
An Access Control Model Based Testing Approach
for Smart Card Applications:
Results of the POŚE Project
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Abstract: This paper is about generating security tests from the
Common Criteria expression of a security policy, in addition to func-
tional tests previously generated by a model-based testingapproach.
The method that we present re-uses the functional model and the con-
cretization layer developed for the functional testing, and relies on
an additional security policy model. We discuss how to produce the
security policy model from a Common Criteria security target. We
propose to compute the tests by using some test purposes as guides
for the tests to be extracted from the models. We see a test purpose
as the combination of a security property and a test need issued from
the know-how of a security engineer. We propose a language based
on regular expressions for the expression of such test purposes. We
illustrate our approach by means of the IAS1 case study, a smart card
application dedicated to the operations of Identification,Authentica-
tion and electronic Signature.
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teria, Security Testing, Smartcard applications.

1 Introduction
Generating tests for security policies is still a challenge: it is not fully
addressed by nowadays test generation techniques. We consider in
this paper access control policies for smart card applications. Our in-
tent is to ensure that security properties are specifically tested, com-
pleting in that the functional tests. This work has been performed
in the context of the French RNTL POSÉ2 project (ANR-05-RNTL-
01001) that aimed at proposing a methodology for model basedse-
curity testing, compatible with the Common Criteria methodology.

Common Criteria (CC)3 internationally define common require-
ments for the security evaluation of Information Technology prod-
ucts. They classify security requirements into families, and define
several certification levels (from EAL1 to EAL7). A high certifica-
tion level requires the use of formal models for verifying that the
system implements its security policies. The ambition of the POŚE
project was to help automating the generation and executionof tests
dedicated to the validation of these security policies. Security re-
quirements are initially described as a CC document namedSecurity
Target. The objective of our approach is to formalize the security
target as aSecurity Policy Model(SPM) and to automatically com-
pute tests from this model, following a model-based testing(MBT)

1IAS is ade-factostandard issued by the GIXEL consortium
2seehttp://www.rntl-pose.info
3seehttp://www.commoncriteriaportal.org/

approach. The generated tests are afterwards executed on the sys-
tem. Due to the context that we consider (smart card applications),
the project focused on policies relative to the control of commands
execution.

MBT (3, 42) proceeds by computing tests from a formal model
(FM) of the system to be tested, according to selection criteria. An
example of a test selection criterion is, for instance, to exercise any
operation of the system on the boundary values of its parameters.
The formal model does not deal with implementation details,and is
supposed to provide a reliable functional view of the implementa-
tion under test (IUT). As the tests have the same abstractionlevel
as the FM, they have to be concretized before they can be executed
on the IUT. This is obtained by writing a concretization layer. The
verdict of the tests is obtained by comparing the results given by the
IUT with the ones predicted by the FM, with respect to a given con-
formance relationship. Industrial studies have proven theefficiency
of the method to detect faults in an implementation (see for exam-
ple (16, 6)).

In our framework, a functional MBT campaign has already been
performed, and so a functional model and a concretization layer are
available. Nevertheless, functional tests appear to be insufficient to
exercise the IUT through elaborated scenarios of attack, attempting
to violate a security property. As aforementioned, we writean addi-
tional model, the SPM, to formalize the security target and we use
this model to compute some additional tests using scenariosas se-
lection criteria. The tests are then animated on the FM in order to
bring them to the same abstraction level as the functional tests. This
allows re-using the existing concretization layer in orderto play se-
curity tests on the IUT and ensures the traceability of the tests gener-
ated by our approach with the original Common Criteria expression
of the security requirements.

The original part of this paper is to present the full security model
based testing process that as been adopted in the POSÉ project and
how it has been successfully deployed on a real case study, the IAS
platform. This work relies on previous works published by the part-
ners. In (14, 13) a formal definition of the conformance of an applica-
tion with respect to an access control policy has been proposed, tak-
ing into account a mapping relation allowing to relate models stated
at different levels of abstraction. Hints on our MBT approach for
security testing have been sketched in (33), with scenariosbasically
expressed as regular expressions. A language allowing to describe
the scenarios in terms of actions to fire and states to reach has been
defined in (26). In (27) the restriction of a B model to the executions
satisfying a given scenario is presented, by means of a synchronous



product of the B model with an automaton representing the scenario.

In Sec. 2 we describe the context (POSÉ project, B language) in
which this work took place, as well as the case study IAS. We present
in Sec. 3 the principle of the functional MBT campaign that was
first performed. Our process for completing the functional tests is
described in Sec. 4. Section 5 explains how to produce the SPMfrom
the security target. The language that we have defined to describe the
test patterns is presented in Sec. 6. The implementation of the test
generation is discussed in Sec. 7, and our experimental results are
given in Sec. 8. We finally compare our approach to related works
and conclude in Sec. 9.

2 Context of the Work
This work has been performed in the context of the POSÉ project.
The aim of this project was to propose a methodology for security
testing, based on formal models, and compliant with Common Cri-
teria methodology. The formal framework that has been retained is
the B method for several reasons. First, previous experiments based
on B models have already been led by the partners. Second, behind
its modelling language, the B method supports a proof process for
invariance properties and refinement. This aspect has been exploited
in POŚE in order to establish the theoretical framework of our ap-
proach (13). Finally a more anecdotal point is that the B method
is one of the formal methods recommended by the CC evaluation
methodology.

We first relate the project to the Common Criteria approach. Then
we very succinctly present the B modelling language, that was used
in this project. The IAS platform on which we have experimented
our approach is also described in this section.

2.1 Common Criteria Approach of the POŚE
Project

The IAS based products are generally ordered by Public authorities
(ID cards, e-passports or Health card) and then require to beCom-
mon Criteria certified. Therefore, the approach to be proposed by the
project POŚE should be as close as possible to the Common Criteria
methodology.

Common Criteria (10) is an ISO standard (ISO 15408) for the
security of Information Technology products that providesa set of
assurances w.r.t. the evaluation of the security implemented by the
product. Common Criteria provide confidence that the process of
specification, development, implementation and evaluation has been
conducted in a rigorous and standardized manner. The part ofthe
system that has been identified to be evaluated and certified is called
the target of evaluation (TOE). The Common Criteria approach is
based on two kinds of assurances: in (9), part 2 is dedicated to se-
curity functional components, used to describe the security behavior
of the system, and part 3 is dedicated to assurance components used
to describe how the system implements this security behavior. The
result is a level of confidence (called EAL for evaluation Assurance
level) measuring the assurance that the product implementsits secu-
rity behavior.

The security functional components are relative to variousaspects
of security and various mechanisms enforcing security. Forinstance,
the FDP class lists requirements relative to user data protection as
access control policies, transfers between the TOE and the outside,
protections against residual information, etc. The main assurance

classes are relative to the design of the application to be evaluated
(ADV class), how functional testing has to be conducted (ATEclass)
and vulnerability analysis (AVA class). For instance, aspects cov-
ered by the ATE class are how coverage analysis is conducted,the
depth of the testing activities based on the knowledge of theconcep-
tion (global interfaces, modular design, implementation level, etc.),
the content of the documentation and, finally, tests developed by the
evaluators themselves.

The POŚE project focuses on access control policies for several
reasons. First, in the domain of smart card applications, data protec-
tion is a central piece of security. Furthermore this aspectbecomes
more important when standardized platforms are concerned.For in-
stance, the IAS standard which was the POSÉ case study, aims at
receiving security data objects that carry out their own access control
rules. Thus the correctness of this platform is crucial w.r.t. the se-
curity requirements of applications as electronic passports or health
care cards.

The approach proposed in this paper can be seen as a contribution
to the fulfillment of the ATE assurance requirements regarding the
Common Criteria access control security components.

2.2 B Modelling Language
The B specification language was introduced by J.-R. Abrial in (1).
It is defined as a notation based on first order logic and set theory.
It allows the formal specification of open systems by means ofstate
based models calledabstract machines. More precisely, a B abstract
machine defines an open specification of a system by an initializa-
tion state and a set of operations. The environment interacts with
the system by invoking the operations. Intuitively, an operation has
a precondition and modifies the internal state variables by ageneral-
ized substitution. LetS be a substitution. Letout be a list of output
parameters andin be a list of input parameters. LetP be a precondi-
tion. An operation namedo is defined in B as:

out← o(in)=̂PRE P THEN S END.

Here are some generalized substitution examples:x := expr, IF
Q THEN S1 ELSE S2 END, andS1 ‖ S2 whereexpr is an expres-
sion, Q a predicate, andS1 andS2 two generalized substitutions.
Invariants relative to state variables can be stated and established, us-
ing proof obligations derived by the classical weakest precondition
approach (15).

We give in this section the meaning of the B symbols and clauses
that appear in the forthcoming examples of Fig. 5, Fig. 6 and Fig. 7.
The clauseSETS is used to declare some given sets or enumerated
sets as in Z. Concrete constants and their properties are respectively
declared under the clausesCONSTANTS andPROPERTIES of a
B machine. The B notations appearing in the B expression examples
have the following meaning:

• r ∈ E ↔ F denotes the declaration of a relation betweenE and
F ; r−1 is its inverse andr[d] is the relational image of a setd,

• f ∈ E → F denotes the declaration of a total function from the
domainE to the rangeF ; f(x) denotes the image ofx by f ,

• x 7→ y denotes a pair of values of a function or a relation,

• E × F denotes the cartesian product of the setsE andF ,

• E − F denotes the subtraction of the setF to the setE.

Thanks to the proof capabilities of the B method, we have verified
invariant properties on our formal models. We have not used the
refinement capabilities of B.
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Figure 1: A sample IAS tree structure

2.3 IAS Premium Case Study

As stated before, the POSÉ project aims at producing conceptual,
methodological and technical tools for the conformity validation of
a system to its security policy, with smart card applications as a tar-
get domain. Experiments have been made with a real size industrial
application, the IAS platform. We give all the technical details re-
quired to fully understand the examples that illustrate thefollowing
sections.

IAS stands forIdentification, Authentication and electronic Sig-
nature. It is a standard for Smart Cards developed as a common plat-
form for e-Administration in France, and specified (19) by GIXEL4.
IAS provides identification, authentication and signatureservices to
the other applications running on the card. Smart cards suchas the
french identity card, or the “Sesame Vitale 2” card5 are expected to
conform to IAS.

As a beginning, functional tests have been produced by a model
based approach for a Gemalto implementation of IAS. For that, a
functional model has been written in B by Smartesting and LIFC and
an concretization layer have been written by Gemalto. We first de-
scribe below some aspects of the IAS case study and of the previous
functional model. Then we focus on the access control security part
of this platform, i.e. how APDU command executions are controlled.
Finally, we describe how the SPM has been formalized, in order to
be compatible with the Common Criteria and the POSÉ approach.

2.3.1 IAS File System Overview IAS conforms to the ISO 7816
standard, and can be implemented either as a JavaCardTM or as a
standalone application. The file system of IAS is illustrated with an
example in Fig. 1. Files in IAS are eitherElementary Files(EF), or
Directory Files(DF), such asfile 01 andfile 03 in Fig. 1. The
file system is organized as a tree structure whose root is designed as
MF (Master File). Directory files hostSecurity Data Objects(SDO).
SDO are objects of an application that contain highly sensible data
such as PIN codes or cryptographic keys (see for examplepin 02
or key 01 in Fig. 1), that can be used to restrict the access to some
of the data of the application.

2.3.2 Some Data and Commands of IAS The services provided
by the IAS platform can be invoked by means of various APDU6

commands.
Some of these commands allow to create objects: for ex-

ample CREATE FILE DF is for creating a directory file and
PUT DATA OBJ PIN CREATE is for creating a PIN code, etc.

4http://www.gixel.fr - it is the trade association in
France for electronic components industries

5A card with medical and personal data of the holder of the card
6Application Protocol Data Unit- it is the communication unit

between a reader and a card; its structure conforms to the ISO7816
standards

Some other commands allow to navigate in the file hierarchy, such
asSELECT FILE DF PARENT or SELECT FILE DF CHILD, or
to change the life cycle state of files, such asDEACTIVATE FILE,
ACTIVATE FILE, TERMINATE FILE, orDELETE FILE, . . .

Finally, a group of commands allows to set attributes. For example
RESET RETRY COUNTER is for resetting the try counter to its ini-
tial value,CHANGE REFERENCE DATA is for changing a PIN code
value,VERIFY sets a validation flag totrue or false depending
on the success of an identification over a PIN code, etc.

As usual with APDU commands, the IAS platform responds by
means of astatus word(i.e. a codified number), which indicates
whether the APDU command has been correctly executed or not.
Otherwise, the status word returned by the APDU indicates the na-
ture of the problem that prevented the command to end normally.

2.3.3 Functional Model of IAS The B model for IAS is 15,500
lines long. The complete IAS commands have been modelled as a
set of 60 Boperations. As the B model of IAS is intended to serve as
an oracle for the tests, and for the operations to behave in an“APDU-
like” manner, it has been written as a defensive formal specification.
This means that invoking an operation with well-typed parameters
is always allowed, as its pre-condition only checks the typing of the
parameters. The operation responds by returning a value that models
a status word, and that indicates if the operation should succeed or
fail from a functional point of view. For example, trying to apply the
operationDEACTIVATE FILE7 to a file that is already deactivated
returns a status word value8 of error meaning that the file is already
deactivated.

2.3.4 Security Target for IAS Due to the complexity of the IAS
platform, we have focused our security target on the controlof the
APDU commands execution, depending on the current files and se-
curity data objects. This target describes subjects, security attributes
and rules, in conformance with the Common Criteria securityfunc-
tional components. Here is an example of an instance of the compo-
nent ACF.1.2 (class FDP):

The operationVERIFY(ref sdo, PIN code) can be exe-
cuted by the subjectTERMINAL if and only ifref sdo currently
denotes a well-defined PIN object, belonging to an activatedfile,
and if the access conditions attached to the command VERIFY for
this object are verified in the current state of the application.

The access to an object by an operation (an APDU command) in
IAS is protected by security rules based on the security attributes of
the object. The access rules can possibly be expressed as a conjunc-
tion of elementary access conditions, such asNever (which is the
rule by default, stating that the command can never access the ob-
ject), Always(the command can always access the object), orUser
(user authentication: the user must be authenticated by means of a
PIN code). Application of a given APDU command to an object
can then depend on the state of some other SDOs: for instance the
commandVERIFY can successfully be applied onpin 02 only if
pin 01 has been previously verified with success.

We give below some variables of the security model that we use
in the remainder of this paper.

7More precisely, the operation in the model corresponding tothe
APDU commandDEACTIVATE FILE.

8More precisely, a number that corresponds to a status word of
the functional specification.



Domains of values The setOBJ ID denotes the set of refer-
ences attached to objects manipulated by the IAS platform (PINs,
files, SDOs, . . . ). The variablesOBJ list, DF list, SDO list,
PIN list respectively denote the subsets of objects, directory files,
Security Data Objects and Personal Identification numbers of the cur-
rent application (OBJ list ⊆ OBJ ID, DF list ⊆ OBJ list,
SDO list ⊆ OBJ list, PIN list ⊆ SDO list).

The files and SDOs hierarchy The variablecurrent DF (∈
DF list) stores the reference of the current selected DF. The vari-
able PIN 2 dfParent (∈ PIN list → DF list) associates
with a PIN reference the reference to the DF in which the PIN ob-
ject is located. In the same way, the variableDF 2 dfParent
(∈ DF list → DF list) associates with a DF referencedf
the reference to the DF wheredf is located9. These dependen-
cies can be extended to the closure: for instance the variable
DF 2 dfParent closure (∈ DF list ↔ DF list) asso-
ciates a DF with all its antecedents, including itself.

Security dependencies The variable rule 2 obj
(∈ OBJ list ↔ (SDO list ∪ {always,never})) asso-
ciates with an object reference the SDO that protects it. An
object o that is always (resp. never) accessible is represented
by (o 7→ always) (respectively(o 7→ never)). Notice that
always and never are two particular SDO references that are
not in the SDO list. The variablepin authenticated 2 df
(∈ PIN list↔ DF list) associates with a pin reference the DF
references where the PIN object is authenticated.

Consider for example the data structure of Fig. 1. The pair
pin 02 7→ file 01 ∈ PIN 2 dfParent means that the PIN
objectpin 02 is located in the DFfile 01. The pairfile 02 7→
pin 02 ∈ rule 2 obj means that the access to the DFfile 02
is protected by a user authentication over the SDOpin 02. If
pin 02 7→ file 02 ∈ pin authenticated 2 df, then the
access to the DFfile 02 is authorized, otherwise it is forbidden.

3 Model-Based Testing using LTG
This section describes the principles of the Model Based Testing ap-
proach used to perform a functional test campaign on the IAS case
study. This approach is implemented within the Leirios TestGener-
ator (LTG) tool (23) from Smartesting10, that takes a B model (1) as
an input and automatically computes functional test cases based on a
structural coverage of the operations of the model.

3.1 Model-Based Testing Process
The process for computing model-based functional tests is summa-
rized by Fig. 2. The process is made of three steps.

• Test Generation.A set of functional testsis first statically com-
puted from a functional model FM according to some selection
criteria. In our case, the test generation is performed by LTG. The
tool computes test targets from the model according to behavior,
decision and data coverage criteria, as will be further detailed in
Sec. 3.2 and Sec. 3.3.

9DF 2 dfParent is arbitrarily extended by the pairMF 7→ MF
in the case of the master file.

10formerly Leirios Technologies; see
http://www.smartesting.com

Figure 2: Functional Model-Based Test Generation Process

• Concretization.As the tests computed have the abstraction level
of the functional model FM, they have to be transformed intocon-
crete tests, at the level of the implementation. This step relies on
the concretization layer which maps the operations and dataof
the model FM to the operations and data of the IUT, as further
explained in Sec. 3.4.

• Execution.In this step the verdict of the execution of a concrete
test is given by the comparison between the outputs predicted by
the FM and the outputs given by the IUT (see Sec. 3.4).

The dashed circled parts in Fig. 2 shows what in the process will
be reused to generate security tests, in addition to the functional ones.
This will be performed by replacing the functional tests entering the
lower dashed circled part by functional security tests (seeSec. 4.2).

The next three sections detail the composition of the test cases,
the generation of test targets by application of coverage criteria and
finally the concretization of test sequences into executable scripts.

3.2 Test Case Composition
The purpose of the model-based testing approach of LTG aims at ac-
tivating the operations of the B model. More precisely, it focuses
on a path-coverage of the control flow graph of the operations, in
which each path is namedbehavior. Thus, each operation is covered
according to its structure, by extracting its nested behaviors. Each
behavior is composed of two elements: an activation condition and
an effect that describes the evolution of the state variables if the acti-
vation condition is satisfied.

For each behavior, a test target is defined as its activation condi-
tion (decision). The tests covering the behavior will be constituted of
a preamblethat puts the system in a state that satisfies the activation
condition of the behavior. To achieve that, a customized algorithm
automatically explores the state space defined by the B modeland
finds one path from the initial state to a state verifying the target.
LTG automatically selects the shortest preamble that reaches the test
target. It is equipped with a constraint solver and proceedsby sym-
bolic animation to valuate the parameters of a test sequence.

Apart from the preamble, a test is thus composed of the 4 ele-
ments, as shown in Fig. 3. The testbodyconsists in the invocation of
the tested operation with the adequate parameters so that the consid-
ered behavior is effectively activated. Theidentificationphase is a set



of user-defined operation calls that are supposed to performthe ob-
servation of the system state. Their invocation when playing the test
case on the IUT will make it possible to compare the concretely ob-
served values w.r.t. their expected values computed from the model.
Finally, a test case is ended by apostamblethat is a (facultative) se-
quence of operations calls that resets the system to its initial state so
as to chain the test cases.

3.3 Coverage Criteria for Test Target Generation

From the previous basic definition of a test target, based on the cov-
erage of the structure of the operation, two other model coverage
criteria can be applied, namely predicate and data coverage. These
criteria are selected by the validation engineer.

Predicate coveragemakes it possible to increase the test tar-
gets number, and possibly their error detection capabilities. This
provides a mean for satisfying usual predicate coverage criteria
such as:(i) Decision Coverage(DC) stating that the tests evalu-
ate the decisions (each activation condition) at least once, (ii) Con-
dition/Decision Coverage(C/DC) stating that each boolean atomic
subexpression (called a condition) in a decision has been evaluated
as true and as false,(iii) Modified Decision/Condition Coverage
(MC/DC) stating that each condition can affect the result ofits en-
compassing decision, or(iv) Multiple Condition Coverage (MCC)
stating that the tests evaluate each possible combination of satisfying
a predicate. In practice, different rewriting rules are applied on the
disjunctive predicate form of the decisions, so as to refine the test
targets in order to take this coverage criteria into account.

Data coveragemakes it possible to indicate which of the test data
have to be computed in order to instantiate the tests. The options, ap-
plied to operation parameters and/or state variables, propose a choice
between:(i) all the possible values for a given variable/parameter
that satisfy the test target,(ii) a smart instantiation that selects a
single value for each test data, or(iii) a boundary values coverage,
for numerical data, that will be instantiated to their extrema values
(minimal and maximal values).

3.4 Executable Scripts and Verdicts

Once the abstract test cases have been computed, they have tobe
translated into the test bench syntax so as to be automatically exe-
cuted on the IUT. This is the concretization step.

To achieve that, the validation engineer has to provide two corre-
spondence tables. One of these tables maps the operation signatures
of the B model to the control points of the test bench. The other one
maps the abstract constant values of the B model to the internal data
values of the IUT. By using an appropriate translator, a testscript
is automatically generated into the syntax of the test bench, ready
to be run on the IUT. The correspondence tables and the translator
implement the concretization layer.

Concretely, about 7000 tests were generated by LTG on the IAS
case study. The average length of these tests in number of operation

Figure 3: Composition of a LTG test case

calls is approximately 5. Running these tests on the simulators of
Gemalto took two days.

For each test, the verdict is established by comparing the outputs
of the system in response to inputs sent as successive operations.
The concretization layer is in charge of delivering the verdict, by
implementing functions that perform the comparison. In this context,
the more observation operations (identification phase of Fig. 3) are
available, the more accurate the verdict is.

Limitations This approach aims at ensuring that the behaviors de-
scribed in the model also exist in the IUT, and their implementation
conforms to the model. Nevertheless, this approach suffersfrom sev-
eral limitations.

First, the preamble computed by LTG is systematically the short-
est path from the initial state to the test target. As a consequence,
possibly interesting scenarios for reaching this target may be missed.
This implies a lack of variety in the composition of these preambles,
that may possibly miss some errors. Second, the preamble computa-
tion is bounded in depth and/or time. This may prevent a test target
to be automatically reached.

Third, the accuracy of the conformance verdict depends on the
testabilityof the IUT, i.e., the number of observation points that are
provided. When using LTG, one has to provide a systematic se-
quence of operations that can be used to observe the system state.
Nevertheless, in smart card applets, the complexity of command calls
(embedded within APDU buffers) prevents this solution to beeasily
set up, reducing the observation points to comparing the status words
of the commands. Thus, the tests have to be built so as to, first, pro-
voke an error, and, second, observe the resulting defect through an
unexpected output status word.

Finally, the security requirements of the security target,for which
the Common Criteria require testing evidences, may not easily be
expressed in the model and related to the numerous functional tests.

To overcome these limitations, we develop, in the remainderof
the paper, a security model-based testing approach that consists in
using scenarios in order to ensure that security propertiesare cor-
rectly implemented. It is important to notice that a direct link can
be established between a scenario and the security requirement it ad-
dresses.

4 Security Property Based Testing Process
We illustrate in this section the concepts of security property and test
purpose and we detail the different steps of POSÉ security model
based testing process.

4.1 Test Needs and Test Purposes
We see atest purposeas a mean to exercise the system in a particular
situation w.r.t. a property. Based on its know-how, an experienced se-
curity engineer will imagine possible dangerous situations in which
a property needs to be tested.

Consider for example an access controlsecurity propertyfor IAS
stating that to write inside a directory file, a given access condition
has to be true, otherwise the writing is refused. Functionaltesting
of this property with LTG activates two kinds of behaviors for the
operation of writing: a success is reached by placing the system into
a state where the access condition is true, whereas a failureis reached
by placing the system into a state where it is false. Securityengineers
involved in the POŚE project have expressed a need for testing such a



security property in other situations. For example, they have thought
of the case when the access condition is true at an instantt and then
becomes false att+δt. The test need is to make sure that the previous
true value for the access rule has no side effect at the time ofwriting.

A test purpose corresponding to this test need is to:reach a state
where the access rule is true; perform the writing operation11; reach
a state where the access rule is false; perform the writing operation.

This example illustrates that one often wants to express a test pur-
pose as both states to be reached and operations to perform. We
have designed a language for expressing such test purposes by means
of states and actions (see (26)). Once formalized, a test purpose is
called atest pattern. In our process, we use test patterns as selec-
tion criteria to compute abstract security tests. Anabstract testis a
sequence of operation calls, with parameters computed according to
a (functional or security) model. The abstract test also incorporates
the expected result of each call and thus provides an oracle for the
concrete test that will be executed on the IUT.

4.2 POŚE Process for Generating Security Tests
Our process for generating security tests uses a security model as an
oracle and test purposes as dynamic selection criteria to extract tests
from this model. The idea is to reuse the dashed circled partsof the
MBT process of Fig. 2, by replacing the functional tests withfunc-
tional security tests. Figure 4 illustrates our approach: the abstract
security test generation process is represented in Fig. 4(a), while the
valuation of these tests into functional security tests is represented in
Fig. 4(b). The process is made of five steps, numbered from 1 to5 in
Fig. 2.

1. Formalization of the static and dynamic access control security
rules. In this step, the security engineer writes a semi-formal doc-
ument from the security specifications, called thesecurity target.
It is written as a Common Criteria document. For access control
requirements, he formalizes both the access control rules (the rule-
based model) and how subjects, objects and security attributes can
change (the dynamic model).

2. Generation of a security policy model SPM. This step takes as
input the two previous models and automatically produces a be-
havioral SPM that abstracts the system in a level that only focuses
on security aspects.

3. Formalization of test patterns. Based on their security expertise
and their knowledge of the security policy model, the security en-
gineers state some test patterns using a well-defined language, al-
lowing to describe sequence of operations and conditions onvari-
able values. The parameters are not instantiated in the operation
calls.

4. Generation of a set of abstract security tests. This step takes as
input a test pattern TP and an SPM to produce a set ofabstract
security testsin which security the parameters are instantiated.

5. Valuation of the abstract security tests into functional security
tests. In this step, security tests are replayed on the FM in or-
der to valuate the functional parameters and results. This provides
functional security tests. During the valuation, the conformance
between the functional and security models is checked w.r.t. a

11this is for making sure that before the loss of the right to write,
the writing operation was indeed possible, and not refused for any
other reason.

mapping functionM that links the functional and security results.
A non-conformance reveals an inconsistency between the SPM
and the FM (see Sec. 7.2.3).

(a) Security Tests Generation (b) Tests Valuation

Figure 4: Security tests generation process

In this process the parameters are added to the operation calls at
successive steps of the process. The parameters are completely ab-
stracted at step 3 in the test patterns, then step 4 adds the security
parameters to the calls and finally the functional parameters are com-
puted at step 5. Some implementation parameters can also be added
at concretization time (see Fig. 2), where the abstract operation calls
are translated into concrete calls of the implementation (APDUs in
the case of IAS).

Consider for example the operationVERIFY that performs
an identification by means of a PIN code. A call to this
operation would appear asVERIFY in a TP (step 3) and as
VERIFY(ref sdo, PIN code) (see Sec. 2.3.4) in an abstract
security test (step 4), withref sdo and PIN code being some
sdo and pin values. Then the call appears asVERIFY(ref sdo,
PIN code, IN SM Level, IN Good SM) in a functional se-
curity test (step 5) because IAS operations have additionalparam-
eters in FM that indicate the level of secure messaging between the
card and the terminal12. Finally, in the case of theVERIFY com-
mand, no implementation parameters are added at the concretization
step, but the operation calls are translated into APDUs.

4.3 Discussion
This process completes the model-based generation of the former
functional tests. We re-use the functional model FM, the concretiza-
tion layer and the execution ground installation of the concrete tests.
The security engineer has to design and to formalize the security
policy model SPM and the test pattern TP. With this approach,the
security engineer is only concerned by the security policy specifi-
cation. He does not need to know the remainder of the functional
specification. In addition, our process is consistent with the Com-
mon Criteria approach that explicitly distinguishes between the se-
curity and application models and imposes to relate these two mod-
els (our conformance relationship). From a practical pointof view,

12These parameters are not considered in our SPM that only fo-
cuses on the verification of access conditions.



the use of the security model for test generation allows us tomaster
the combinatory: because the security model is more abstract than
the functional model, the state space explored for the generation of
security tests is smaller. For instance in the IAS case studythe FM
contains about 15,500 lines and 60 operations and the SPM only con-
tains about 1,100 lines and 12 operations.

In the next sections we detail how the different steps of the POSÉ
security model based testing process have been effectivelyimple-
mented and applied on the IAS case study.

5 Security Policy Model Formalization
From this target of evaluation, a formal model of the access con-
trol part has been developed. This model can be assimilated to the
assurance requirement SPM (for Security Policy Model) of the class
ADV. A language based on the B method has been developed in order
to formally specify and verify security access control models. This
language is supported by a tool, named Meca (20, 14).

5.1 POŚE Security Model of IAS
In the POŚE approach, a security model contains the traditional rules
part attached to access control policies but also a dynamic model
describing how security attributes, subjects and objects can evolve.
The rule-based modelspecifies subjects, objects, security attributes
and operations whose execution is controlled.

We give in Fig. 5 a sub-part of this model allowing to describe
conditions attached to the commandSELECT FILE DF CHILD.
In this example the access control rule does not depend on a sub-
ject: permission is then a binary relationship between operations
whose execution has to be controlled and the object on which the op-
eration is applied. Here, the commandSELECT FILE DF CHILD
can be invoked only if the current directory is activated andif the
selected directory filedf id is effectively a sub-directory of the
current directory file. Security attributes are here the life cycle
of files (DF 2 life cycle state), the file and SDOs hierar-
chy (PIN 2 dfParent and DF 2 dfParent) and the state of
the pin authentications (pin authenticated 2 df). Variables
DF 2 life cycle state is a total function fromDF list to
the set{activated, deactivated, terminated}. Other variables have
been already defined Sec. 2.3.

The dynamic modelgives an abstract view of commands, fo-
cusing on the behavioral changes of security attributes. Figure 6
describes the part of the dynamic model relative to the command
SELECT FILE DF CHILD. This specification describes how the
current directory file evolves as well as the set of authenticated pins.
In particular, pins that are redefined indf id lose their authenticated
status.

5.2 Generation of the Security Model SPM
The inputs of the Meca tool are the rule-based and the dynamicmod-
els. Meca implements some verifications related to the consistency
of these two models and produces a security model, obtained in
weaving the two input models. The security model can be seen as
a monitor that traps the execution requests and enforces theaccess
control rules. In the context of the POSÉ project, this security model
can be assimilated to the SPM assurance component of Common
Criteria.

For each controlled operation, the security model containsa new
operation corresponding either to the execution of the controlled op-

MACHINE IAS RULE

SETS
...
OPERATION = {SELECT FILE DF CHILD, CREATE FILE DF, . . .}

CONSTANTS
...

/* Permission relationship */
permission

PROPERTIES
...
permission ∈ OPERATION↔ DF list ∧

/* access rule relative to the command SELECT FILE DF CHILD */

∀(df id).(
/* df id denotes a child of the current directory file */
DF 2 dfParent(df id)=current DF
/* the current directory file is activated. */
∧ DF 2 life cycle state(current DF) = {activated}

=⇒ (SELECT FILE DF CHILD 7→ df id) ∈ permission)

/* access rule relative to the command CREATE FILE DF */
∧ . . .

END

Figure 5: Rule-based part of the security model of IAS

eration, if security conditions are verified, or to a null execution. This
operation returns a new result,rs, indicating if the execution has
been authorized or not (success/error). For instance letout ←
op(i) =̂ PRE P THEN S END be the definition of the operationop
in the dynamic model. LetC ⇒ (s 7→ op 7→ o) ∈ permission

be the unique rule associated with the operationop (to simplify).
The generated security model contains a new operation also named
op (Fig. 7) describing how the execution of the operationop is con-
trolled. Predicatepre typ denotes the part of the preconditionP
relative to how input parametersi are typed. Variablessubject and
object contain the value of the current subject and object. These
variables have to be defined in the dynamic model.

The security model can be seen as the specification of all imple-
mentations that conform to the rule-based and dynamic models. In-
tuitively an implementation for which all sequences of positive calls
(associated to an effective execution of the operations) can also be
played by the security model is conform. In particular the imple-
mentation can refuse more executions than the security model, for
instance for functional reasons. A more formal definition ofhow
functional models and security models can be linked will be given in
Sec. 7.

Finally, the use of a formal method can be exploited to establish
properties related to security aspects. As pointed out in Sec. 2.2, in
the B method, invariant properties can be stated and proved.The
first class of properties that has been proved on our securitymodel
is related to the file structure (a tree) and its consistency with the file
life cycle states. A second class of properties is related tothe consis-
tency between authenticated pins and the current directoryfile: there
cannot exist an authenticated pin that does not belong to a directory



SELECT FILE DF CHILD(df id) =
PRE df id ∈ DF ID ∧ DF 2 dfParent(df id)=current DF
THEN

current DF := df id /* update of the current df*/
‖ LET pin loosing auth BE

pin loosing auth = pin authenticated 2 df−1[{current DF}]
∩ PIN 2 dfParent−1[{df id}]

IN pin authenticated 2 df := pin authenticated 2 df ∪
(pin authenticated 2 df−1[{current DF}] - (pin loosing auth)×{df id}

END
END;

Figure 6: An operation of the dynamic part of security model of IAS

file between the root and the current directory file (see property (1)).
Finally, another class of properties is related to the absence of cycle
between security conditions attached to SDOs.

∀(pin id, df).((pin id 7→ df ∈ pin authenticated 2 df)

⇒ (pin id ∈

(PIN 2 dfParent−1[DF 2 dfParent closure[{df}])))

(1)

Establishing formal properties from the target of evaluation is one
of the requirements in the higher level of assurance in the Common
Criteria, used both to prove the consistency of the constructed formal
models and to show the correspondence between the security target
and the formal models. This allows giving further assurances on
the security target. Furthermore, because the security model only
focuses on some aspects of the system, security attributes,objects
and subjects, it is generally small and abstract enough to support
formal verifications.

6 Language for Test Patterns Description
In this section, we introduce the language that we have designed to
formally express the tests purposes as test patterns (26).

We want the language to be as generic as possible w.r.t. the mod-
elling language used to formalize the system. The language is struc-
tured as three different layers:model, sequence, andtest generation
directive.

Themodel layeris for describing the operation calls and the state
properties in the terms of the SPM. This layer constitutes the inter-
face between the SPM and the test patterns. Thesequence layeris
based on regular expressions and allows to describe the shape of test
scenarios as sequences of operation calls leading to statesthat satisfy
some state properties. Thetest generation directive layeris used to
deal with combinatorial issues, by specifying some selection criteria
intended to the test generation tool.

out, rs← op (i) =̂

PRE pre typ THEN /* typing of parameters */

IF subject=s ∧ object=o ∧ C ∧ P

THEN S || rs := success

ELSE rs := error

END

END

Figure 7: SPM general format of an operation

We give the syntax of each layer and then we give an example of
a test pattern issued from the IAS study.

6.1 Syntax of the Model Layer
The syntax of the model layer is given in Fig. 8. The ruleSP de-

OP ::= operation name

| ”$OP”
| ”$OP \{”OPLIST”}”

OPLIST ::= operation name

| operation name”,”OPLIST

SP ::= state predicate

Figure 8: Syntactic Rules for the Model Layer

scribes conditions as state predicates over the variables of the SPM.
The ruleOP allows to describe the operation calls, either by an oper-
ation name indicating which operation is called, or by the token$OP
meaning that any operation is called or by$OP\{OPLIST}meaning
that any operation is called but one from the listOPLIST.

6.2 Syntax of the Test Generation Directive Layer
This part of the language is given in Fig. 9. It allows to specify guide-

CHOICE ::= ”|” | ”⊗”
OP1 ::= OP | ”[”OP”]”

Figure 9: Syntactic Rules for the Test Generation DirectiveLayer

lines for the test generation step. We propose two kinds of directives
aiming at reducing the search for instantiations of the testpatterns.

The ruleCHOICE introduces two operators denoted as| and⊗ for
covering the branches of a choice. LetS1 andS2 be two test patterns.
The patternS1 | S2 specifies that the test generator must generate
tests for both the patternS1 and the patternS2. S1 ⊗ S2 specifies
that the test generator must generate tests for either the patternS1 or
the patternS2.

The ruleOP1 tells the test generator to cover one of the behaviors
of the operationOP. It is the default option. The test engineer can
also ask for the coverage of all the behaviors of the operation by
surrounding its call with brackets.

6.3 Syntax of the Sequence Layer
This part of the language is given in Fig. 10. The ruleSEQ is for

SEQ ::= OP1 | ”(”SEQ”)” | SEQ” (”SP”)”
| SEQ ”.” SEQ
| SEQ REPEAT
| SEQ CHOICE SEQ

REPEAT ::= ”*” | ”+” | ”?”
| ”{”num”}” | ”{”num”,}” | ”{,”num”}” | ”{”num”,”num”}”

Figure 10: Syntactic Rules for the Sequence Layer

describing a sequence of operation calls as a regular expression.
A step of a sequence is either an operation call as denoted byOP1

(see Fig. 9) or an operation call that leads to a state satisfying a state
predicate, as denoted bySEQ  (SP).



Sequences can be composed by the concatenation of two se-
quences, the repetition of a sequence or the choice between two se-
quences. We use the usual regular expression repetition operators
(* for zero or many times,+ for one or many times,? for zero or
one time), augmented with bounded repetition operators ({n}means
exactlyn times,{n,} means at leastn times,{,m} means at most
m times, and{n,m} means betweenn andm times). Notice that
using the operators* and+ possibly define infinite sets of tests. To
be of practical interest, they will have to be instantiated as explicit
numbers some time in the process. Using these operators in a test
pattern allows the engineer to postpone this question, as explained in
Sec. 7.1.1.

6.4 Test Pattern Example

Here, we exhibit one of the test patterns (based on the language intro-
duced above) written for the experimentation of our approach. The
property to be tested is “to access an object protected by a PIN code,
the PIN must be authenticated” and the test need is “we want to test
this property after all possible ways to lose an authentication over a
PIN”.

The test pattern is given in two stages: the initialization stage and
the core testing stage. Figure 11 presents the initialization stage of
the test pattern in four steps, aiming at building the data structure re-
quired on the card to run the test (see Sec. 2.3.4 for the explanation of
the variables used in this example). The purpose of the first step is to
create a new DF (file 01). The second step aims at creating a PIN
object (pin 02) into the DFfile 01 and to gain an authentication
over it. The aim of the third step is to create the DFfile 02 into
the DFfile 01. Finally, the last step aims at setting the current DF
to file 01 in order to start the core of the test. The resulting data
structure is the left part of the Fig. 1: the DFfile 02 is protected
by the PINpin 02 for all commands.

We have given in Fig. 11 and Fig. 12 a label to each target state
predicate expressed in the pattern, so we can refer to it afterwards.
These labels appear as double slashed comments on the right hand
of each predicate:// P1, // P2, etc.

CREATE FILE DF
 (rule 2 obj[{file 01}] ={always} ∧ current DF = file 01) // P1

. PUT DATA OBJ PIN CREATE . VERIFY
 (PIN 2 dfParent(pin 02) = file 01
∧ file 01 ∈ pin authenticated 2 df[{pin 02}]) // P2

. CREATE FILE DF
 (rule 2 obj[{file 02}] = {pin 02} ∧ current DF = file 02) // P3

. SELECT FILE DF PARENT
 (current DF = file 01) // P4

Figure 11: Example of a test pattern — initialization step

Figure 12 shows the core testing stage, describing the test purpose
of a successful authentication after all possible ways to lose an au-
thentication. First, the pattern describes the five possible ways for
losing the authentication over the PINpin 02 (for instance, a fail-
ure of theVERIFY command or a reset of the retry counter). The
aim of the second step is to select the DFfile 02, with the com-
mandSELECT FILE DF CHILD. The final step of the test pattern
describes the application of six commands, withe the current direc-
tory file beingfile 02 in order to test the correctness of the access
conditions.

. (VERIFY | CHANGE REFERENCE DATA
| (RESET . SELECT FILE DF CHILD) | RESET RETRY COUNTER
| (SELECT FILE DF PARENT . SELECT FILE DF CHILD))
 (current DF = file 01 ∧ file 01 /∈ pin authenticated 2 df[{pin 02}]) // P5

. SELECT FILE DF CHILD
 (current DF = file 02) // P6

.[ CREATE FILE DF|DELETE FILE | ACTIVATE FILE | DEACTIVATE FILE
| TERMINATE FILE DF | PUT DATA OBJ PIN CREATE ]

Figure 12: Example of a test pattern — execution step

7 From Security Test Patterns to Concrete Se-
curity Tests Execution

In this part we describe how concrete security tests are produced
from test patterns, using the POSÉ tools suit. The process is in three
steps. Section 7.1 presents the generation of the abstract security
tests, by unfolding the test patterns and valuating the security pa-
rameters from the SPM. In Sec. 7.2, we describe the valuationof
the functional parameters from the FM. We finally present thetests
execution in Sec. 7.3.

We apply this test generation process to the test pattern example
introduced in Fig. 11 and Fig. 12. We also present the practical and
theoretical restrictions of the proposed approach.

7.1 Abstract Security Tests Generation
7.1.1 Unfolding of the Test Patterns Each test pattern has to be
transformed into the set of test sequences it represents. Todo so, we
translate a test pattern into an automaton and then unfold it. This
gives test sequencesthat are made of operation calls and states to
reach. Notice that we bound the number of repetitions induced by
the operators ‘*’ and ‘+’, in order to have a finite number of test se-
quences. The bounds can either be chosen by the validation engineer
or set to a default value. Also notice that the “exclusive choice” oper-
ator⊗, allowed by the language in the test generation directive layer,
have not been implemented yet.

Figure 13: Automaton associated to the test pattern example

Figure 13 gives the automaton for the test pattern example given
in Fig. 11 and Fig. 12 of Sec. 6.4. The edges are labelled by the
operation names of the pattern and the labels in the verticesrefer to
the target state predicatesPi of Fig. 11 and Fig. 12. Predicatetrue
denotes a state that is not constrained.

The unfolding of this pattern gives thirty test sequences, since five
commands provoke the loss of authentication (transitions between



P4 andP5), and six different commands test the access control (tran-
sitions betweenP6 and the final statetrue).

7.1.2 Test Generation from the SPM In this step the SPM is
used to compute parameter values for operations that match the
constraints expressed in the test sequence. For example thecall
SELECT FILE DF CHILD, between predicatesP5 and P6, will
be instantiated inSELECT FILE DF CHILD(file 02) returning
the valuesuccess.

We use LTG to compute abstract security tests. By default, LTG
tries to cover every behavior of every operation of the model. By
using a test pattern, we guide the test generation by forcingLTG to
visit the successive target states and to call the successive operations
given in the pattern. An extension of LTG has been developed for
research purposes in POSÉ to take into account test selection guided
by test pattern. This extension relies on thepreamble helpermecha-
nism of LTG, which allows to describe a desired test by the sequence
of operations it activates. Technically, we have automatically added
one “fictive” operation in the model per state to reach. Such an op-
eration reaches the targeted state, provided it is possibleto reach it
from the current state.

Notice that the efficiency of the computation of the abstractsecu-
rity tests can be improved, by considering a restriction of the model
to its executions matching the test pattern. We have shown in(27)
how this can be obtained in B, by a synchronous product of the test
pattern with the model. This synchronous product was not imple-
mented in the POŚE experimental prototype, as it was developed
prior to (27).

The valuation of a test sequence may fail when the constraints are
unsatisfiable due for example to an unreachable state. For instance
the test pattern of Fig. 12 imposes that the execution of the com-
mandSELECT FILE DF CHILD leads to the statecurrent DF
= file 02 (P6) from the initial statecurrent DF = file 01
(P5). As specified in the dynamic model (Fig. 6), this command
succeeds only if the following condition holds:

DF 2 dfParent(file 02) = file 01.

If the initial hierarchy does not fit this condition, LTG willfail
and the test pattern will not produce any test. The valuationof a test
sequence may also fail for a more pragmatic restriction, when the
test generation tool fails at finding a valuation in some given time.
Table 1 summarizes the possible results for the abstract security test
generation step.

Result of the abstract security test generation step
OK : a set of abstract security tests is generated
KO : an unsatisfiable scenario is detected or some

LTG limitations are encountered

Table 1: Abstract security test generation step

When the abstract security test generation fails, the current test se-
quence must be analyzed in order to detect the reason of this failure.
In particular the test pattern associated to the faulty testsequence
could be redefined.

7.2 Functional Security Tests Generation
In this section we explain how functional security tests areproduced
from abstract security tests.

7.2.1 Test Valuation from the FM Reusing the layer that con-
cretizes the tests issued from the FM (see section 3.4) requires that
the tests given by the SPM are brought to the same abstractionlevel
as the FM. We obtain it by “replaying” these tests with the FM,us-
ing the LTG tool. For a given abstract security test, the input of LTG
is the sequence of operation calls with their security parameter val-
ues and in omitting the output values. We expect that LTG produces
some sequences with the same operation calls, enriched by values for
functional parameters and output results. In the next sections we dis-
cuss how the functional security tests are shown to be in concordance
with the SPM. Due to the fact that smart card applications aregener-
ally defensive, i.e. operations are always callable even ifit terminates
with an error status word, it is always theoretically possible to obtain
a functional sequence replaying a security test. Table 2 summarizes
the possible results for the functional security generation step.

Result of the functional security generation step
OK : a set of functional security tests is generated
KO : some LTG limitations are encountered

Table 2: Functional security test generation step

7.2.2 Mappings Between SPM and FM results By means of a
conformance relation, we verify that the results returned by the SPM
and the FM models are consistent. The conformance relation is based
on a function, called amapping, that associates to each status word
returned by a given operation, an abstract security status belonging to
the set{success, error}, as defined in section 5.2. Table 3 shows
a part of the mapping function for theSELECT FILE DF CHILD
command.

Status word Security status

A success 6900 success
A security error: the current 6985 error
directory file is not activated
A functional error: the secure 6982 error
messaging parameter is invalid

Table 3: Mapping for theSELECT FILE DF CHILD command

Status words mapped tosuccess correspond to behaviors that
are in conformance with the access control conditions and security
attributes modifications described in the dynamic model. For in-
stance for theVERIFY command the two behaviors corresponding
to a right or erroneous pin value are both mapped withsuccess,
when the access control conditions hold. Status words corresponding
to a violation of a part of the access control conditions are mandatory
mapped toerror and security attributes can not be modified, in any
way. In (14, 13) a finer form of mapping has been proposed, allow-
ing to distinguish authorized behaviors as in aVERIFY command
that succeeds or fails. Nevertheless, such forms of powerful map-
pings are in general non-deterministic and have not been used in our
case study, in order to master the complexity of mapping expression.

7.2.3 Functional Security Tests Conformance with respect to
the SPM In this step we verify that the functional security tests,
produced by LTG using the FM, conform to the SPM. A semantic
conformance relationship between a functional and a security model



has been defined in (14). For a given mapping functionM , all se-
quences of the FM, in which status word valuesswi are replaced by
M(swi), should be accepted by the SPM after elimination of func-
tional parameters and calls that are mapped toerror. By this def-
inition, all sequence of successful calls accepted by the FMshould
also be accepted by the SPM. On the contrary, the FM should be
more restrictive, for example for functional reasons.

Table 4 gives the conformance verdict, w.r.t. a given mapping
M . In particular we exploit the fact that the SPM is a determin-
istic model, as imposed by LTG. Letσs=̂ < r1, . . . , rn > and
σf =̂ < sw1, . . . , swn > be the two sequences of output respec-
tively produced by the SPM and the FM, for a given sequence of
operation calls with the same security parameter values. Wecom-
pute the greatest indexk such thatri = M(swi) for i ∈ 1..k.

Condition Conformance verdict
k = n σf conforms to SPM

k < n ∧ rk+1 = error σf does not conform to SPM
∧M(swk+1) = success

k < n ∧ rk+1 = success inconclusive
∧M(swk+1) = error

Table 4: Conformance verdict

As summarized in table 4, ifk = n, that means that any operation
call returns the same status word. In other words, ifσs detects a secu-
rity violation thenσf must also detect it. If it is not the case (k < n),
and due to the fact that the SPM is a deterministic model, an incon-
sistency is detected between the two models. On the contrary, if σs

succeeds whileσf fails, then the FM could be more restrictive than
the SPM. In this case we have to establish wetherσf is in confor-
mance with the SPM, by verifying if the subsequence of successful
calls are accepted by this model, as defined in the conformance rela-
tionship (14). This verification can be made by playing this sequence
on the SPM, with the help of LTG.

Then we have developed a script, written in Perl, that verifies the
conformance of a functional security test produced by LTG accord-
ing to table 4. This script is based on a small language dedicated to
the definition of mappings.

Finally, an important question is the relevance of the functional
security tests produced by LTG. For instance, a test that systemati-
cally chooses functional values producing an error is fullyconform,
but not necessary a good test. Then LTG must be guided in orderto
target tests as relevant as possible. The strategy that has been adopted
is the following one: when a success is expected then the search is
guided by any status words mapped tosuccess. When this search
fails, we are looking for an error. On the contrary, when an error
is expected we search both a call producing a status word mapped
to success and a call producing a status word mapped toerror.
This way, if there exists an inconsistency between the SPM and the
FM, it will be detected.

To summarize, functional tests produced from abstract security
tests are in conformance with the SPM through a relationshipthat
admits more restrictive implementations. The correctnessof the
conformance relationship, and its application to our security model
based testing approach, strongly depends on the relevance of the
mapping functionM . Due to the fact that the models that are con-
sidered are formal, the correctness of the mapping can be verified

in terms of refinement (see (13) for a formal definition). Due to the
proximity of the structure of the two models, the mapping of the IAS
case study has been validated by a review process.

7.3 Tests Execution

The fully valuated test sequences are finally concretized bymeans of
the concretization layer, and executed on the IUT.

Practically, this is performed at Gemalto through the EVA (Easy
Validation Application) environment. EVA is the validation data base
environment of Gemalto. It uses the Visual Basic 6 language.It is
based on a proprietary tool, used to write validation scripttests and to
execute them on different targets: simulator, emulator or smartcards
and with different smart card readers. This environment allows to use
the same script on the different types of simulator and cards, thereby
improving the validation in terms of time process and debug.Fig-
ure 14 shows a screenshot of EVA. The “TreeViewer” panel shows
the card image, while the “EVA View” panel displays the result of
the execution of the tests. The down part of the screenshot shows the
test code, while a list of available sets can be seen on the left hand of
the screenshot.

The (security or not) functional tests are run on the IUT by EVA,
via a dedicated interface (the concretization layer) relying on the
functional model. The concretization layer had been previously de-
veloped for the non security functional validation tests. For effi-
ciency reasons, the constraint was to use the same concretization
layer in order to avoid additional developments.

This concretization layer implements the definition and thetrans-
lation of each operation call of the test by:

1. providing concrete values for the parameters of the commands and
encapsulating them in specific formats,

2. initializing the secret data (PIN values, key values) andstoring
it in the concretization layer, to be used for comparison (because
there is no mean to retrieve those values from the card),

3. translating the command into a format understood by the card (i.e.
APDU format (22)),

4. sending the command to the card,

5. receiving the data response from the card,

6. verifying the results, i.e. verifying that the data received from the
card equals the one expected by the test design. This includes side
channels verification, e.g. no secret value is returned fromthe
card.

The verdict is thus given facing the results of the IUT to the ones
predicted by the oracle, namely the FM. The mapping between both
results is a bijection as the functional model returns the same sta-
tus words as the implementation (6900, 6985, etc.). If the results
differ, this indicates that there is a problem, either in theIUT or in
the model. The problem is reported to the validation engineer for
analysis.

As the security functional tests are computed from the expressions
of security requirements, the traceability of a test to an original re-
quirement is easy to ensure. Every test can, for example, include
a tag that refer to the requirement from which it is issued. Conse-
quently, a bad verdict can easily be related to an original security
requirement. This facilitates the human analysis of a problem dis-
covered by a test.



Figure 14: A screenshot of EVA

8 Experimental Results
We describe in this section the three test patterns that we have exper-
imented on the IAS platform, and the test generation based onthese
test patterns with LTG. We also present the concretization and execu-
tion steps in an industrial process, and comment the resultsobtained
on the IAS implementation.

8.1 Three Test Patterns

For each of the test pattern that have been experimented, we infor-
mally give the property from which it is issued, the test needassoci-
ated to the property, and the shape of the test pattern itself.

The first test pattern that we have experimented is the one depicted
in Fig. 11 and Fig. 12 (see Sec. 6.4). The property to be testedis that
the access to an object protected by a PIN code requires to gain an
authentication over the PIN code. Functional tests will exercise this
property in a case where the authentication is gained, and ina case
where it is not. But they don’t take into account if a PIN was previ-
ously authenticated, and that the authentication has been lost. So the
test need is to exercise the access control mechanism in the case of a
loss of authentication, in all possible ways, following a previous gain.
The pattern proceeds by targeting a state where the authentication is
gained, accessing the object, targeting by all possible operations a
state where the authentication is loss, and accessing againthe object.

As already stated, the unfolding of this pattern gave 30 sequences.
From these sequences, we have obtained 35 abstract securitytests
from the SPM. This is due to the fact that there were multiple possi-
ble valuations for the parameters of the last operation of some se-
quences. The functional valuation of these abstract security tests
gave 35 functional security tests.

The second test pattern aims at testing the access control based on
a PIN authentication for various locations of different PINobjects
with the same name in the file structure. In IAS, each PIN is a file
saved under a directory. The location of the PIN w.r.t. the current DF
matters for an authentication gained over it. For example, accessing
the DF parent of the current DF leads to a loss of the authentication.
Thus, the property that we want to test is the same as before: the
access to an object protected by a PIN code requires to be authenti-
cated over this PIN code. But here, the test need is to exercise the
property with several PIN objects saved under multiple directories
(e.g. the current directory and his child) when these PIN objects are
homonyms. Indeed, two distinct objects can share the same local
name (they are homonyms) if they are located in two distinct DF.

Furthermore, the test need also aims at exploring the different
combinations of the authentication states of these PINs. These test
needs are addressed by a pattern targeting various situations to reach
before applying the access commands. For example, it describes by
state predicates the directory selected as the current directory, and



Model
Number Number of Number of

of lines operations variables

FM 15,500 60 150

rule based
200 11 —

model

dynamic
1000 12 20

model

SPM 1100 12 20

Table 5: Size of the different models

which PIN is authenticated or not. Some constraints over thecom-
mands sequencing (expressed by concatenations and choicesover
command names), enable to reduce the possible paths to reachthese
state targets. From this test pattern, we have generated a total amount
of 66 functional security tests.

The authentication gained over a PIN not only depends on the
location of the PIN, but also on the life cycle state of the DF where
a command protected by the PIN is applied. Thus, the third test
pattern aims at testing some situations where the life cyclestate of the
directory is not alwaysactivated. In addition to the property already
seen in the two previous test patterns, we exercise the property that
when a command is executed in a directory, this one needs to bein
an appropriate life cycle state. The functional test cases test such
situations in a static way, with a life cycle state of the directory that
does not change during the test sequence.

So, the test need used in this pattern is to change the life cycle
state of the directory one or several time(s) during the testsequence
(e.g. just before applying the command, or before gaining anauthen-
tication over the PIN or before a reset of the card, as if the card was
removed from the terminal and inserted again). The pattern com-
bines these life cycle state changes with the different authentication
states of the PIN protecting the access to the directory. 82 functional
security tests have been generated from this pattern.

8.2 Test Generation
Every test pattern gives several abstract security tests. For each ab-
stract security test, we compute only one valuation of the functional
parameters, so one functional security parameter is computed per ab-
stract security test. In our experiment, the three test patterns gave a
total amount of 183 tests. This number seems small in comparison
to the 7000 tests generated for the non-security functionaltest cam-
paign. But it is necessary to consider that these three test patterns
did not intend to address the whole system. Instead, they focused on
selected properties and test needs, regarding access control mecha-
nisms. Furthermore, each of these 183 tests is complementary to the
non-security functional tests previously generated. Thiscan be seen
from tables 5 and 6. In table 5, we give the size (number of lines, op-
erations and variables) of each model that was used for the test gen-
eration. Table 6 presents the experimental results (numberof tests
generated, and length of these tests in number of operations) about
the test generation using the three patterns presented in Sec. 8.1. In
comparison, the average length of the non-security functional tests is
5, which is lower than the average length (8.26) of the security tests.

For each test pattern, the complete test generation (first from the
SPM and then from the FM) took about two or three hours. It may
seem a little bit long, but our main objective was the concrete use
of the developed approach in the industrial environment to test real

Maximum Minimum Average

Test Number Number number of number of number of

pattern of seq. of func. op. calls op. calls op. calls

(see Sec. 8.1) in TP sec. tests per test per test per test

1 30 35 10 9 9.4

2 48 66 11 8 9.5

3 68 82 8 5 6.9

Table 6: Experimental results about test generation

products. Nevertheless, our implementation is a research prototype
whose efficiency could be improved in a second phase.

8.3 Discussion About the Experimentation
We propose in this part to give some experience returns with apoint
of view of industrial partners.

8.3.1 Functional and Security Validation For the functional
validation, two ways have been deployed to validate the IAS im-
plementation. For the first, we used the model-based approach, with
automatic generation of tests and for the second, we used thetradi-
tional approach where the test scripts are developed manually. The
first approach has generated more than 7000 tests. The execution
time on the smart card was approximately 2 full days. The manual
approach has delivered nearly 500 tests, which were mainly designed
to complement the automatic generated tests. They were focused on
parts that the modeling could not take into account, e.g. some limit
cases,stresscases where the test stresses a specific feature (quality
of the random value, memories cell values,. . . ). The corresponding
execution time was nearly the same than the automatic phase,due to
the time allocated to the stress tests.

The security validation takes advantage of the functional vali-
dation as it was based on the same functional model describing the
behavior and in particular the tests oracles. All the generated secu-
rity tests were correctly executed on the target. As alreadystated, the
three families have delivered 183 tests, executed in one hour on the
target. Although no problems were detected in the IAS implementa-
tion, the approach has improved the confidence in that implementa-
tion. This is crucial for the certification of products embedding the
IAS application because this step is part of the testing taskthat will
be done by the evaluator. Indeed, although the approach has covered
only a subset of the security properties of the IAS (only the access
control on PIN objects), the global concept has been validated in the
industrial framework.

Additionally, one test issued from the security model has raised
a non conformance between the security model and the functional
one. This was due to distinct interpretations in the two models of
an imprecise point of the specification. The previous (non-security)
functional test campaign alone would not have pointed out this spec-
ification ambiguity.

8.3.2 Coverage For the functional validation, the coverage of a
specific behavior was done manually, using the parametrization fea-
tures to force the tool to cover a specific path in the model. The ap-
proach used for the security validation, with test patternsdescription
and their unfolding allows a systematic coverage, that is larger.

Let us take the example of homonymy (the second test pattern
example in Sec. 8.1): one could have several SDOs with the same
reference but at different levels within the file structure.But the ac-



cess conditions relying on a SDO PIN in a specific DF are different
from another SDO PIN with same reference but inside a different
DF. The non security functional validation campaign, though manu-
ally parameterized to cover this point, only generated five tests. In
comparison, 66 tests were obtained to exercise this security point
with the security validation approach. Indeed, the security tests were
designed using the know-how of the security experts and the testing
experience of the validation engineer. Having a systematicmean to
design the security tests is the main advantage of this approach.

8.3.3 Conclusion From the industrial point of view, the main ad-
vantages of the POSE methodology are the following:

• cost reduction of the validation process: capitalizing on the de-
velopments required by the functional validation, i.e. functional
model and interface of the concretization layer.

• time improvement of the validation process: the security valida-
tion step is no longer a “subtask” of the validation phase butan
independent phase. This separation allows for a significantsaving
time in the validation of the product because the security proper-
ties are clearly identified and their test is reproducible.

• quality improvement of the validation process: complete chain
that provides a traceability between the abstract propertyand the
corresponding test suites. This traceability is critical first for the
certification of the product and secondly for the security validation
of several products based on the same specification.

9 Conclusion
We have presented in this paper a security model based testing ap-
proach, that has been successfully deployed on a real size industrial
application, the IAS platform for smart cards. To conclude we dis-
cuss about the proposed security model based testing approach and
the theoretical contributions of the POSÉ project .

9.1 The POŚE security model based testing
approach

The method makes use of already existing material, written for model
based functional testing: the functional model and the concretization
layer. An additional dedicated model is written for modelling the
security rules. Abstract security tests are obtained by using test pur-
poses as patterns for extracting relevant tests from the security model.
These tests are then automatically replayed on the functional model
in order to bring them to the abstraction level required to interact with
the implementation, through the concretization layer. Themethod
easily ensures the traceability of the tests generated to the original
test patterns, since the tests are computed from these patterns. Also,
with the mechanism for functional test generation offered by LTG,
we exactly know which behaviors of the operations have been cov-
ered.

From a methodological point of view, the distinction between se-
curity models and functional models effectively corresponds to dis-
tinct stages in the life cycle of secured applications. A security model
is written by security engineers and exploited by certification evalu-
ators, independently of a given implementation. This modelfocuses
on some particular aspects and is generally small enough to be suc-
cessfully exploited for validation and verification. Furthermore sev-
eral security models can be written, corresponding to several aspects
of security, mastering in that the complexity of the validation and
verification process. From a practical point of view, the proposed

model based testing approach, and its tools suite, has been proved
to be realistic even for a sizeable application. The difficulty of the
test generation part is in finding, with the help of LTG, some suit-
able instantiations for parameters. Due to the fact that thesecurity
model is small and abstract enough, the use of LTG with the SPM
generally succeeds. On the other hand, search for suitable instantia-
tions for functional parameters is strongly guided, because we reuse
sequences generated at the first level. Finally, we gain somecon-
fidences in our formal models because we test the FM against the
SPM.

On the contrary, the proposed approach is time and cost consum-
ing because two models have to be written. In the general case, this
effort is disproportionate. But when Common Criteria certifications
are targeted, like often for smart cards and especially for the IAS on
which several kinds of products (ID card, e-passport or health card)
are built, formal models are a central piece for reusable methodology.
In particular a new certification must be conducted as soon asa new
implementation or a new hardware support is used. In our approach,
security and functional models, as well as the proposed methodology,
can be reused to be adapted to new versions of the IAS standardor
new implementations. Furthermore, the IAS case study is a generic
platform dedicated to the development of proper applications, that
also have to be certified. An application deployed on the IAS plat-
form firstly consists in a personalization specifying a particular set of
PINs, keys, SDOs and files and their security dependencies. Asecu-
rity model attached to such an application can be defined in terms of
a specialization of the generic IAS security model or as an indepen-
dent model that can be confronted to this generic model, instantiated
by the given personalization. Finally, the proposed approach can be
used in a light manner, only in using a security model. In thiscase
the concretization layer is in charge of bringing the gap between the
security abstraction level and the implementation.

Theoretical contributions of the project POSÉ are the proposition
of the MECA form of access control security models in concordance
with the Common Criteria requirements, a formal definition of a con-
formance relationship based on a notion of mapping relatingmodels
stated at different levels of abstraction and a language of test patterns
allowing to express security tests requirements.

9.2 Security model and conformance relationship
There are several sorts of formalisms dedicated to access control
specifications. Usual formalizations are based on rules (28, 4, 7, 37)
and mainly focus on access control conditions. On the other hand,
security automata (38) describe behaviors resulting both of access
control conditions and some operational specification. In concor-
dance with the Common Criteria approach, the Meca approach dis-
tinguishes these two parts, through the rule-based and the dynamic
models. In this way a traceability is established between the infor-
mal security policies described in the security target and the SPM
(the rule-based part corresponds to the User Data protection class of
Common Criteria and the dynamic part to the Security Management
class). Finally these two models are woven to produce a behavioral
model that can be assimilated to a security model. Such automata
can be obtained for instance with the help of tools (12, 31).

The B method has already been used as a support for access con-
trol policies (5, 39). In (5), the authors propose a form of modeling
attached to Or-BAC access control, including permissions and prohi-
bitions, and characterize behaviors which conform to a given access
control policy. Our approach can be seen as an extension of (5, 39)



taking into account the conformance of an application with respect
to a security model, with the help of a mapping correspondence be-
tween models stated at different levels of abstraction. In (32), the au-
thors use Labeled Transition Systems (LTS) to describe testpurposes
from Or-BAC rules specifying access control. They act as an oracle
for the test execution, based on the ioco conformance relation (41).
Our approach is similar, since they both rely on trace inclusions, and
our notion of stuttering is close to the notion of quiescence. Never-
theless, our relation is not exclusively destined to be usedas a test
oracle. Indeed, by giving a formal definition of our relation, as done
in (13), it would be possible to prove properties on the implementa-
tion w.r.t. the abstract security model. In this way we are closer to
the Common Criteria approach that requires to establish correspon-
dences between the SPM and some application models, depending
on the targeted assurance level.

9.3 Tests patterns and security tests
Many other works use temporal logic properties or test purposes
as selection criteria to extract tests from a model. By exploit-
ing its ability to produce counter-examples, a model-checker can
be used to compute tests from temporal properties w.r.t. a formal
model (18, 34, 2, 21, 40). Linear temporal logic model-checking
uses cycles search algorithms to compute tests from explicit transi-
tion systems, while we use artificial intelligence constraint solving
techniques to compute tests directly from B models. The TGV ap-
proach (17, 24), and works from the Vertecs project13 (36, 35, 11)
use explicit test purposes to extract tests from specifications, both
given as Input/Output Symbolic Transition Systems (IOSTS). Our
approach differs since our test purposes mix operation calls and tar-
get states description. In (2) and (40), the test purposes are linear
temporal logic formulas describing state sequences. In (25), (36)
and (30), the test purposes are sequences of operation callsexpressed
either by IOSTS or by regular expressions. Moreover in (30),the
symbolic tests are generated independently from a behavioral model,
which leads to a combinatorial explosion of the number of tests.
Also, our approach is methodologically different because our inten-
tion is to use abstract models. Finally, the language we use to express
the test purposes can be instantiated, thanks to the model level, with
various modelling languages. We have performed experiments with
formal specifications written in B and in UML/OCL. The language
is intended to be easily manipulated by the security engineers.

In (29), the authors show how tests dedicated to exercise a given
security policy can be obtained by reusing functional tests. In com-
parison, we do not reuse the existing functional tests, but we augment
them with security tests, independent from the functional ones. What
we reuse is the existing functional material (i.e. the functional model
and the concretization layer). They mention two types of strategies
for generating security tests w.r.t. functional tests. Ourapproach
fits in their independent strategy. And as a difference with security
policies specified through OrBAC-like models, our SPM is nota list
of static rules, but models also dynamic operational modifications of
the security attributes.

9.4 Further Works
In a previous work (33), we have foreseen the possibility forthe test
purposes to be automatically computed, by modelling the test needs
as syntactic transformation rules that transform regular expressions.

13http://www.irisa.fr/vertecs/

Integrating a test need to a security property could then be obtained
by transforming the formalization of the security property. The tool
Tobias (30), that unfolds in a combinatorial way tests expressed as
regular expressions, could be used to unfold our test patterns.

We are currently working at identifying and writing such transfor-
mation rules, based on the IAS case study. This work needs to be
developed by studying many other case studies, in order to produce
rules sufficiently generic to be applicable to a variety of examples.
Rules could also be automatically deduced from the syntactic ex-
pression of a property, as suggested by (8) for properties expressed
in JTPL, a temporal logic for JML.

Also, rules could be expressed for transforming other formalisms
than regular expressions. In particular, we think of rules that could
transform automata. They could be applied to security properties
expressed as temporal logic formulas, as well as regular expressions.

Another follow-up to this work would be to explore the possibility
to use several smaller security models, instead of just one that contain
all the security features. These models could be very easy towrite as
they would focus on a limited set of security features at a time, the
ones concerned by some particular test purposes. The tests computed
from any of these models could still be brought to the abstraction
level of the functional model by replaying them on it.
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