status := stop || Calls:= Calls— {position}
ELSE
status := movement ||
IF direction = up THEN
IF (Calls N (position..maxFloor)) = @ THEN
position := position—1 || direction := down
ELSE
position := position+ 1
END
ELSE
IF (Calls N (minFloor..position)) = @ THEN
position := position+1 || direction := up
ELSE
position := position— 1
END
END
END

Doors= & A status=stop N Calls=@ = status:= standby || light:= off

status = standby N Calls# @ —
status := stop || light:=on ||
IF position € Calls THEN Calls:= Calls— {position} END

([P2 P}

move

sleepdown
wakeup

I 1

Figure 4: B Specification of the Elevator

4 Choice of the Variables for the Syntactical Abstraction

Our aim is to produce an abstract modebf a modelM by observing only a subs&i, of the state variableXy, of

M. For instance, to test the electrical system in the pagicchse where there is only one battery left working, it is
sufficient to observe only the variabtiat However, for preserving the behaviorsMfrelated to the variables &fa,

the variables used either to assign the observed variabteslefine the conditions under which they are assigned also
have to be kept ir.

The slicing technique that we present in this paper uses barsgscriterion a set of variables that we denote as
observed variableswWe use a two steps method: (i) computing the set of varidbles kept according to the slicing
criterion, (ii) slicing the model according to this compditeet of variables. We present the first step in the current
section, while the second step will be described in Sec. 5.

We first describe in this section the principle of choosingiadf variables to be kept in an abstraction, then we
propose three methods that compute a sabstract variablesccording to a set afbserved variablesand we finally
compare these three methods.

4.1 Principle

As proposed in [BWO05], we make a distinction between the nteskvariables and the abstract ones. A)§ebf
abstract variabless the union of a set odbserved variablewith a set ofrelevant variables In the context of test
generation, the observed variables are the ones used tidestest purpose, while the relevant variables are the one

used to describe the evolutions of the observed variablese recisely, the possible relevant variables are the ones
used to assign an observed varialdata-flow dependengeaugmented with the variables used to express when such
an assignment occursdntrol-flow dependenge

A naive method to comput¥, is to syntactically collect all the variables that are eitbe the right side or in
the guard of the assignments of an observed variable. Butribthod will in most cases collect a very large amount
of variables, mainly because of the guard. For instancéy4as x,z:= Ey,E)[|(—y = x:= E3), if x is the observed
variable, thery is not relevant ify occurs neither irfE; nor in Ez. A similar weakness goes for the unbounded non-
deterministic choice@z- (P=>S). Moreover, since we want to facilitate the computation aridimize its time,
we must keep all the variables assigned to an observed laridde cannot abstract such assignments with non
deterministic choices as it would require to perform a campype induction in order to characterize the definition
domain of the abstracted expressions. Consequently, we toeachieve the computation of each set of abstract
variables by means of a fix-point calculus.

Hence our contribution consists of three methods for idigintj the relevant variables. The first one only considers
the data-flow (DF) dependence. It is efficient but may selesgtaoo small of relevant variables, resulting in a model
with too many behaviors in the abstracted model. The secnadises both data and control flow (CF) dependencies,
and produces abstract models that have the same set of behasithe original model w.r.t. the abstract variables.
But this second method may compute a set with too many rel@eaiables, because a predicate simplification would
be required to restrict the size ¥f, and predicate simplification is not a decidable problenmdéeve propose a third
method that is a mix between the first two ones, and provid@staresting trade-off.

4.2 Proposition 1: Data-Flow Dependence Only

The first method considers as relevant only the variabldsgyaear on the right side of an assignment symbol to an
abstract variable. Starting from the set of observed virglthe set of all abstract variables is computed as thé leas
fix-point when adding the relevant variables. For instatfeeset of relevant variables of the electrical system istgmp

if the set of observed variables{Bat} (see Fig. 3). Hence if a test purpose is only baseBamthenX, = {Bat}. A
drawback of this method is that it can introducedimew execution traces w.rkl. Indeed, it may weaken the guards
of some of the events, that would thus become enabled mare.oft

4.3 Proposition 2: Data-Flow and Control-Flow Dependencig

The second method first computes a predicate that chamegericondition under which an abstract variable is modi-
fied, then simplifies it, and finally considers all its freeightes as relevant. We express by means of Formula (18) the
modifications really performed by a substitutiSion a seiX,:

Modx, (S) = Prdy, (S) A (\/ x#X). (18)
XeXa
Our intention is that the predicate, that defines the camditinder which an abstract variable is modified, only
involves the variables really required to modify it. Hencemed variables are not quantified, but are allowed to be
free. For instance, consid¥j = {x} and the substitutior:=y[](z> 0= x:=w)[Jv:=3. The predicate has to be in
the shape ofxX =yV (z>0AX =w)) Ax# X, where the variableg w andz are relevant whereass not (see Fig. 5).

Mody (x:=y [| (>0 = x:=w) [|vi=3)

& Prdyg(xi=y[(z>0 = x:=w) [[v:i=3) A x#X — applying (18)
& (Prdpg(xi=y) V Prdpg ((z>0 = x:=w)) V Prdgg (vi=3)) A x#X — applying (16)
& (X=yV (z>0A Prdpy(x:=w)) V (x=X)) A x#X —applying (13, 14, 15)
& X=yVvV (Z>0AX=w)V (Xx=X)) Ax#X — applying (13)
& (X=yV (z>0AX=w) AXx#X — by simplification

Sincev is not free in this predicate,is not relevant fox in x:=y [(z>0 = x:=w) [Jv:=3.

Figure 5: Example of Modx Computation

TheMody predicate can also be defined by induction through primgidestitutions, as proposed in Table 1. This
second formalization is more suited to an automated sirogtifin. Intuitively, an assignment:= E is associated
to falseif and only if eitherx is not in X or x already has the same value s The other assignment cases are

just generalizations. This implements the data-flow depeaé. For the control-flow dependence, a non-deterministic
choice is a union between control-flow branches, thus amtition between predicates. A guarded substitufiea S

is associated to the whole conditiBraugmented with the result of the analysisSofOnce expressed, this predicate
needs to be logically simplified.

[Substitution Modification Predicate Condition |
Modx (x:=E) = false x¢ X
Mody (x := E) = X=E N Nex—(Z=2 A x#X xe X
Modk (x,y:=E,F) = false x¢X Ay¢gX
Modk(x,y:=E,F) = X =E A Apx_(xq(Z =2 A x#X XeX A y¢X
Modk(x,y:=E,F) = X=E AY=F A Nex_ix 4(Z=2) A Vaepx y(2#Z) XEX AyeX
Mody (sK1p) = false
Modkk(P = S) = P A Mod(S
Mody (S, [| &) = Mody(S;) vV Mody(S)
Modk(@z-9) = 3z 2)-Modky(z(S)

Table 1:Modx (S) Predicate Defined through Primitive Substitutions

Property 1 Modx(S) as defined in Table 1 satisfies the definition of Formula (18).

Proof (of property 1). For any case of primitive substitutic® we prove thaModx (S) as defined by Formula (18)
is equal to its value in Table 1. We replace for tRadlx (S) by its definition given in Formula (12) and we transform
it according to the Formulas (7) to (10). O

Finally, Xa is computed as a least fix-point, by iteratively incremegpfior each event the initial set of observed
variables with the relevant variables. This process nac#gterminates since the set of variables is finite and gngw
ForinstanceMod;gay gives an empty set of relevant variables when applied toléutreeal system example, as shown
in Fig. 6, whileMod;y, givesXa = {Bat,H}.

Modgey (INit) & Bat' = (1..NBat) x {ok}

Mod;gay (Tic) < false(no assignment dBat)

Modga (Com) < false(no assignment dBat)

Mod{Baq(Fail) =S cardBatr> {ok}) > 1= Jnb- (nbe 1..NBat A Bat(nb) = ok A Bat'(nb) = ko)
Mod;ga; (Rep < dnb-(nbe 1..NBat A Bat(nb) = ko A Bat'(nb) = ok)

Figure 6:Mod;g,; Computation Applied to the Power System Example

TheModx (S) predicate aims at computing a set of abstract variablesyfuastically abstracting a model. But
applying the rules of Table 1 to compultdody will in most cases require the use of a constraint solver.c&in
the computation time of such a tool is comparable to the on@ncdutomatic theorem prover, the gain w.r.t. the
computation of Formula (18) is not obvious. However, somesyesimplifications” can be performed, that require
no computation. This is the case for example for the first &ird rules of Table 1. Additionally, it is possible to
make use of information that appear in constructions sucheatF or the SWITCH structures, that the B language
offer as syntactic sugar. See for example the IF rules thgtnepose in Fig. 7. Hence, at least in the the first case,
IF structures can be syntactically simplified. This is why el@m that the computation dflodx can be performed
syntactically, which makes it light to use in practice.

Substitution Modification Predicate Condition
Mody (IF C THEN S; ELSE S, THEN) Modx (S1) V Modk (S) free(Modx (S1)) = free(Modx (S))
Mody (IF C THEN S; ELSE S, THEN) Modk ((C=9)) || (-C= %)) free(Modx(S;)) # free(Modx(S))

Figure 7:Mod;g,; Computation Applied to IF Substitution

4.4 Proposition 3: Data-Flow and Partial Control-Flow Dependencies

Intuitively, the most relevant variables to describe thel@tions of the observed variables are the ones on which the
observed variables directly depend, through control flowaia flow. They are computed by the first iteration of the

10

fix-point calculus. The variables computed by the secondtien are less relevant. So are the variables added by
further iterations, that become less and less relevant.célere propose to mix the first two propositions, in order
to have as much as possible strongly relevant variables sitesa as possible weakly relevant variables. Our third
proposition is:

o first, useModyx to characterize the s& of variables directly relevant to the observed variables,

e then computé&, as a fix-point w.r.t. DF dependence only, starting WU R;.

4.5 Comparison Between the Three Propositions on the Elevait Example

Figure 8 illustrates the differences between the threeqmitipns by describing all the variables dependencies en th
Elevator example, according to each of the propositionisleTa in Fig. 8 gives, for each event and each variable, the
set of relevant variables by using either Proposition 1 opBsition 2. It has been computed by means of a single pass
on the B model, i.e. without fix-point. The rows where both pihepositions returned no relevant variable have been
removed. Table B shows the results of the fix-point compomatiaccording to each of the different propositions. The
results are given for the system as a whole, i.e. not evenvégtesince the fix-point computation involves all the
events.

A. For each event, without fix-point

Event Observed | Relevantvar. | Relevant var.
variables w.r.t. Prop. 1 w.r.t. Prop. 2

call Calls [z {position}

open Doors {position} {position statug

move position o {Calls, status Doors}
Calls {position} {position status Doors}
status @ {position Calls, Doors}
direction @ {position Calls, status Doors}

sleepdown| status o {Calls, Doors}
light o {Calls, Doors, statug

wakeup Calls {position} {position statug
status @ {Calls}
light 5] {Calls, statug

B. For the whole system, with fix-point
Observed | Relevantvar. | Relevant var. Relevant var.
variables | w.rt. Prop.1 | w.r.t. Prop.2 w.r.t. Prop. 3
position [Z] {Calls, status Doors} {Calls, status Doors}
Calls {position} {position status Doors} {position status Doors}
status @ {position Calls, Doors} {position Calls, Doors}
Doors {position} {position Calls, statug {position statug
direction (%] {position Calls, status Doors} | {position Calls, status Doors}
light (%] {position Calls, status Doors} | {position Calls, status Doors}

Figure 8: Variables Dependencies in the Elevator System

Let {Doors} be for example the set of observed variables. Table B in Figd&ates that the set of abstract

variables is:

e Xa = {position} with Proposition 1,

e Xa = {position Calls, statug with Proposition 2,

e Xa = {position statug with Proposition 3.

Hence the set of abstract variables, on which depends thasit the precision of the abstraction, can be finely
controlled by the choice of the method to compute the abste@bles.

5 B Event Model Slicing

This section introduces an abstraction method of B modétg@sset of abstract variables as slicing criterion. Simila
rules could be adapted for more generic formalisms sucheap@st models or symbolic transition systems. We first

11

Tx(E(Y)rE(2)) = ()fE(Z) if Y C X andZ C X (Ry)
Tx(E(Y)rE(Z)) = tr ifYZXorzgXx (R»)
Tx(PL Vv P) = Tx P1)V Tx(P2) (Rs)
Tx(PL A Po) = Tx(P) A Tx(P2) (Ra)
Tx(az-P)= az-Tyyz(P) (Rs)

Figure 9: CF Predicate Slicing Rules

TiBaty (H € {tic, tac} A Swe 1.NBat A Batc 1..NBat— {ok, ko} A Bat(Sw) = ok)
Tigary (H € {tic, tac}) A Tigan (Swe 1..NBat) .
{Bat} {Bat} —
= A Tiewy(Bate 1.NBat— {ok Ko}) A Tgar (Bat(Sw) = ok) applying (Ra)
Bat € 1..NBat — {ok, ko} —applying (Ry) and (Rp)

Figure 10: Example of Predicate Slicing

define slicing functions for the predicates and the suligiits w.r.t. a set of abstract variables. We then define the
abstraction of a B event mod® as the abstraction of its clauses, and we establish someniexpof simulation
and bisimulation between the computed abstract modeMnadccording to the method used to select the abstract
variables (see Sec. 4).

5.1 Predicate Slicing

Once the set of abstract variabMs(C Xy) is defined, we have to describe how to abstract a model acaptalXa .
We first define the slicing functiofik, (P) that abstracts a predicafeaccording taXa. We definelx on predicates in
the conjunctive form (see Def. 4) by induction with the rug@gen in Fig. 9.

An elementary predicate is left unchanged when all the bggused in the predicate are considered in the
abstraction (see the rulg). Otherwise, when an expression depends on some variatiégpt in the abstraction,
the truth value of an elementary predicate is undetermisee the ruld,). As we want to weaken the predicate, we
replace an undetermined elementary predicatelsy Consequently, a predica®e A P, is transformed intd; when
P, is undetermined, and a predic&geV P, is transformed intarue whenPy or P, is undetermined (see the rulBs
andRy). Finally, the slicing of a quantified predicate is the sigiof its body w.r.t. the abstract variables, augmented
with the quantified variable (see the ruRg).

For example the invariarit of the electrical system is transformed, according to tinglsi variableBat into
Tigay (1) = Bate 1..NBat— {ok, ko} as in Fig. 10.

Property 2 Let P be a CF predicate ifPred and let X be a set of variables.-R Tx (P) is valid.

Proof (of property 2). As aforementionedix (P) is weaker tharP. Indeed, for any predicatin CF there exisp;
and p such thatP = p1 A p2 and such that it is transformed either irg9A py, or into pz, or into py, or intotrue,
by application of the slicing rulel;. For any disjunctive predicatethere existp; andp; such thaf = p; v p2 and
p1V p2 is transformed either intp; Vv p2 or intotrue. O

5.2 Substitution Slicing

The abstraction of substitutions is defined through caseginl1 on the primitive forms of substitutions. Intuitiyel
any assignment .= E is preserved into the sliced model if and onlyifs an abstract variable. According to any of
the three methods described in sec. 4.k ig an abstract variable, then so are all the variablds. i herefore, in
rulesRg to Ry1, we do not transform the expressidasndF.

A substitution is abstracted Bk1P when it does not modify any variable froxh(see ruleszg, Rg, Rg andRyp in
whichy := F is abstracted bgkiP). The assignment of a variabids left unchanged ik is an abstract variable (see
rulesRy7, Rio, Ri1). The slicing of a guarded substituti@is such thaflx(S) is enabled at least as often ssince
Tx (P) is weaker thar® from Prop. 2 (see rulB;). The bounded non deterministic chogg[] S, becomes a bounded

12

Tx(x:=E)= skIp if x¢ X (Re)
Tx(x:=E)= x:=E if xeX (Ry)

Tx (SKIP) = SKIP (Rs)
Tx(x,y:=E,F)= skip if x¢ X andy ¢ X (Ro)
Tx(x,y:=E,F)= x:=E if xe X andy ¢ X (Rio)
Tx(x,y:=E,F)= x,y:=E,F if xe X andy € X (R11)
(P = § = Tx(P) = Tx(9 (Ri2)
(S [S)= (&) [| x(S) (Ru3)
Tx(@z-S) = @z- Txygz (S (Ru4)

Figure 11: Primitive Substitution Slicing Rules

non deterministic choice between the abstractio§aind the one 08, (see ruleRy3). The quantified substitution is
sliced by inserting the bound variable into the set of albstrariables (see rul4).

Notice that a conditional substitution defined by a non deteistic choice between two exclusive guarded substi-
tutions P = S [|-P = $) can be transformed into an actual non deterministic chsioeeTx (P) andTx (—P) can
respectively become weaker thBrand—P. For exampleT (X=yAzZ>X=X:=3 [[X#yVZ<x= X:=4)
isequaltox=y=-x:=3[| TRUE= x:=4).

5.3 Model Slicing

According to the predicate and substitution slicing fuoiesi (see Fig. 9 and Fig. 11), we define the slicing of a B event
model according to a set of abstract variables (see Secindlf. 5. It translates a correct moddlinto a modelA
that simulated (see Sec. 5.4).

Definition 5 (B Event System Slicing) Let X4 be a set of abstract variables, defined as in Sec. 4.1 from afset
observed variables X with X X,,. A correct B event systeM = (Dy;, Cp1, PCp, X, I, Init g, Eviy) is abstracted
as the B event system

A= <DM7 Cum, PCu1, Xa, L4, Init 4, EVA> as follows:

e X4 C Xy, the set of abstract variables is a subset of the state visb

o la=Tx,(Im), the invariant is sliced,

o Init4 = Tx, (Init), the initialization is sliced,

¢ to each event e¥ Sy in Evyy is associated the sliced eventevy, (Sy) in Eva.

In Def. 5, the sets of sets (D), constants (C) and prope®€3 ére kept unchanged in the abstraction. Indeed these
clauses are not in the right part of proof obligations of fatas from Def. 2. Hence, slicing these clauses reduces
neither the number, nor the complexity of the generatedffpbligations.

By applying Def. 5, the electrical system is transformedramsa in Fig. 12 for the set of abstract variab{&at}.

5.4 Properties of the Generated Abstractions

In this section, we discuss the preservation of propertjethé various abstractions that we produce, as well as the
instanciability of the tests generated from them. We digtish between Proposition 2 and Propositions 1 and 3.
5.4.1 Proposition 2

When the set of abstract variabl¥g preserves both the data and control flows as defined in Se¢PbBosition
2), the transition relation, projected &, is preserved, as established by Theorem 1. In other wardsdM are
bisimilar, since they have an equivalent before-afterti@iamoduloXa (Prdx,). Hence when a CTL* property is
verified onA it holds onM and the test cases generated frdman always be instantiated dvh

13

C = {NBat}
PC = NBateN;
X = {Bat}
| = Bate 1.NBat— {okko}
Init = Bat:=(1..NBat) x {ok}
Tic = SKIP
Com = @ns(nsel.NBat A Bat(ns) =0k = SKIP)
Fail = cardBatr{ok}) >1 =
@nb.(nbe 1..NBat A Bat(nb) = ok= Bat(nb) := ko)
Rep = @nb(nbel.NBat A Bat(nb)=ko = Bat(nb) := ok)

Figure 12: B Variable Slicing of the Electrical System

Theorem 1 Let S be a substitution. Let X be a set of abstract variablesposed of any free variable of Mp().
We have Prgd(S) < Prdx (Tx(9)).

Proof (of theorem 1). We are in the case of Proposition 2 as defined in Sec. 4.1. We pinat the following formula
holds:Prdx (S) < Prdx (Tx(9)).

SincePrdx (S) = —[F— Ayex X=X andPrdx (Tx(S)) = —[Tx(S)]~ Axex X=X (see Formula (12) in Sec. 2), we
verify it by induction through primitive substitutions byqving that[SP < [Tx (S)]P holds wherP is defined only in
terms of abstract variables a(as inPrdx definition). Let[Tx (S)|P < [§P be the induction hypothesis. A proof by
induction on primitive substitutions th@lx (S)|P < [P holds is the following:

[Tx(S)]P < [SP Condition or justification
[SKIPIP & [y:=E]P & P ifyé&X
x:=E]P & [x:=E|P if xe X

[SKIPIP < [sKIPIP & P
[sKIPIP < [zy:=E,FIP & P if z¢ X andy ¢ X
x:=EJP & [x,y:=E,F]P if xe X andy ¢ X
x:=F]P < [y,x:=E,F|P if y¢ X andx € X
X1, % :=E,F]P & [x1,% :=E,F]P if x; € X andx; € X

Tx(P) = [x(S]P & [PL = SP by Formula (8), induction hypothesis

and sincely (P,) = P, according to
Modx (P, = S) definition.

(&) [()P < S] SIP by Formula (9) and by induction hypothesis
(@z-Txu3 (9P « [@z-SP by Formula (10) andlTx.(z (S)]P < [SP

according tdVlody (@z- S) definition.

Notice that the hypothesis whéris defined only in terms of abstract variabk¥#duces thaly := E|P = P when
y ¢ X because there is no occurrence/af P.

We can then conclude that the set of behaviors on the set tthabgariablesX of an evenevis unchanged when
we simplify it by Tx. O

5.4.2 Propositions 1 and 3

When the set of abstract variabl¥g is computed by using either Proposition 1 (see Sec. 4.2)@pd3ition 3 (see
Sec. 4.4), some new behaviors may potentially be introdirctitk transition relation projected ofa,.

As a consequence of theorems 2 and 3, with the methods defiisegti 4.2 (Proposition 1) and Sec. 4.4 (Proposi-
tion 3), M refinesA. Consequently and according to Sec. 2.4, wheloes not remove the deadlocks\dfthe ACTL*
properties established @énare preserved ol. Otherwise, only the safety properties established are preserved on
M. However, some tests generated frdrmight be impossible to instantiate & sinceA is an over-approximation,
which means that some of its executions may not exist.in

The refinement theory as defined in B [Abr96b] requires thattriable sets of the abstraction and of the refine-
ment are disjoint. Consequently, when a variabie preserved through the refinement process, it has to benemha

14

e.g. byxenameq @and the values of both versions of the variable have to becaged by means of a gluing invariant,
such for example as= Xenamed In Order to formally express and prove the correctnessefdafinement, we intro-
duce theRen() function, which renames every variable of a substitutiom @redicate. Hence, the substitutiSg
abstracted from a substituti@y, and the gluing invariart, are defined as follows:

Sa = Ren(Tx(Sw)) Ig = Axex (X = Ren(x))

Theorem 2 Let Iy, be an invariant in CF of a correct B event systéflet S, be a substitution oM and let X be a
set of abstract variables computed by one of the three methimghosed in section 4.1. The slicing rulest®R;4 are
such that & refines & according to the invariantd.

Proof (of theorem 2).
To prove thatSy is a correct refinement &, we need to prove (Def. 3):

PCAAPCY Ala Alm Al = [Sul=[Sa]=(Im A lg) (19)

where the invarianify abstracted fronhy is defined byta = Ren(Tx(Im)). In order to prove formula (19), itis sufficient
to establish that the following two formulas hold:

PCA/\PCM A IA N IM A IG = [S\/I]ﬁ[SA]ﬁlM (20)

PCA/\PCM A IA A IM N IG = [S\/I}ﬁ[SA}ﬁIG (21)

Since the sets of free variables frdmand|ly are strictly disjoint, (20) can be rewritten aBCa A PGy Ala A
Im A lg = [Su]lm, that holds, since the initial mod&l is correct. Hence, we only have to establish (21) to prove
Theorem 2. The proof is by induction on the five primitive farof substitutions. We make a case analysis for each

rule of Fig. 11. We use Prop. 2 of Sec. 5.1 and axioms (7 to 1flnetkin Sec. 2.
We denote byHypsthe repetitive predicat@yps= PCy APCy Ala Al Alg.

Case§y =x.=E

Rule Rg Sy = sKiIP when xZ X
is Hyps = [x:= E]-[sKIP|-lg valid ?
Itis valid, according to (7), sinceis not free inlg.

Rule R; Sy = Ren(x) :=Ren(E) when xe X
is Hyps = [x:= E]-[Ren(x) := Ren(E)]-l¢ valid ?
It is valid since RuleR; is the identity.

CaseSy = skIP

RuleRg Sy = sKiIP
Hyps = [SKIP|=[sKIP]|-lg is obviously valid according to (7).

CaseSy =x,y:=E,F
RulesRg to Ry; proofs are similar to the first case.

CaseSy =P — S

Rule Ri12 SA = Ren(Tx(P)) - Ren(Tx(S))
isHyps = [P = §-[Ren(Tx(P)) = Ren(Tx(9))]-l¢ valid ?
= Hyps;z (g’ T> [Q(Ren(Tx([l;)) A(ﬂ[err;g)Tx(S))]ﬂlc)) —applying (8)
A. Hyps A P = [SRen(Tx(P .
{0 8) (operp 2 Rt (9o ~appiving (11

According to Prop 2,4) holds sinceSvariables are not free iRen(Tx (P)) and sincdg is in Hyps (B) is valid w.r.t.
the induction hypothesiddyps = [§-[Ren(Tx(9))]-l¢.

CaseSv =S | S

15

Rule Ri3 Sy = Ren(Tx(S1)) [| Ren(Tx(S))
isHyps = [S1 [| S]-[Ren(Tx(S1)) [] Ren(Tx (S2))] -l valid ?

=Hyps = [S[] $J(—[Ren(Tx(9))]-lg V —~[Ren(Tx(S))]-l¢) —applying (9)
:{ (Hyps = [Sﬂ([Ren(TX())]ﬂlG N _‘[Ren(TX(SZ))]ﬂlG)) — applying (9)
| A(Hyps = [S](—[Ren(Tx(S1))]-lg V —[Ren(Tx(S2))]-lg))

This formula is valid because the two induction hypothesesalid:

1. Hyps = [Si]=[Ren(Tx(S1))]-le,
2. Hyps = [$]-[Ren(Tx())]-lg.

CaseSy = @z-S

RuleRys Sy = Ren(@Z~TxU{Z} (S))
is Hyps = [@z- S—[Ren(@z Ty (7 (9))] -l valid ?
= Hyps = Vz-[§-VRen(2) - [Ren(Txy(z(9)]-lg —applying (10)
It is valid since the following formula is implied by the inction hypothesis:
Hyps = Vz-3Ren(2)- (z=Ren(z) A [§=[Ren(Tx (2 (S))]~(Ic A Z=Ren(2)))

Hence, Theorem 2 holds. O

Theorem 2 establishes that any substitutBnefines its slicindlx (S) for a set of abstract variables computed
by one of the propositions described in sec 4.1. Theoremablksttes that a B event systévhrefines the B abstract
system obtained according to Def. 5 by applyindgtdhe slicing rules of Fig. 9 and Fig. 11.

Theorem 3 Let X be a set of abstract variables defined as in Propositionih Proposition 3. Let X be the slicing
defined in Fig. 11, and led be an abstraction of an event systéfrdefined according to Def. %A is refined byM in
the sense of Def. 3.

Proof (of theorem 3). This is a direct consequence of theorem 2 and Def. 5 sinceutigigitionInita = Tx (Inity)
is refined byinity, and that for any ever@v= Sy, the substitutiorss = Tx(Su) is refined bySu. O

Notice that the set of abstract variables obtained whenyapgpProposition 3 is bounded between the sets of
Propositions 1 and 2. This means that the abstraétiobtained is either a bisimulation bf whenXa of Proposition 3
is equal toXa of Proposition 2, or a simulation whefdoes not remove deadlocksfand thatX, of Proposition 3
is strictly included intoXa of Proposition 2 .

6 Application of the Method to a Testing Process

We show in this section how to use the variable abstracti@model-based testing approach.

6.1 Test Generation from an Abstraction

We have described in [BBIJM10] a model-based testing praggag an abstraction as input. It can be summarized as
follows. A validation engineer describes by means of a haitthm test purpos& P how he intends to test the system,
according to his know-how. We have proposed in [JMTO08] a leyg based on regular expressions to describe a

as a sequence of actions to fire and states to reach (targetbdde actions). The actions can be explicitly called
in the shape of event names, or left unspecified by the use eharig name. The unspecified calls then have to be
replaced with explicit event names. However, a combinatesiplosion problem occurs, when searching in a concrete
model for the possible replacements that lead to the tatgtetss This led us to use abstractions instead of concrete
models. Figure 13 shows our approach.

We compute the symbolic abstract tests as selected exesutidhe abstraction, by covering all the transitions of
the synchronized produP between the abstractioh and theTP (see Fig. 13). This provides a set of paths such
that every transition o8P is covered at least once. Every path is a symbolic abstrsidtiat terminates in a final state
of SP. It is a sequence of non parameterized action calls. Wehstié to instantiate the tests, i.e. to find parameter
values that make these sequencings of actions possibledaugto the behavioral modéd.

16

Trans.
Coverage

Test Generation

.
. . Abstract .
| .
Semantic Abstraction > Model A, :
Process 1 E
Set of
predicates

. .
H H
H Set of Abstract Syntactic " " Abstract H
: T Semantic Abstraction Model A » :
H H

Process 2

Behavi
Mode

Observed . Choice of E
Variables . Variables |=
.

Syntactically
Abstracted
Model A

Figure 14: Comparison of Two Abstraction Processes

6.2 Abstraction Computation

We show in this section a process that compares two ways diiping an abstractioA that can be used as an input
of the process of Fig. 13. One of these two ways relies on thahia abstraction presented in Sec. 4.

Before we compute the synchronized product of an abstraétiovith the automaton of &P, we first compute
the semantics oA as a labelled transition system. This is obtained by meaas afgorithm that performs a semantic
abstraction by predicate abstraction, and results in a slimlabelled transition system as explained in Sec. 2.2.
The algorithm proceeds by removing from all the potentiahsitions the ones whose unfeasibility is proved. This
is achieved by computing a set of proof obligations (POt #re tried to be discharged automatically. It results in
transitions being proved not to exist when the proof tert@gaWhen a PO fails to be discharged automatically, the
existence or not of the corresponding transition remaietain.

The two main drawbacks of this semantic abstraction proaessts time cost and the proportion of POs not
automatically discharged. Indeed, each failed PO resulistiansition that is kept in the symbolic labelled traositi
system, although it is possibly unfeasible. An abstractlsylin test going through such a transition may not be
possible to instantiate from the concrete maddelOur intention is to reduce the impact of that problem by cialg
the number and the size of the POs. For this, we apply a pradimiphase of syntactic abstraction, for the (semantic)
predicate abstraction to operate on an already abstraaiddlm~or example, no proof obligation is generated for an
event reduced tekIp, that becomes a reflexive transition on any symbolic state.

In Fig. 14 we confront two processes for computing an abstnac In Fig. 14/Process 1, an abstractidi is
computed by a completely semantic process, i.e. by appbiregtly the predicate abstraction to the source model.
In Fig. 14/Process 2, an abstractidg is computed in two steps. First, a static variable slicingpplied to the source
model, and then the semantic abstraction is applied to gdtimg model. Notice that the observed variables are the
free variables of the abstraction predicates that are dsfsoen a test purpose.

We have compared these two processes experimentally. Saksrappear in Sec. 7.

7 Experimentations
We have applied our method to six case studies, that arenseases of reactive systems: an automatic conveying sys-

tem (Robot [BBIMO09]), a reverse phone book service (Quidoh®6]), the electrical system (Electr., see Sec. 3.1),
an electronic purse (DeMoney [MMO02]), the elevator speaffan (see Sec. 3.2) and a laptop daemons management

17

specificatior?.

In our experiments, we compute and compare tests issuedffnenabstractions of each source model. The first
abstraction is obtained by applying directly a semanti¢rabson to the source model (see Process 1 of Fig. 14). The
three other ones are obtained by preliminarily reducingntioglel by means of variable slicing, before the semantic
abstraction is applied (see Process 2 of Fig. 14). This dglues abstractions according to the three propositions to
compute the abstract variables (see Sec. 4). We evaluatesthés by computing the ratio of the number of instantiated
steps of test on the total number of steps of test, and by magghe state and transition coverage of the abstract
models by the tests. All our abstraction predicates aredfom a very small set of observed variables. In Process 2,
each set of observed variables gives three sets of abstdables, according to Propositions 1, 2 and 3 defined in
Sec.4.1.

We presentin Sec. 7.1 the tools that we have used for theiengretations and in Sec. 7.2 the experimental results.
In Sec. 7.2.1 we present an experimental evaluation of th&astic abstraction on the size of the models. Then, in
Sec. 7.2.2, we compare the execution time to compwteand A respectively by the semantic abstraction process
(Process 1) or by its combination with the syntactic one ¢Bse 2). We also compare the sets of execution paths of
the abstractions. Finally, in Sec. 7.2.3, we compare theghpf the abstraction, computed with each of the three
propositions defined in Sec. 4.1, on the generated testsoWiurle about these experimental results in Sec. 7.2.4.

7.1 Tools Used for the Experimentation

The experimental results presented in this section wemrdd by using a set of tools that we present here.

7.1.1 Semantic Abstraction Generation

We have use@GeneSyst [BPS05] to generate an abstraction from a behavioral mbtlahd a set of abstraction
predicates. This abstraction is a symbolic labelled ttarsisystem (LTS) that is an over-approximationMf it
simulates all the executions &, but possibly adds new one§&eneSystomputes the abstract states according to
a set of abstraction predicates, and tries to prove autoatigtithe non feasibility of transitions between any two
abstract states. It proceeds by weakest precondition ctatipuos and satisfiability evaluations over first order ¢adji
formulas.GeneSystakes B specifications as input. As indicated in Sec. 2, trekes precondition of a statemeit
that leads to the abstract stafe as defined by the B substitution calculus, is denotefSuy. If q=- [§—(is valid
then no transition frong to ' is feasible bys, hence no transition b$from qto ¢’ is added to the LTS. If the validity
of q=[§—d cannot be established, including the case where the praufasclusive, then the transition is added to
the LTS, although it is possibly not feasible.

Thus, some of the symbolic tests that we generate from thgaakion may not be possible to instantiate as
executions of the behavioral model. This would result in d baverage of the abstraction by the instantiated tests.
It is possible to use an interactive prover to try to get ridhaf proof failures. To keep the process as automatic as
possible, we have chosen another alternative: using @nssolving techniques makes it possible to automatically
check the feasibility (i.e. the satisfiability gfA =[S—q') of the unproved transitions when the state space is finige. W
have used the CLPS-B [BLP04] constraint solver, able to@#&hIB specifications, for that purpose. The applicability
of this technique depends on the size of the domains, as éepds by partial consistency checking and domain
enumeration. The semantic abstractions considered irp#ger were obtained by usif@eneSyseénhanced with a
CLSP-B constraint solving phase.

7.1.2 Test Generation and Instantiation

To compute the symbolic abstract tests, we cover everyitimmef the abstraction but the reflexive ones by running
the implementation presented in [Thi03] of the chinesemastalgorithm.

We have implemented the symbolic animation of the testsldo instantiate them. It is possible that a sequence
can not be instantiated as it is: an action might not be edairea given instance of a symbolic state. Thus we will
use a version of the abstraction augmented with its reflexarmsitions to complete the instantiation. Indeed, these

2seehttp://lifc.univ-fcomte.fr/testAndAbs/laptop.html
3seehttp://perso.citi.insa-lyon.fr/nstouls/?ZoomSur=GeneSyst

18

transitions may lead to another instance of the same symsialte, from which the action could be enabled. As a
result, we insert bounded sub-sequences of (reflexive)ractills into the original sequence. We have implemented
this instantiation procedure. Although non optimized amcbmplete (invoking reflexive transitions is not always
sufficient, sometimes cycles are necessary), our algonitave satisfactory instantiation results on our case studie
as shown by our experiments in Table 4.

7.2 Experimental Study

In this section we show the results of the first experimentherpropositions presented in this paper. These are early
experiments since not all the tools have been developedyalaw for dealing with larger examples. In particular,
we have no tool yet to compute the sets of abstract varialdes the observed ones according to each of the three
propositions, nor to perform the resulting slicing on thedels. These early experiments nevertheless reveal some
tendencies, that we present hereafter.

7.2.1 Impact of the Syntactic Abstraction on the Models

Table 2 indicates the sizesf the source and syntactically abstracted models of the saslies. The symbolg™,
“Var.”, “Ev.”, “Pot.”, “Prop.” respectively stand fonumber of Variables Events Potentialand Proposition The
Robot for example, is modelled with six variables and nirengs. It is abstracted w.r.t. two observed variables, which
gives three sets of abstract variables, one by proposition.

Case ModelM Syntactically Abstracted Modeél
fPot. iB fObserved fAbstract | £Skip fPot. iB
Study pvar. ‘ BV | States | Lines Var. Prop. Var. Ev. States | Lines
1 3 0 48 100
Robot 6 9 576 110 2 2 6 0 576 110
3 6 0 576 110
1 2 0 18 170
QuiDonc 3 4 36 180 2 2 3 0 36 180
3 3 0 36 180
1 1 2 oo 60
Electr. 3 4) 90 1 2 2 0 00 70
3 2 0) 70
1 4 4 107 150
DeMoney 8 11 1030 330 1 2 8 0 10°0 330
3 6 3 107 280
1 2 1 oo 90
Elevator 6 5) 140 1 2 4 0 o0 110
3 3 0) 100
1 2 3) 160
Laptop 5 6 IS 200 1 2 4 0 w 190
3 3 0 co 180

Table 2: Size of the Case Studies and of their SyntacticalrAbions

A direct observable result of the syntactic abstractionrisdaction of the number of variables kept in the model,
at least with Propositions 1 and 3. We see that Propositigmtastically removes more variables than the other two
propositions, which results in less potential states whenetis not an infinity of them. So the models abstracted by
means of Proposition 1 are the smallest ones. This is notising since only the data flow of the abstract variables is
preserved by Proposition 1. As for Proposition 2, by preiserlsoth the data and control flow of the abstract variables,
there is on the contrary a risk that all the variables becomatly dependent. This is confirmed by our experimental
results: in half of the cases, no variable has been remové&idposition 2. Proposition 3 offers a good compromise
by partially preserving the control flow in addition to the@#ow. It has simplified four models out of six, without
too much loss of precision of the abstraction as Sec. 7.215aa. 7.2.3 show.

4The 90 lines length of the electrical system model, in Tabketrs to a “verbose” version of the model, much more releddian our version
of Fig. 3.

19

Table 2 also shows that the simplification reduces by 10% 8p% the number of lines of the models, when some
variables are removed. The next two sub-sections (7.2.Z &h8d) study the impact of the syntactical simplifications
on the time and number of proof obligations to generate tis&rattions, and on their precision.

7.2.2 Impact of the Processes on the Abstractions and their@nputation

Process 1Ay Process 2 Ay
Case #Symb. “Unau Time FUnau. Trans. Time Set of Traces
study States #Trans. . #PO Prop. fTrans. Over- Proof #PO Comparison
Trans. (s) . (s)
Approx. Failure
1 36 0 0 143 34 A C Ay
Robot 6 41 5 263 71 2 41 0 5 263 71 Apm =Ap
3 a1 0 5 263 7T AV =AA
1 21 4 0 85 25 IVEZIN
QuiDonc 5 19 2 71 21 2 19 0 2 71 21 AM = AA
3 19 0 2 71 21 AM = AA
1 10 0 2 12 4 AM = Ap
Electr. 2 10 2 24 8 2 10 0 1 24 7 Apm =Aa
3 10 0 T 24 7 AV =AA
1 35 0 1 33 19 AM = Ap
DeMoney 3 35 1 78 400 2 35 0 1 78 392 Apm =Aa
3 35 0 T 78 292 AM = AA
1 2 0 0 35 8 ApCAm
Elevator 3 14 2 59 17 2 14 0 2 59 15 Am =Aa
3 14 0 2 55 13 AM = AA
1 20 T 2 30 11 AM CAp
Laptop 3 19 2 64 22 2 19 0 2 64 21 Apm =Aa
3 0 0 2 4 16 AV =AA

Table 3: Comparison of the Semantic and Syntactic/SemAbstraction Processes

Table 3 compares the abstractions computed either direotlythe behavioral models (see Process 1 in Fig. 14),
or from their syntactic abstractions (see Process 2 in Hi.Tlhe abbreviations “Symb.”, “Trans.” and “Unau.” stand
respectively fosymboli¢ transitionsandunauthorized

We see on our examples that there is up.®féwer POs to compute with Process 2 than with Process 1. # mo
of the cases, there are less POs after a syntactic abstrdigt@ause some events have been reducsdit® or to
P = skiIP. Unsurprisingly, the better reduction is obtained in fiveesaout of six with Proposition 1, but there is also
a risk that on the contrary the number of POs grows, if for gdaman event becomes so much simplified that it can
occur all the time, as was the case with the QuiDonc examgie.nimber of POs never grows with Propositions 2
and 3 on our examples.

A gain in the number of POs directly results in a better timeampute the abstractions. With Demoney and
Proposition 1, the gain amounts to 95%. More generally, &8 takes twice less time in average than Process 1,
where no previous syntactic abstraction is performed. WeEadhat there is no significative gain of time by using
Proposition 2 to preliminarily abstract the models.

The unauthorized transitions are an indication of the gresiof an over-approximation: the more unauthorized
transitions are added, the more the approximation will @efinfeasible paths. By too much over-approximating the
source model, Proposition 1 can add new unfeasible transiti4 with QuiDonc and 1 with the Laptop case study.
But neither Proposition 2 (that bisimulates the source)ode Proposition 3 have added unfeasible transitions in
our experiments. In particular Proposition 3, that newadgss offered a gain of time in the abstraction computation.

The last result to observe in Table 3 is that, in most of thegabe abstractions computed by the two processes are
identical in terms of their sets of traces, although theynatecomparable in the general case. We have obtained all the
cases on our example&j, = A (in 78% of the casesium C Aa, Aa C Ay andAp # Aa. Only with Proposition 1
we have observed a difference in the set of traces.

Let us now look more closely at each of these different casésaoes inclusion. For the Laptop case study
abstracted with Proposition 1, the set of trace#\@fis included into that ofA5. This is explained by the fact that
one transition oA results only of the syntactic over-approximation of the mladith Proposition 1. In this case, the
model is too much simplified by the slicing, so that events ¢oald not be triggered before become triggerable in the
syntactically abstracted model. We also observe the dsa&l ¢a C Am) on the Robot and the Elevator abstracted
with Proposition 1. In these examples, the syntacticalktrazted model creates less and simpler POs than the source
one. This results in less proof failures, so that the abstracomputed from the syntactically abstracted model is
more precise than the one computed from the source modela$hease is when the sets of traced\a@fand ofAy
can not be compared. It appears in the QuiDonc abstractbdPniposition 1. In this example, some transitions result

20

from the over-approximation of the syntactic abstractiofProcess 2, but some other transitions that existed due to
proof failures in Process 1 have been eliminated becauseptioef succeeds on the syntactically abstracted model.

So as a conclusion, Proposition 1 gives the best times to atentipe abstractions, but they might be too imprecise.
Proposition 2, the most precise, did not produce an obskrggatin of time in our experiments and so Proposition 3
seems to offer a good trade-off as no loss of precision has diegerved though the abstractions were produced faster
than with Process 1. Demoney, the largest of our examplés ismost demonstrative of that point.

7.2.3 Impact of the Abstractions on the Generated Tests

Table 4 compares the test generation and instantiatiotsedfuProcesses 1 and 2, but also of the three propositions
of syntactic abstraction.

Case Process 1 Ay Process 2 Ap
Stud fInst. Steps /| State cov.| Trans. cov. Pro fInst. Steps /| State cov. Trans. cov.
Y £Steps on Ay onAy p- £Steps onAa onAa
T 37740 (93%) | 6/6 (100%) | 34736 (95%)
Robot (2792’;(; (853{;) (2391% 229740 (72%) | 576 (83%) | 29736 (81%)
3 29740 (72%) | 5/6 (83%) | 29736 (81%)
T 18727 (67%) | 5/5 (100%) | 13721 (62%)
QuiDonc 20129 565 14/19 720729 (69%) | 575 (100%) | 14719 (74%)
(69%) (100%) (74%) 3 20729 (69%) | 5/5 (100%) | 14719 (74%)
o8 o 8 T 878 (100%) | 2/2 (100%) | 88 (100%)
Electr. 2 878 (100%) | 2/2 (100%) | 8/8 (100%)
(100%) (100%) | (100%) 3 878 (100%) | 2/2 (100%) | 8/8 (100%)
T | 64/64 (100%)]| 3/3 (100%) | 34734 (100%)
DeMoney (fgg‘) (ﬂsﬁ, %) (fg{)%f) 2| B4I64 (100%) | 373 (100%) | 34734 (100%)
0 0 0 3 64764 (100%) | 373 (100%) | 34734 (100%)
T | 12/12 (100%)] 3/3 (100%) | 12/12 (100%)
Elevator &58102) (13’03;, ” &Sglo/i) 2 T2/12 (100%) | 373 (100%) | 12712 (100%)
3| 12/12 (100%) | 3/3 (100%) | 12/12 (100%)
T | 20/20 (100%) | 3/3 (100%) | 17/17 (100%)
Laptop (fgézof) (13/030 %) (%610/7) 2| 20720 (100%) | 373 (100%) | 17/17 (100%)
° ° ° 3 20720 (100%) | 373 (100%) | 17717 (100%)

Table 4: Impact of the Abstraction Process on the Test Gdnara

It appears that for the QuiDonc example, the transitionse@ge ratio by the tests is lower on the semantic
abstractiomA, obtained after the source model has been reduced by Priopokithan onAy,, obtained by directly
applying the semantic abstraction on the source model. iShi®t surprising: it corresponds to the case where
Aa # Am. In contrast for the Robot example, this transition covenadio is greater. In this case, the set of traces of
Aa is included in the set of traces Afy.

Proposition 2 gives satisfactory results in terms of pienisf the abstraction, but the drawback is that often, there
is no simplification at all. This happens when all the vagabdre mutually dependent, as indicated by Table 2 and
Table 3. In the QuiDonc case, both Proposition 2 and Prapasdtgive better test coverage ratios than Proposition 1.
We note that Proposition 3 is lighter to compute than Prdjmos?.

There again, Proposition 3 appears to provide a good tréidetwveen the efficiency of the simplification and the
precision of the abstraction computed. In our examplestgsiecoverage produced on one hand with Process 1, and
on the other hand with Process 2 and Proposition 3 are all@ysame. But the gain is in terms of number of POs
generated, of easiness to discharge them, and of time towtertie abstractions, as indicated in Sec. 7.2.2.

7.2.4 Conclusion of the Experiments

These early experimental results confirm the interest ind@gforming a syntactic slicing of the model before produc-
ing the semantic abstraction. This globally accelerateptbcess of computing the final abstraction. But this shows
that Proposition 1 should be used with care since it mightach over-approximate the source model. It can be used
to quickly get an abstraction that gives a first graphicalreesv of the behavior of the system. Using Proposition 2
was not very conclusive on our case studies since it did mmdyre a benefit in the time to get the abstraction. It
should however be further experimented with larger exampteparticular when not all the variables are mutually

21

dependent. This could occur with a system made of severepegntlent parts. Finally Proposition 3 appears to be the
most promising as a compromise between efficiency of theadigin computation and precision of the abstraction.

8 Related works

The works related to the ones presented in this paper aret pbogram slicing and abstraction methods for test
generation.

Our method is an adaptation to model slicing of the prograomgj techniques that were introduced in [Wei84].
A survey of these techniques can be found in [Tip95]. Our apgh performs a static slicing. The control and data
dependencies computation are different in our method thame program slicing as defined in [Wei84]. In [Wei84],
the dependencies are evaluated syntactically by meanstafati@ control dependencies equations whereas in our
approach, they are evaluated semantically by simplifinadgfdhe predicat®ody based on the before-after predicates
of the events. Hence we only take into account the cases whevariables are actually modified. In program slicing,
the static slicing criterion is a pair made of a value of thegnam counter and of a set of variables. Our model
slicing criterion is only a set of state variables. Hencepragram slicing preserves the variables computation in the
state given by the value of the program counter, whereas odehslicing preserves the variables computation in any
observable state. Moreover, notice that in the case of Blaa-dependency only as well as in the case of Data and
partial Control-Flow dependencies, the system can be approximated by adding new executions, but it has a very
low computation cost.

Slicing has also been used for state-based system modgls,fe: extended hierarchical automata [HW97,
DHH™06] or for input/output transitions systems [LGP07]. Butshof these approaches work on relatively low-
level model representations, in contrast to B models thgiluca the high-level design intuition.

Our contribution is mainly inspired by [BWO05] that proposesodel slicing method based on the CSP-ObjectZ
integrated method. Our goal is similar. It is to reduce tize sif the specification in order to simplify further verifica-
tions. However, we propose new original approaches to ctartpe set of relevant variables. We don’t have the same
restrictions since an over approximation of a model allawvgenerate tests, to check their concrete execution and to
instantiate them on the initial model.

Many other works define model abstraction methods to veridperties or to generate tests. The method of [FHNS02]
uses an extension of the model-checker Wlto compute tests from projected state coverage criteriaetiminate
some state variables and project the others on abstractidena [DF93], an abstraction is computed by partition
analysis of a state-based specification, based on the prgoshdonditions of the operations. Constraint solvingtech
nigues are used. The methods of [GS97, BLO98, CU98] usedheproving to compute the abstract model, which
is defined over boolean variables that correspond to a setediqates fixedh priori. In contrast, our method first
introduces a syntactical abstraction computation front @fsebserved variables, and further abstracts it by theorem
proving. [CABN97] also performs a syntactic transformatibut requires the use of a constraint solver during a model
checking process.

Other automatic abstraction methods [CGL94] are limitefirtibe state systems. The deductive model checking
algorithm of [SUM99] produces an abstraction w.r.t. a LTloperty by an iterative refinement process that requires
human expertise. Our method can handle infinite state spe#Efisations. The paper [NKOO] presents a syntactic
abstraction method for guarded command programs basedstgnasent substitution. The method is sound and
complete for programs without unbounded non determinisowéVer, the method is iterative and does not terminate
in the general case. It requires the user to give an uppeneboiithe number of iterations. The paper also presents an
extension for unbounded non deterministic programs thedusmd but not complete, due to an exponential number of
predicates generated at each iteration step. In contrassyntactic method is iterative on the syntactic structfre
the specifications. It is sound but not complete. It handfdsounded non deterministic specifications with no need
for other iterative process and always terminates. Abdy®at method does not compute any weakest precondition
whereas the approach in [NK0O] does, which possibly intoedtinfinitely many new predicates.

22

9 Conclusion and Further works

We have presented in the B framework a method for abstraatirayent system by elimination of some state variables.
In this context, we have proposed three methods to compatsehof variables kept in the abstraction according to
a set of observed variables. We have proved that when usinfiysh and the third method, the generated abstraction
simulates the concrete model, while when using the secotfdatigthe generated abstraction bisimulates the concrete
model. This is useful for verifying safety properties andgeting tests.

Inthe context of test generation, our method proceeds bgliaing the test generation process described in [BBJM10
with a B event model reduced by a syntactic abstraction.eSime syntactic abstraction reduces the size of the model
in general, the main advantage of this method is that it gélyeeduces the set of non instantiable tests, by reducing
the level of abstraction. It reduces the number of POs g&eteand facilitates the proof of the remaining POs. More-
over, this results in a gain of computation time. We belidat the bigger the ratio of the number of state variables
to the number of observed variables is, the bigger the gaifhiss conjecture, exemplified by the experimental results
on the Demoney case study, needs to be confirmed by expesimeitidustrial size applications.

The syntactic method that we have presented is correctrbtiigi case of Proposition 1 and Proposition 3, may
sometimes produce imprecise over-approximations duedo sttong abstraction (see for example the experiments on
the QuiDonc). Proposition 2 produces a bisimulation, buy leave the initial model unchanged, i.e. not abstracted,
if all the variables are computed as abstract. We propose égnsof Proposition 3 a compromise between the
two propositions, that aims at reducing the number of abstrariables, while keeping at least partially the control
structure of the operations. Hence this method producega pmecise approximation that improves the results of the
test generation application.

Since our main motivation is to propose a method that redile8me for computing an abstraction of a model,
the definition ofModx (S) can be seen as out of scope. Indeed, its definition is givemeigéneral case and requires
a constraint solver to be fully usable. However, the prapmsimade in Fig. 7 shows that some syntactic rules can
provide a good trade-off between the computation cost obatraction and its full simplification. Similarly to the IF
substitution, other rules have to be proposed for explpitiththe information provided by the B syntactical sugar.

Also, we think that the transformation rules could be immmbvn order to get more precise approximations,
possibly with a type induction process in order to ease thtbdrawing of non-abstract variables. For instance,
improving the rules is possible when the invariant contaimequivalence such as= c< y=_c. If yis an eliminated
variable andis an observed one, we could substitute all the occurrerftke elementary predicaye= ¢’ with x = c.

This would preserve the property in the syntactic abswadtix, so that the following semantic abstraction would be
more precise. Such rules should prevent the addition o$itians in the QuiDonc abstractidkn w.r.t. Ay.

We think that extending the test generation method intredus [BBJM10] by using a combination of syntactic
and semantic abstractions will improve the method, sineeatbstraction is more precise if there are less unproved
POs. Moreover, as aforementioned, the time for computiagémantic abstraction is reduced by a static slicing of
the models.

References

[Abro96a] J.-R. Abrial. Extending B without changing it (fdeveloping distributed systems). 1t B Conferencge
pages 169-190, 1996.

[Abroeéb] Jean-Raymond AbrialThe B Book: Assigning Programs to MeaningSambridge University Press,
1996.

[Abr10] Jean-Raymond AbriaModeling in Event-B - System and Software Engineeri®gmbridge University
Press, 2010.

[Bal05] T. Ball. A theory of predicate-complete test covggaand generation. IRMCQO’04, volume 3657 of
LNCS pages 1-22. Springer, 2005.

[BBIJM0O9] F. Bouquet, P.-C. Bug, J. Julliand, and P.-A. MessSGénération de tests a partir de criteres dynamiques
de sélection et par abstraction. ARADL'09, pages 161-176, Toulouse, France, January 2009.

23

[BBIM10]

[BCDGO7]

[BJKOO]

[BIKT05]

[BLO9S]

[BLPO4]

[BMMRO1]

[BPS05]

[BWOS]

[CABNO7]

[CC92]

[CGLY4]

[CGPOO]
[CGS09]

[CU98]

[DF93]

[DHH*06]

Fabrice Bouquet, Pierre-Christophe Bué, Jasgqldliand, and Pierre-Alain Masson. Test generation
based on abstraction and test purposes to complemenusaltetsts. IPA-MOST’10, 6th int. Workshop
on Advances in Model Based TestiRgris, France, April 2010.

F. Bouquet, J.-F. Couchot, F. Dadeau, and A. Giirgénstantiation of parameterized data structures
for model-based testing. IB’2007, the 7th Int. B Conferencgolume 4355 olLNCS pages 96-110.
Springer, 2007.

Francoise Bellegarde, Jacques Julliand, and ®tgachnarenko. Ready-simulation is not ready to ex-
press a modular refinement relation.AASE’2000 volume 1783 o£.NCS pages 266—283, 2000.

M. Broy, B. Jonsson, J.-P. Katoen, M. Leucker, and A. $tteter, editors.Model-Based Testing of
Reactive Systemeolume 3472 of.NCS Springer, 2005.

S. Bensalem, Y. Lakhnech, and S. Owre. Computingrabsons of infinite state systems compositionally
and automatically. l€AV'98 volume 1427 o£. NCS Springer, 1998.

Fabrice Bouquet, Bruno Legeard, and Fabien PeurelixPS-B: A constraint solver to animate a B
specification. STTT, International Journal on Software Tools for Techggldransfer 6(2):143-157,
August 2004.

Thomas Ball, Rupak Majumdar, Todd D. Millstein, cdasriram K. Rajamani. Automatic predicate ab-
straction of ¢ programs. IRLDI, pages 203-213, 2001.

D. Bert, M.-L. Potet, and N. Stouls. GeneSyst: a Todkeason about Behavioral Aspects of B Event
Specifications. ZB’05, volume 3455 o£.NCS 2005.

Ingo Briuickner and Heike Wehrheim. Slicing an Inttgd Formal Method for Verification. In Kung-
Kiu Lau and Richard Banach, editol&;FEM’05, volume 3785 ofLNCS pages 360-374. Springer,
November 2005.

W. Chan, R. Anderson, P. Beame, and D. Notkin. Canirty Constraint Solving and Symbolic Model
Checking for a Class of Systems with Non-Linear Constrairits CAV’'97, volume 1254 ofLNCS
Springer, 1997.

Patrick Cousot and Radhia Cousot. Abstract inteégpien frameworksJ. Log. Comput.2(4):511-547,
1992.

E.M. Clarke, O. Grumberg, and D. Long. Model Checkand AbstractionTOPLAS’'94, ACM Trans-
actions on Programming Languages and Syster):1512—-1542, 1994.

Edmund M. Clarke, Orna Grumberg, and Doron A. Pdiéddel CheckingMIT Press, 2000.

J-F. Couchot, A. Giorgetti, and N. Stouls. GrapkdmhReduction of Program Verification Conditions.
In AFM’09, 2009.

M.A. Colon and T.E. Uribe. Generating finite-statestactions of reactive systems using decision pro-
cedures. IICAV’'98 volume 1427 oLNCS 1998.

J. Dick and A. Faivre. Automating the generation aeduencing of test cases from model-based speci-
fications. INFME’'93, pages 268—-284, 1993.

Matthew B. Dwyer, John Hatcliff, Matthew Hoosier, Vemésh Prasad Ranganath, Robby, and Todd
Wallentine. Evaluating the effectiveness of slicing fordabreduction of concurrent object-oriented
programs. INTACAS pages 73-89, 2006.

24

[DIKO3]

[FHNS02]

[GS97]

[Hoa69]

[HWO7]

[JMTO8]

[JSBM10]

[LBOS]

[LGPO7]

[MMO2]

[NKOO]

[SUM99]

[Thi03]

[Tip95]
[ULOB]
[Weig4]

Christophe Darlot, Jacques Julliand, and Olga Kmacenko. Refinement preserves PLTL properties.
In Third International Conference of B and Z Users ZB’03 - Fol@pecification and Development in Z
and B volume 2651 o£ NCS pages 408—-420, Turku, Finland, June 2003.

G. Friedman, A. Hartman, K. Nagin, and T. Shiraroj€cted state machine coverage for software testing.
In ISSTApages 134-143, 2002.

S. Graf and H. Saidi. Construction of abstract steaplgs with PVS. IlCAV’97, volume 1254 of NCS
1997.

C. A. R. Hoare. An axiomatic basis for computer pesgming. Communications of the ACM
10(12):576580, 1969.

Mats Per Erik Heimdahl and Michael W. Whalen. Redoetand slicing of hierarchical state machines.
In ESEC/ SIGSOFT FSkpages 450-467, 1997.

J. Julliand, P.-A. Masson, and R. Tissot. Genegasiacurity tests in addition to functional tests. In
AST'08 pages 41-44. ACM Press, 2008.

Jacques Julliand, Nicolas Stouls, Pierre-Chypise Bué, and Pierre-Alain Masson. Syntactic Abstraction
of B Models to Generate Tests. In G. Fraser and A. Gargamiiitors, TAP’10, 4th Int. Conf. on Tests
and Proofs volume 6143 of NCS pages 151-166, Malaga, Spain, July 2010.

M. Leuschel and M. Butler. ProB: An automated anadytsiolset for the B methodSoftware Tools for
Technology Transfed 0(2):185-203, 2008.

Sébastien Labbé, Jean-Pierre Gallois, and Marzé&. Slicing communicating automata specifications
for efficient model reduction. IASWEGC pages 191-200, 2007.

R. Marlet and C. Mesnil. Demoney: A demonstrativeattenic purse Technical Report SECSAFE-TL-
007, Trusted Logic, 2002.

K. S. Namjoshi and R. P. Kurshan. Syntactic prograsnsformations for automatic abstraction. In
CAV'00 volume 1855 of. NCS pages 435—449. Springer, 2000.

H. Sipma, T. Uribe, and Z. Manna. Deductive modelaktieg. Formal Methods in System Design
15(1):49-74, 1999.

H.W. Thimbleby. The directed chinese postman peahl Software: Practice and Experience
33(11):1081-1096, 2003.

F. Tip. A survey of program slicing techniquek.Prog. Lang. 3(3), 1995.
M. Utting and B. LegeardPractical Model-Based Testing - A tools approaéiisevier Science, 2006.

Mark Weiser. Program slicingSoftware Engineering, IEEE Transactions, @E-10(4):352-357, july
1984.

25

