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Abstract

Composition of Web services consists of the interleaving of the sequence of actions executed by the ele-
mentary services in accordance with a client specification. We model Web services as automata executing
actions and also sending and receiving messages. This paper provides a theoretical study for three service
composition problems, and in particular for the problem of computing a Boolean formula which exactly
characterises the conditions required for services to answer the client’s request. New complexity results are
established for these problems within the framework of service composition with constraints.
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1 Introduction and Related Work

Service oriented computing [23] is a programming paradigm which considers ser-

vices as elementary components. From these components, distributed applications

are realised in accordance with a client specification. To realise some distributed

applications, elementary components have to be composed. The composition prob-

lem has been investigated since the 2000’s with many solutions proposed [3,2,17].

Often, services are seen as finite automata. In this case, the client specification is

given by a finite automaton which represents all computations that a client wants

the services to execute. By executing their transitions, services modify their envi-

ronment and that of the client. The problem of combining services becomes that of
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composing automata, like in [3,2]. In other cases, services are able to send and to

receive messages. Client specification is then given by a logical formula which repre-

sents client’s goals he wants services to reach. By communicating together, services

modify their knowledge and those of their client (see, e.g., [17]). This paper follows

the line of reasoning suggested in [5,6,7,8], which consists in giving the semantics

of services by means of automata. The paper particularly focuses on the following

problem: Given services A1, . . ., An and the request A of a client, can A1, . . ., An

be organised as to answer A? The originality of our approach consists in modeling

the services by Boolean automata, i.e. finite automata extended with parametric

Boolean conditions. The main motivation for using this model is to manage condi-

tional actions or communications of A1, . . ., An. For instance, a conditional action

may be, for some i, j ∈ {1, . . . , n}, that Ai accepts to communicate with Aj if and

only if Aj has a security certificate given by some authority. A conditional action

may also be, for some i, j ∈ {1, . . . , n}, that Ai accepts to answer Aj only if the IP

address of Aj is in a selected area. This kind of conditions frequently appear when

specifying services. As far as we know, the composition problems studied in the

literature do not handle this kind of conditions. This paper provides a theoretical

study for three service composition problems, and in particular for the problem of

computing a Boolean formula φ which exactly characterises the conditions required

for A1, . . ., An to answer the client’s request. The paper is organised as follows.

Section 2 introduces the formal background. In Section 3, we formally define the

valuation decision problem, the Boolean formula decision problem and the Boolean

formula synthesis problem for both simulation-based relations and trace-based re-

lations. Sections 4 and 5 contains our complexity results. Finally we conclude in

section 6.

Related Work In the context of finite automata, many research works on complex-

ity results for various finite automata compositions have been done.

In [10], the authors investigated the following problem: given n + m finite au-

tomata A1, . . . ,An+m, what is the complexity of deciding whether A1 × . . .×An is

equivalent to An+1× . . .×An+m. The class of problems considered in [10] is for non

flat systems, i.e. one requires that n ≥ 2 andm ≥ 2. Another crucial difference w.r.t.

our work concerns the product. In [10], the product is partially synchronised but,

contrarily to our work, synchronisation does not produce ε-transition but labeled

transitions. Their main result shows that the above decision problem is EXPTIME-

hard for any relation between the simulation preorder and bisimulation, and that it

is EXSPACE-hard for any relation between trace inclusion and the intersection of

ready trace equivalence.

A more general problem is considered in [20] where the product is closer to ours

since some actions can be hidden, i.e. replaced by an ε-transition. The author proved

that for non flat systems the equivalence checking is PSPACE-hard for any relation

between bisimilarity and trace equivalence, and that the problem is EXPSPACE-

complete for trace equivalence, and EXPTIME-complete for bisimilarity. It was

also conjectured in [20] that the problem is EXPTIME-hard for any relation be-

tween bisimilarity and trace equivalence. This conjecture was enhanced and proved

in [22]: the problem is EXPTIME-hard for any relation between bisimilarity and

trace preorder.
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In [15], it is shown that deciding whether A is simulated by A1× . . .×An is still

EXPTIME-hard. In this work, the considered product is asynchronous.

Several recent works focus on the use of finite automata based models to address

Web services composition problems. In [18,17], the authors propose a model where

Web services compositions expressed in BPEL are formally defined by state transi-

tion systems with communicating and internal (unobservable) actions. In [17], this

model was enriched using a knowledge base, and in [9] using a theory. These ap-

proaches were applied to practical applications in [24,12,11]. In [1,21], Web services

are defined by PWL-S documents and modelled by guarded finite automata. A sim-

ilar approach is investigated in [16] where Web services are defined in BPEL. In [14],

the authors model by Input/Output automata Web services interfaces described in

BPEL, OWLS and WSDL.

2 Preliminaries

Let P be a finite set of Boolean variables (with typical members denoted p, p′, . . .),

Σa be a countable set of asynchronous actions (with typical members denoted α,

β, . . .) and Σs be a countable set of synchronous actions (with typical members

denoted σ, τ , . . .). We will assume that P , Σa and Σs are disjoint.

Finite automata

A finite automaton is a tuple A = (Q,E, I, F ) where

• Q is a finite set of states,

• E is a function from Q×Q into the set of all finite subsets of Σa∪({?, !}×Σs)∪{ǫ},

• I ⊆ Q is the set of initial states and F ⊆ Q is the set of final states.

For all x ∈ {?, !}, for all σ ∈ Σs, (x, σ) will be denoted xσ.

A is said to be ǫ-free iff E is a function from Q × Q into the set of all finite

subsets of Σa ∪ ({?, !} × Σs). We shall say that A is weakly asynchronous iff E

is a function from Q × Q into the set of all finite subsets of Σa ∪ {ǫ}. A is said

to be strongly asynchronous iff E is a function from Q × Q into the set of all

finite subsets of Σa. Given a weakly asynchronous automaton A, let E∗ be the

function from Q × Q into the set of all finite subsets of Σa such that for all q, r ∈
Q, for all α ∈ Σa, α ∈ E∗(q, r) iff there are sequences (q0, q1, . . . , qm), (r0, r1, . . . ,

rn) ∈ Q+ such that

• for all positive integers i, if i ≤ m then ǫ ∈ E(qi−1, qi),

• for all positive integers j, if j ≤ n then ǫ ∈ E(rj−1, rj),

• α ∈ E(qm, r0),

• q0 = q and rn = r.

In this case, a run of A on a sequence (α1, . . . , αk) ∈ Σ∗
a is a sequence (q0, q1, . . . ,

qk) ∈ Q
+ such that for all positive integers i, if i ≤ k then αi ∈ E

∗(qi−1, qi), q0 ∈
I and qk ∈ F . Moreover, the traces of A, denoted tr(A), is the set of all sequences

(α1, . . . , αk) ∈ Σ∗
a such that there is a run of A on (α1, . . . , αk).
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A1 : q1 q2

(p1 ∨ p2, α)

(¬p2, !σ1)

(¬p1 ∧ p2, ?σ2)

A2 : r1 r2
(p3, ?σ1)

(¬p3, α)

Figure 1. Boolean automata A1 and A2.

Boolean automata

The set B(P ) of all Boolean formulas (with typical members denoted φ, ψ, . . .)

is defined by: φ ::= p | ⊥ | ¬φ | (φ ∨ φ), with p ∈ P . The other constructs are

defined as usual. In particular, ⊤ = ¬⊥ and (φ ∧ ψ) = ¬(¬φ ∨ ¬ψ). A valuation

is a function from P into {0, 1}. Every valuation V gives rise to a function V̂ from

B(P ) into {0, 1} in the usual way. A Boolean automaton is a tuple A = (Q,E, I, F )

where

• Q is a finite set of states,

• E is a function from Q×Q into the set of all finite subsets of B(P )×(Σa∪({?, !}×
Σs) ∪ {ǫ}),

• I ⊆ Q is the set of initial states and F ⊆ Q is the set of final states.

The notions of ǫ-freeness, weak asynchronicity and strong asynchronicity are

defined for Boolean automata in the same way as they are defined for finite automata.

As example, take the case of the Boolean automata A1 and A2 from Fig. 1, with

Σa = {α} and Σs = {σ1, σ2}.

Synchronisation

Let A1 = (Q1, E1, I1, F1), . . ., An = (Qn, En, In, Fn) be ǫ-free Boolean automata.

Their synchronisation, denoted A1 ⊗ . . .⊗An, is the weakly asynchronous Boolean

automaton A = (Q,E, I, F ) defined by:

• Q = Q1 × . . .×Qn,

• E is the function from Q×Q into the set of all finite subsets of B(P )× (Σa∪{ǫ})
such that for all q, r ∈ Q, for all φ ∈ B(P ),

· for all α ∈ Σa, (φ, α) ∈ E(q, r) iff there is i ∈ {1, . . . , n} such that q ≡i r and

(φ, α) ∈ Ei(qi, ri),

· (φ, ǫ) ∈ E(q, r) iff there are i1, i2 ∈ {1, . . . , n}, there are φi1 , φi2 ∈ B(P ),

there is σ ∈ Σs such that i1 6= i2, q ≡i1,i2 r, either (φi1 , (?, σ)) ∈ Ei1(qi1, ri1)

and (φi2 , (!, σ)) ∈ Ei2(qi2 , ri2) or (φi1 , (!, σ)) ∈ Ei1(qi1 , ri1) and (φi2 , (?, σ)) ∈
Ei2(qi2 , ri2) and φ = φi1 ∧ φi2 .

• I = I1 × . . . × In and F = F1 × . . . × Fn,

the binary relations ≡i,≡i1,i2 ⊆ Q× Q being such that for all q, r ∈ Q, q ≡i r iff

for all j ∈ {1, . . . , n}, if i 6= j then qj = rj and q ≡i1,i2 r iff for all j ∈ {1, . . . , n},
if i1 6= j and i2 6= j then qj = rj. Consider, as example, the Boolean automata A1

and A2 from Fig. 1 and A1 ⊗A2 from Fig. 2.
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q1, r1 q2, r1 q1, r2 q2, r2
(p1 ∨ p2, α)

(p3 ∧ ¬p2, ǫ)

(p1 ∨ p2, α)

(¬p3, α) (¬p3, α)

Figure 2. Boolean automata A1 ⊗A2.

A : q1 q2

(p1 ∨ p2, α)

(¬p2, !σ1)

(¬p1 ∧ p2, ?σ2)

V (p1) = 0, V (p2) = 1

AV : q1 q2

α

?σ2

Figure 3. Boolean automaton A and the associated automaton AV .

From Boolean automata to finite automata

Let A = (Q,E, I, F ) be a Boolean automaton and V be a valuation. The inter-

pretation of A through V , denoted AV , is the finite automaton A′ = (Q′, E′, I ′, F ′)

defined by:

• Q′ = Q,

• E′ is the function from Q′ ×Q′ into the set of all finite subsets of Σa ∪ ({?, !} ×
Σs) ∪ {ǫ} such that for all q, r ∈ Q′,

· for all α ∈ Σa, α ∈ E
′(q, r) iff there is φ ∈ B(P ) such that (φ, α) ∈ E(q, r) and

V̂ (φ) = 1,

· for all x ∈ {?, !}, for all σ ∈ Σs, xσ ∈ E
′(q, r) iff there is φ ∈ B(P ) such that

(φ, xσ) ∈ E(q, r) and V̂ (φ) = 1,

· ǫ ∈ E′(q, r) iff there is φ ∈ B(P ) such that (φ, ǫ) ∈ E(q, r) and V̂ (φ) = 1,

• I ′ = I and F ′ = F .

As example, take the case of A and AV from Fig. 3.

Trace inclusion and trace equivalence

Let A = (Q,E, I, F ), A′ = (Q′, E′, I ′, F ′) be weakly asynchronous finite au-

tomata. We shall say that A is trace-included in A′, denoted A ⊑ A′, iff tr(A) ⊆
tr(A′). A is said to be trace-equivalent to A′, denoted A ≡ A′, iff A ⊑ A′ and A′

⊑ A.

Simulation and bisimulation

Let A = (Q,E, I, F ), A′ = (Q′, E′, I ′, F ′) be weakly asynchronous finite au-

tomata. We define a binary relation Z ⊆ Q × Q′ such that dom(Z) ∩ I 6= ∅ and

ran(Z)∩ I ′ 6= ∅ to be a simulation of A by A′, denoted Z: A ←− A′, iff for all q ∈
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Q, for all q′ ∈ Q′, if q Z q′ then

• for all α ∈ Σa, for all r ∈ Q, if α ∈ E∗(q, r) then there is r′ ∈ Q′ such that r Z

r′ and α ∈ E′∗(q′, r′),

• if q ∈ I then q′ ∈ I ′ and if q ∈ F then q′ ∈ F ′.

Note: dom(Z) and ran(Z) respectively denote the domain of Z and the range of Z.

If there is a simulation Z of A by A′ then we write A ←− A′. We define a binary

relation Z ⊆ Q×Q′ to be a bisimulation between A and A′, denoted Z: A ←→ A′,

iff Z: A ←− A′ and Z−1: A′ ←− A. If there is a bisimulation between A and A′

then we write A ←→ A′.

3 Composition of Services

3.1 Formal definitions

Let R ∈ {⊑,≡,←−,←→}. The valuation decision (VD) problem for R is defined

by:

• input: a strongly asynchronous finite automaton A = (Q,E, I, F ) and ǫ-free

Boolean automata A1 = (Q1, E1, I1, F1), . . ., An = (Qn, En, In, Fn),

• output: check if there is a valuation V such that A R (A1 ⊗ . . . ⊗An)V .

The Boolean formula decision (BFD) problem for R is defined by:

• input: a strongly asynchronous finite automaton A = (Q,E, I, F ), ǫ-free Boolean

automata A1 = (Q1, E1, I1, F1), . . ., An = (Qn, En, In, Fn) and a Boolean formula

φ,

• output: check if for all valuations V , A R (A1 ⊗ . . .⊗An)V iff V̂ (φ) = 1.

The Boolean formula synthesis (BFS) problem for R is defined by:

• input: a strongly asynchronous finite automaton A = (Q,E, I, F ) and ǫ-free

Boolean automata A1 = (Q1, E1, I1, F1), . . ., An = (Qn, En, In, Fn),

• output: find out a Boolean formula φ such that for all valuations V , A R (A1 ⊗
. . .⊗An)V iff V̂ (φ) = 1.

The questions we are interested in are: Is there a valuation of these services such

that the desired composition is possible (VD problem)? How to compute a boolean

formula φ over these predicates that is true iff the desired composition is possible

(BFS problem)?

3.2 Motivating Example

Consider three services S1, S2, S3.

Service S1 provides an on-line booking for European football match places that

will take place in Madrid. This service is modeled by the automaton A1 in Fig. 4.

When S1 receives a request for a football place (ticket_req) booking, it checks

whether there is available places having the desired price (action c_v). This check

can be done if and only if the request is provided by a non black listed supporter

(predicate ¬pblack). If there is no available place, S1 informs the requester by the
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A1 : q1 q2

(⊤, ticket_req) (¬pblack, c_v)
q3 q4

(⊤, !ask_bank1)

(⊤, no_ticket)

q5

(⊤, ?resp_bank1)(⊤, send_ticket)

Figure 4. Boolean automaton A1

A2 : q1 q2

(⊤, flight_req) (psh ∨ pnat, c_f)
q3 q4

(⊤, !ask_bank2)

(⊤, no_flight)

q5

(⊤, ?resp_bank2)(⊤, send_flight)

Figure 5. Boolean automaton A2

A3 : q1

q2

(pcert1, ?ask_bank1)

q3

(pcc ∨ ppp, pay_ok)

q4

(pcert2, ?ask_bank2)

q5

(pcc ∨ ppp, pay_ok)

(⊤, !resp_bank1)

(⊤, !resp_bank2)

Figure 6. Boolean automaton A3

action no_ticket. If there is a ticket, S1 asks the bank service (S3) for the ticket

payment (actions !ask_bank1). If the bank answers the payment is Ok (message

?resp_bank1), the ticket is sent to the requester (action send_ticket).

Service S2 sells flight tickets. It is modeled by the automaton A2 in Fig. 5.

S2 works like S1 but sells tickets only for people who do not need a Visa for

coming to Spain, thus either people whose nationality is in a given list (predicate

pnat), or if the starting point of the flight is in the Shengen Space (predicate psh).

The service S3 is the bank service modeled by the automaton A3 in Fig. 6.

S3 accepts request from services having a security certificate (predicate pcerti

means that Si has such a certificate). Then, if the buyer has either a credit card

(predicate pcc) or a paypal account (predicate ppp), and if the payment is OK (in

order to not overload the example, we do not model this communicating point; we

just encode it by the action pay_ok), the bank validates the payment to the related

service.

As the reader can see, services can be composed to provide the intented service

S (depicted in Fig. 7), with several conditions on the value of predicates pnat, pcert1,,

etc.
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A : q1 q2

ticket_req
q3

c_v

no_ticket

q4

flight_req

q5

c_f
no_flight

q6

pay_ok

pay_ok

q7

send_ticket

send_flight

Figure 7. Automaton A

4 Trace Inclusion and Trace Equivalence

Let us recall that given two finite automata A1 and A2, testing whether A1 ⊑ (A2

can be done in PSPACE.

Upper bound

Let A = (Q,E, I, F ) be a strongly asynchronous finite automaton and A1 =

(Q1, E1, I1, F1), . . ., An = (Qn, En, In, Fn) be ǫ-free Boolean automata. We now de-

fine a deterministic algorithm which returns the value “accept” iff there is a valuation

V such that A ⊑ (A1 ⊗ . . . ⊗An)V :

(i) for all valuations V

(a) compute (A1 ⊗ . . . ⊗An)V ;

(b) check if A ⊑ (A1 ⊗ . . .⊗An)V ;

(ii) if one of these calls returns the value “accept” then return the value “accept”

else return the value “reject”;

Obviously, the deterministic algorithm above is exponential-space-bounded. Simi-

larly, an exponential-space-bounded deterministic algorithm which returns the value

“accept” iff there is a valuation V such that A ≡ (A1 ⊗ . . .⊗An)V can be defined.

As a result,

Proposition 4.1 Let R ∈ {⊑,≡}. The VD problem for R is in EXPSPACE.

Similarly,

Proposition 4.2 Let R ∈ {⊑,≡}. The BFD problem for R is in EXPSPACE.

Let A = (Q,E, I, F ) be a strongly asynchronous finite automaton and A1 =

(Q1, E1, I1, F1), . . ., An = (Qn, En, In, Fn) be ǫ-free Boolean automata. We now

define a deterministic algorithm which returns a Boolean formula φ such that for all

valuations V , A ⊑ (A1 ⊗ . . .⊗An)V iff V̂ (φ) = 1:

(i) φ := ⊥;

(ii) for all maximal consistent conjunctions ψ of P -literals

(a) compute the unique valuation V such that V̂ (ψ) = 1;

(b) compute (A1 ⊗ . . . ⊗An)V ;

(c) if A ⊑ (A1 ⊗ . . .⊗An)V then φ := φ ∨ ψ;

Obviously, the deterministic algorithm above is exponential-space-bounded. Simi-

larly, an exponential-space-bounded deterministic algorithm which returns a Boolean
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formula φ such that for all valuations V , A ≡ (A1⊗ . . .⊗An)V iff V̂ (φ) = 1 can be

defined. As a result,

Proposition 4.3 Let R ∈ {⊑,≡}. The BFS problem for R is solvable by means of

an exponential-space-bounded deterministic algorithm.

Lower bound

To prove that the VD problem for ⊑ is EXPSPACE-hard, we give a polynomial

time reduction of the universality problem for regular expressions with squaring,

which is known to be EXPSPACE-hard [13], to the VD problem for ⊑. The set of

all regular expressions with squaring (with typical members denoted exp, exp′, . . .)

is defined by:

exp ::= α | ǫ | (exp ◦ exp) | (exp ∪ exp) | exp+ | exp2.

The number of occurrences of operators ǫ, ◦, ∪, + and 2 in regular expression exp with

squaring is denoted op(exp). Every regular expression exp with squaring gives rise

to a language denoted lang(exp) in the usual way. Let σ1, σ2, . . . be an enumeration

of Σs. Given a regular expression exp with squaring, let n = 2× op(exp). Let A =

(Q,E, I, F ) be the strongly asynchronous finite automaton defined as follows: Q =

{q}, E is the function from Q×Q into the set of all finite subsets of B(P )×Σa such

that for all q, r ∈ Q, for all φ ∈ B(P ), for all α ∈ Σa, (φ, α) ∈ E(q, r) iff φ = ⊤, I =

{q} and F = {q}. For all positive integers i, if i ≤ n then let Ai = (Qi, Ei, Ii, Fi) be

the ǫ-free Boolean automaton defined as follows: Qi = {q1i, q2i}, Ei is the function

from Qi×Qi into the set of all finite subsets of B(P )× (Σa∪ ({?, !}×Σs)) such that

for all q, r ∈ Qi, for all φ ∈ B(P ),

• for all α ∈ Σa, (φ, α) 6∈ Ei(q, r),

• for all x ∈ {?, !}, for all σ ∈ Σs, (φ, xσ) ∈ Ei(q, r) iff φ = ⊤, x = ?, σ = σi, q =

q1i and r = q2i or φ = ⊤, x = !, σ = σi, q = q2i and r = q1i,

Ii = {q1i} and Fi = {q1i}. Let A0 = (Q0, E0, I0, F0) be the ǫ-free Boolean automaton

defined by induction on exp as follows:

Basis: Case exp = α. In this case, A0 = (Q0, E0, I0, F0) is defined as follows: Q0

= {qI , qF}, E0 is the function from Q0 × Q0 into the set of all finite subsets of

B(P )× (Σa ∪ ({?, !} × Σs)) such that for all q, r ∈ Q0, for all φ ∈ B(P ),
• for all β ∈ Σa, (φ, β) ∈ E0(q, r) iff q = qI , r = qF , φ = ⊤ and β = α,
• for all x ∈ {?, !}, for all σ ∈ Σs, (φ, xσ) 6∈ E0(q, r),

I0 = {qI} and F0 = {qF }. The Boolean automaton A0 is represented in Fig. 8. The

reader may easily verify that for all valuations V , lang(exp) = tr(AV
0 ). Remark

that 0 = n. Note also that I0 and F0 are singletons.

qI qF(⊤, α)

Figure 8. Finite automaton A0 in the case exp = α.

9



Balbiani, Cheikh, Heam and Kouchnarenko

Hypothesis: exp′ and exp′′ are regular expressions with squaring such that there

is an ǫ-free Boolean automaton A′
0 = (Q′

0, E
′
0, I

′
0, F

′
0) such that for all valuations

V , lang(exp′) = tr((A′
0 ⊗ A1 ⊗ . . . ⊗ An′)V ) where n′ = 2 × op(exp′) and there

is an ǫ-free Boolean automaton A′′
0 = (Q′′

0 , E
′′
0 , I

′′
0 , F

′′
0 ) such that for all valuations

V , lang(exp′′) = tr((A′′
0 ⊗A1 ⊗ . . . ⊗An′′)V ) where n′′ = q × op(exp′′). We also

assume that I ′0, F
′
0, I

′′
0 and F ′′

0 are singletons.

Step: The cases exp = ǫ, exp = exp′ ◦ exp′′, exp = exp′ ∪ exp′′ and exp = exp′
+

are similar.

Case exp = exp′
2. In this case, A0 = (Q0, E0, I0, F0) is defined as follows: Q0 =

Q′
0∪{qI , q, r, qF }, E0 is the function from Q0×Q0 into the set of all finite subsets

of B(P )× (Σa ∪ ({?, !} × Σs)) such that for all s, t ∈ Q0, for all φ ∈ B(P ),
• for all β ∈ Σa, (φ, β) ∈ E0(s, t) iff s, t ∈ Q′

0 and (φ, β) ∈ E′
0(s, t),

• for all x ∈ {?, !}, for all σ ∈ Σs, (φ, xσ) ∈ E0(s, t) iff s, t ∈ Q′
0 and (φ, xσ) ∈

E′
0(s, t) or s = qI , t = q′I , φ = ⊤, x = ! and σ = σn′+1 or s = q′F , t = q, φ =

⊤, x = ! and σ = σn′+2 or s = q, t = qI , φ = ⊤, x = ? and σ = σn′+1 or s =

q′F , t = r, φ = ⊤, x = ? and σ = σn′+2 or s = r, t = qF , φ = ⊤, x = ? and σ

= σn′+1,

I0 = {qI} and F0 = {qF}. The Boolean automaton A0 is represented in Fig. 9.

The reader may easily verify that for all valuations V , lang(exp) = tr((A0⊗A1⊗
. . .⊗An′ ⊗An′+1⊗An′+2)

V ). Remark that n′ + 2 = n. Note also that I0 and F0

are singletons.

A′
0

qI q′I q′F

r qF

q

(⊤, !σn′+1)

(⊤, ?σn′+2)

(⊤, !σn′+2)

(⊤, ?σn′+1)

(⊤, ?σn′+1)

Figure 9. Finite automaton A0 in the case exp = exp′2.

The reader may easily verify that lang(exp) = Σ∗
a iff there is a valuation V such that

A ⊑ (A0 ⊗A1 ⊗ . . .⊗An)V . Similarly, the reader may easily verify that lang(exp)

= Σ∗
a iff there is a valuation V such that A ≡ (A0 ⊗A1 ⊗ . . .⊗An)V . As a result,

Proposition 4.4 Let R ∈ {⊑,≡}. The VD problem for R is EXPSPACE-hard.

Similarly,

Proposition 4.5 Let R ∈ {⊑,≡}. The BFD problem for R is EXPSPACE-hard.

According to Meyer and Stockmeyer [13], for all deterministic Turing machines

M solving the universality problem for regular expressions with squaring, there exists

10
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a constant c > 1 such that M needs at least space cn on some input of length n for

infinitely many n. Suppose that there is a deterministic algorithm f solving the BFS

problem for R and such that for all constants c > 1, f needs at least space cn on

some input of length n for finitely many n only. Let Mf be the deterministic Turing

machine that behaves as follows given a regular expression exp with squaring:

(i) Mf computes n = 2× op(exp);

(ii) Mf computes the strongly asynchronous finite automaton A = (Q,E, I, F )

defined as above;

(iii) for all positive integers i, if i ≤ n then Mf computes the ǫ-free Boolean au-

tomaton Ai = (Qi, Ei, Ii, Fi) defined as above;

(iv) Mf computes the ǫ-free Boolean automaton A0 = (Q0, E0, I0, F0) defined by

induction on exp as above;

(v) Mf simulates f on input A and A0 and A1, . . ., An until it is about to return

a value φf ;

(vi) if φf is a Boolean tautology then return the value “accept” else return the value

“reject”;

Obviously, Mf solves the universality problem for regular expressions with squaring

and for all constants c > 1 Mf needs at least space cn on some input of length n for

finitely many n only: a contradiction. As a result,

Proposition 4.6 Let R ∈ {⊑,≡}. For all deterministic algorithms f solving the

BFS problem for R, there exist a constant c > 1, such that f needs at least space cn

on some input of length n for infinitely many n.

5 Simulation and Bisimulation

Let us recall that given two finite automata A1 and A2, testing whether A1 simulates

A2 can be done in polynomial time.

Upper bound

Let A = (Q,E, I, F ) be a strongly asynchronous finite automaton and A1 =

(Q1, E1, I1, F1), . . ., An = (Qn, En, In, Fn) be ǫ-free Boolean automata. We now de-

fine a deterministic algorithm which returns the value “accept” iff there is a valuation

V such that A ←− (A1 ⊗ . . .⊗An)V :

(i) for all valuations V

(a) compute (A1 ⊗ . . . ⊗An)V ;

(b) check if A ←− (A1 ⊗ . . .⊗An)V ;

(ii) if one of these calls returns the value “accept” then return the value “accept”

else return the value “reject”;

Obviously, the deterministic algorithm above is exponential-time-bounded. Simi-

larly, an exponential-time-bounded deterministic algorithm which returns the value

“accept” iff there is a valuation V such that A ←→ (A1⊗ . . .⊗An)V can be defined.

As a result,

Proposition 5.1 Let R ∈ {←−,←→}. The VD problem for R is in EXPTIME.

11
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Let A = (Q,E, I, F ) be a strongly asynchronous finite automaton, A1 =

(Q1, E1, I1, F1), . . ., An = (Qn, En, In, Fn) be ǫ-free Boolean automata and φ be

a Boolean formula. We now define a deterministic algorithm which returns the

value “accept” iff for all valuations V , A ←− (A1 ⊗ . . .⊗An)V iff V̂ (φ) = 1:

(i) for all valuations V

(a) compute (A1 ⊗ . . . ⊗An)V ;

(b) compute V̂ (φ);

(c) check if A ←− (A1 ⊗ . . .⊗An)V iff V̂ (φ) = 1;

(ii) if all these calls returns the value “accept” then return the value “accept” else

return the value “reject”.

Obviously, the deterministic algorithm above is exponential-time-bounded. Simi-

larly, an exponential-time-bounded deterministic algorithm which returns the value

“accept” iff for all valuations V , A←→ (A1⊗ . . .⊗An)V iff V̂ (φ) = 1 can be defined.

Proposition 5.2 Let R ∈ {←−,←→}. The BFD problem for R is in EXPTIME.

Let A = (Q,E, I, F ) be a strongly asynchronous finite automaton and A1 =

(Q1, E1, I1, F1), . . ., An = (Qn, En, In, Fn) be ǫ-free Boolean automata. We now

define a deterministic algorithm which returns a Boolean formula φ such that for all

valuations V , A ←− (A1 ⊗ . . . ⊗An)V iff V̂ (φ) = 1:

(i) φ := ⊥;

(ii) for all maximal consistent conjunctions ψ of P -literals

(a) compute the unique valuation V such that V̂ (ψ) = 1;

(b) compute (A1 ⊗ . . . ⊗An)V ;

(c) if A ←− (A1 ⊗ . . .⊗An)V then φ := φ ∨ ψ;

Obviously, the deterministic algorithm above is exponential-time-bounded. Simi-

larly, an exponential-time-bounded deterministic algorithm which returns a Boolean

formula φ such that for all valuations V , A ←→ (A1 ⊗ . . .⊗An)V iff V̂ (φ) = 1 can

be defined. As a result,

Proposition 5.3 Let R ∈ {←−,←→}. The BFS problem for R is solvable by means

of an exponential-time-bounded deterministic algorithm.

Lower bound

By giving a polynomial time reduction of the simulation problem of a strongly

asynchronous finite automaton by means of a product of strongly asynchronous finite

automata, which is known to be EXPTIME-hard [15], to the VD problem for←−,

we prove that the VD problem for ←− is EXPTIME-hard. Given a strongly

asynchronous finite automaton A = (Q,E, I, F ) and strongly asynchronous finite

automata A1 = (Q1, E1, I1, F1), . . ., An = (Qn, En, In, Fn), let A′
1 = (Q′

1, E
′
1, I

′
1, F

′
1),

. . ., A′
n = (Q′

n, E
′
n, I

′
n, F

′
n) be the ǫ-free Boolean automata defined as follows: Q′

i =

Qi, E
′
i is the function from Q′

i×Q
′
i into the set of all finite subsets of B(P )× (Σa ∪

({?, !} × Σs)) such that for all q, r ∈ Q′
i, for all φ ∈ B(P ),

• for all α ∈ Σa, (φ, α) ∈ E′
i(q, r) iff φ = ⊤ and α ∈ Ei(q, r),

12
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• for all x ∈ {?, !}, for all σ ∈ Σs, (φ, xσ) 6∈ E′
i(q, r),

I ′i = Ii and F ′
i = Fi. The reader may easily verify that A ←− A1⊗ . . .⊗An iff there

is a valuation V such that A ←− (A′
1 ⊗ . . .⊗A

′
n)V . As a result,

Proposition 5.4 The VD problem for ←− is EXPTIME-hard.

Similarly,

Proposition 5.5 The BFD problem for ←− is EXPTIME-hard.

Proof We prove that the Boolean formula decision problem for←− is EXPTIME-

hard by giving a polynomial time reduction of the simulation problem of a

strongly asynchronous finite automaton by means of a product of strongly

asynchronous finite automata, which is known to be EXPTIME-hard [15],

to the Boolean formula decision problem for ←−. Given a strongly asyn-

chronous finite automaton A = (Q,E, I, F ) and strongly asynchronous finite au-

tomata A1 = (Q1, E1, I1, F1), . . ., An = (Qn, En, In, Fn), let A′
1 = (Q′

1, E
′
1, I

′
1,

F ′
1), . . ., A

′
n = (Q′

n, E
′
n, I

′
n, F

′
n) be the ǫ-free Boolean automaton defined as above

and φ = ⊤. Suppose that A ←− A1 ⊗ . . . ⊗An. Hence, there is a simulation Z of

A by A1 ⊗ . . . ⊗ An. Let V be a valuation. Obviously, Z is a simulation of A by

(A′
1⊗ . . .⊗A

′
n)V . Therefore, for all valuations V , A ←− (A′

1⊗ . . .⊗A
′
n)V iff V̂ (φ) =

1. Reciprocally, suppose that for all valuations V , A←− (A′
1⊗ . . .⊗A

′
n)V iff V̂ (φ) =

1. Let V be a valuation. Thus, there is a simulation Z of A by (A′
1⊗. . .⊗A

′
n)V . Ob-

viously, Z is a simulation of A by A1⊗. . .⊗An. Consequently, A←−A1⊗. . .⊗An.2

We prove that the VD problem for←→ is PSPACE-hard by giving a polynomial

time reduction of the acceptance problem of a linear-space-bounded deterministic

Turing machine, which is known to be PSPACE-hard, to the VD problem for

←→. Let acc, α1, α2, . . . be an enumeration of Σa. Given a linear-space-bounded

deterministic Turing machine M = (QM , q
0
M , q

1
M ,ΣM , δM ) and a word w ∈ Σ∗

M , let n

be the length of w. Let Σf = {acc, α1, . . . , αn}. Let A = (Q,E, I, F ) be the strongly

asynchronous finite automaton defined as follows: Q = (QM ×{1, . . . , n})∪ {⊥}, E
is the function from Q×Q into the set of all finite subsets of B(P )× Σf such that

for all (q, i), (r, j) ∈ Q, for all φ ∈ B(P ),

• for all α ∈ Σf , (φ, α) ∈ E((q, i), (r, j)) iff φ = ⊤, α = αi and there are u, v ∈ ΣM ,

there is d ∈ {−1,+1} such that δM (q, u, r, v, d) is defined and j = i+ d or φ = ⊤,

α = acc, q = q1M , r = q1M and j = i,

• for all α ∈ Σf , (φ, α) ∈ E((q, i),⊥) iff φ = ⊤, α 6= acc and α 6= αi or for all r ∈
QM , for all u, v ∈ ΣM , for all d ∈ {−1,+1}, δM (q, u, r, v, d) is not defined,

• for all α ∈ Σf , (φ, α) 6∈ E(⊥, (r, j)),

• for all α ∈ Σf , (φ, α) ∈ E(⊥,⊥) iff φ = ⊤ and α 6= acc,

I = {(q0M , 1)} and F = ∅. Let A1 = (Q1, E1, I1, F1), . . ., An = (Qn, En, In, Fn) be

the ǫ-free Boolean automata defined as follows: Qi = (QM ×ΣM) ∪ {⊥i}, Ei is the

function from Qi×Qi into the set of all finite subsets of B(P )× (Σf ∪ ({?, !}×Σs))

such that for all (q, u), (r, v) ∈ Qi, for all φ ∈ B(P ),

• for all α ∈ Σf , (φ, α) ∈ Ei((q, u), (r, v)) iff φ = ⊤, α = αi and there is d ∈ {−1,+1}
such that δM (q, u, r, v, d) is defined,
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• for all α ∈ Σf , (φ, α) ∈ Ei((q, u),⊥i) iff φ = ⊤, α 6= acc and α 6= αi or for all r

∈ QM , for all v ∈ ΣM , for all d ∈ {−1,+1}, δM (q, u, r, v, d) is not defined,

• for all α ∈ Σf , (φ, α) 6∈ Ei(⊥i, (r, v)),

• for all α ∈ Σf , (φ, α) ∈ Ei(⊥i,⊥i) iff φ = ⊤ and α 6= acc,

• for all x ∈ {?, !}, for all σ ∈ Σs, (φ, xσ) 6∈ Ei((q, u), (r, v)),

• for all x ∈ {?, !}, for all σ ∈ Σs, (φ, xσ) 6∈ Ei((q, u),⊥i),

• for all x ∈ {?, !}, for all σ ∈ Σs, (φ, xσ) 6∈ Ei(⊥i, (r, v)),

• for all x ∈ {?, !}, for all σ ∈ Σs, (φ, xσ) 6∈ Ei(⊥i,⊥i),

Ii = {(q0M , wi)} and Fi = ∅. Suppose that M does not accept w. Let Z ⊆ Q ×
(Q1 × . . .×Qn) be the binary relation such that

• (q, i) Z ((q1, u1), . . . , (qn, un)) iff q = qi and (q0M , 1,w) =⇒∗
M (q, i, u1 . . . un),

• · Z (·, . . . , ·,⊥i, ·, . . . , ·),

• ⊥ Z (·, . . . , ·).

The reader may easily verify that there is a valuation V such that Z is a bisimulation

between A and (A1 ⊗ . . . ⊗ An)V . Hence, there is a valuation V such that A ←→
(A1 ⊗ . . . ⊗ An)V . Reciprocally, suppose that there is a valuation V such that

A ←→ (A1 ⊗ . . . ⊗ An)V . Therefore, there is a bisimulation Z between A and

(A1 ⊗ . . .⊗An)V . Obviously, M does not accept w.

Proposition 5.6 The VD problem for ←→ is PSPACE-hard. The BFD problem

for ←→ is PSPACE-hard.

6 Conclusion

This paper presented different new complexity results for the VD problem and the

BFD problem within the framework of service composition with constraints. To sum

up, the results are given in snapshot of our work below.

R valuation decision problem Boolean formula decision problem

≡ EXPSPACE-complete EXPSPACE-complete

⊆ EXPSPACE-complete EXPSPACE-complete

← EXPTIME-complete EXPTIME-complete

↔ PSPACE-hard PSPACE-hard

in EXPTIME in EXPTIME

As pointed out by the above table, a still open question is to evaluate the exact com-

plexity of the valuation decision problem for ←→ and the Boolean formula decision

problem for ←→: are they in PSPACE or are they EXPTIME-hard? Moreover,

we focused on the identification of a relevant abstraction to manage conditional

actions in the service composition problem. In the future, we intend to explore

practical algorithmic approaches to handle the Boolean formula synthesis problem.
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