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Abstract: This paper is about generating security tests from thapproach. The generated tests are afterwards executec gysh

Common Criteria expression of a security policy, in additio func-
tional tests previously generated by a model-based teafipgpach.
The method that we present re-uses the functional modeharzbn-
cretization layer developed for the functional testingd aelies on
an additional security policy model. We discuss how to poedine
security policy model from a Common Criteria security targé&/e

tem. Due to the context that we consider (smart card apoits),
the project focused on policies relative to the control ahomands
execution.

MBT (3, 42) proceeds by computing tests from a formal model

(FM) of the system to be tested, according to selectionr&itéAn
example of a test selection criterion is, for instance, tereise any

propose to compute the tests by using some test purposegdas gu operation of the system on the boundary values of its paemet

for the tests to be extracted from the models. We see a tgsogper
as the combination of a security property and a test needdssom

The formal model does not deal with implementation detaits] is
supposed to provide a reliable functional view of the impeta-

the know-how of a security engineer. We propose a languagedba tion under test (IUT). As the tests have the same abstratgiar

on regular expressions for the expression of such test pagpdVe

as the FM, they have to be concretized before they can be texkcu

illustrate our approach by means of the fASise study, a smart card on the IUT. This is obtained by writing a concretization lny&he

application dedicated to the operations of Identificatiumthentica-
tion and electronic Signature.

Keywords: Security Policy, Model Based Testing, Common Cri-

teria, Security Testing, Smartcard applications.

1 Introduction

Generating tests for security policies is still a challerigis not fully
addressed by nowadays test generation techniques. Welepirsi
this paper access control policies for smart card apptinatiOur in-
tent is to ensure that security properties are specificaflietl, com-
pleting in that the functional tests. This work has beengreréd
in the context of the French RNTL P&3project (ANR-05-RNTL-
01001) that aimed at proposing a methodology for model based
curity testing, compatible with the Common Criteria metblody.

Common Criteria (CCG)internationally define common require-

ments for the security evaluation of Information Technglggod-
ucts. They classify security requirements into familiesd aefine
several certification levels (from EAL1 to EAL7). A high céida-
tion level requires the use of formal models for verifyingttthe
system implements its security policies. The ambition ef FOE
project was to help automating the generation and execofitests
dedicated to the validation of these security policies. uggcre-
quirements are initially described as a CC document naBeedrity

verdict of the tests is obtained by comparing the resultsrghy the
IUT with the ones predicted by the FM, with respect to a given-c
formance relationship. Industrial studies have provereffieiency

of the method to detect faults in an implementation (see fame

ple (16, 6)).

In our framework, a functional MBT campaign has already been

performed, and so a functional model and a concretizatiger lare
available. Nevertheless, functional tests appear to hdficient to
exercise the IUT through elaborated scenarios of attatdgnating
to violate a security property. As aforementioned, we waiteaddi-
tional model, the SPM, to formalize the security target arduse
this model to compute some additional tests using scenascse-
lection criteria. The tests are then animated on the FM irotd
bring them to the same abstraction level as the functiosé t& his
allows re-using the existing concretization layer in ortteplay se-
curity tests on the IUT and ensures the traceability of teestgener-
ated by our approach with the original Common Criteria eggian
of the security requirements.

The original part of this paper is to present the full seguribdel
based testing process that as been adopted in th& p@fect and
how it has been successfully deployed on a real case stu{Ath
platform. This work relies on previous works published by part-
ners. In (14, 13) a formal definition of the conformance of ppliza-
tion with respect to an access control policy has been peahdak-

Target The objective of our approach is to formalize the securityng into account a mapping relation allowing to relate medsthted

target as &ecurity Policy Mode(SPM) and to automatically com-
pute tests from this model, following a model-based testMBT)

1IAS is ade-factostandard issued by the GIXEL consortium
2seehtt p: // www. rnt| - pose.info
3seehtt p: / / ww. conmoncriteriaportal . org/

at different levels of abstraction. Hints on our MBT apptodor
security testing have been sketched in (33), with scenhdasgally
expressed as regular expressions. A language allowingstritde
the scenarios in terms of actions to fire and states to reaxbden
defined in (26). In (27) the restriction of a B model to the exems
satisfying a given scenario is presented, by means of a synchs



product of the B model with an automaton representing theaste

In Sec. 2 we describe the context (Plbﬁroject, B language) in
which this work took place, as well as the case study IAS. \idsgmt

classes are relative to the design of the application to bkiated
(ADV class), how functional testing has to be conducted (A/SSs)
and vulnerability analysis (AVA class). For instance, atpeov-
ered by the ATE class are how coverage analysis is conduitted,

in Sec. 3 the principle of the functional MBT campaign thatswa depth of the testing activities based on the knowledge ottimeep-

first performed. Our process for completing the functiomsits is
described in Sec. 4. Section 5 explains how to produce the f&§tMm
the security target. The language that we have defined teoideshe
test patterns is presented in Sec. 6. The implementatioheofetst
generation is discussed in Sec. 7, and our experimentdtseme

tion (global interfaces, modular design, implementatievel, etc.),
the content of the documentation and, finally, tests deesldyy the
evaluators themselves.

The PO% project focuses on access control policies for several
reasons. First, in the domain of smart card applicatiorts, jpietec-

given in Sec. 8. We finally compare our approach to relatecksvor tion is a central piece of security. Furthermore this aspecomes

and conclude in Sec. 9.

2 Context of the Work
This work has been performed in the context of the EQ8oject.

The aim of this project was to propose a methodology for sgcur
testing, based on formal models, and compliant with Common C

teria methodology. The formal framework that has beenmethis
the B method for several reasons. First, previous expetsrizased

on B models have already been led by the partners. Seconidgdbeh

its modelling language, the B method supports a proof peotas
invariance properties and refinement. This aspect has bgdoited

in POSE in order to establish the theoretical framework of our ap
proach (13). Finally a more anecdotal point is that the B weth
is one of the formal methods recommended by the CC evaluati

methodology.

We first relate the project to the Common Criteria approadtent
we very succinctly present the B modelling language, that wsed
in this project. The IAS platform on which we have experineeht
our approach is also described in this section.

2.1 Common Criteria Approach of the POSE
Project

The IAS based products are generally ordered by Public atig®

(ID cards, e-passports or Health card) and then require ©dve-

mon Criteria certified. Therefore, the approach to be pregdy the

project PO should be as close as possible to the Common Criter

methodology.

Common Criteria (10) is an ISO standard (ISO 15408) for th

security of Information Technology products that provideset of
assurances w.r.t. the evaluation of the security impleatehy the
product. Common Criteria provide confidence that the poacds
specification, development, implementation and evalnatas been
conducted in a rigorous and standardized manner. The paheof
system that has been identified to be evaluated and cersfiadled
the target of evaluation (TOE). The Common Criteria apphnoac
based on two kinds of assurances: in (9), part 2 is dedicated-t
curity functional components, used to describe the sechehavior
of the system, and part 3 is dedicated to assurance comsonszd
to describe how the system implements this security behavVioe
result is a level of confidence (called EAL for evaluation éissice
level) measuring the assurance that the product implenitsrgscu-
rity behavior.

The security functional components are relative to varampects
of security and various mechanisms enforcing securityifstance,
the FDP class lists requirements relative to user data gifoteas
access control policies, transfers between the TOE andutside,
protections against residual information, etc. The masuesice

more important when standardized platforms are concerredin-
stance, the IAS standard which was the EOSise study, aims at
receiving security data objects that carry out their owreascontrol
rules. Thus the correctness of this platform is crucialtwthe se-
curity requirements of applications as electronic padsparhealth
care cards.

The approach proposed in this paper can be seen as a cdotribut
to the fulfillment of the ATE assurance requirements regeydhe
Common Criteria access control security components.

2.2 B Modelling Language
The B specification language was introduced by J.-R. Abnigl).

It is defined as a notation based on first order logic and seryhe
It allows the formal specification of open systems by meargtait

Yhsed models calleabstract machinesMore precisely, a B abstract

machine defines an open specification of a system by an initial
tion state and a set of operations. The environment intenraith
the system by invoking the operations. Intuitively, an apien has
a precondition and modifies the internal state variables dpgreeral-
ized substitution. Lef be a substitution. Latut be a list of output
parameters anith be a list of input parameters. L&tbe a precondi-
tion. An operation named is defined in B as:

out < o(in)=PRE P THEN S END.

Here are some generalized substitution exampltes= expr, IF
Q@ THEN S; ELSE S2 END, andS; || S2 whereexpris an expres-
sAon, @ a predicate, and; and S, two generalized substitutions.
nvariants relative to state variables can be stated aafllested, us-

ing proof obligations derived by the classical weakest @nédion

%pproach (15).

We give in this section the meaning of the B symbols and ckuse
that appear in the forthcoming examples of Fig. 5, Fig. 6 agdF
The clauseSETS is used to declare some given sets or enumerated
sets as in Z. Concrete constants and their properties greatagely
declared under the clausEONSTANTS andPROPERTIES of a
B machine. The B notations appearing in the B expression pham
have the following meaning:

e r ¢ I + F denotes the declaration of a relation betwéeand
F; r~!isits inverse ana[d] is the relational image of a sét

e f € E — F denotes the declaration of a total function from the
domainF to the rangeF’; f(x) denotes the image afby f,

e z — y denotes a pair of values of a function or a relation,
e [/ x F denotes the cartesian product of the detsnd F',
e F — F denotes the subtraction of the geto the sett.

Thanks to the proof capabilities of the B method, we haveieeri
invariant properties on our formal models. We have not ubed t
refinement capabilities of B.



Some other commands allow to navigate in the file hieraratgh s
as SELECT_FI LE_DF_PARENT or SELECT_FI LE_.DF_CHI LD, or

I

1

I

! to change the life cycle state of files, suchDESACTI VATE_FI LE,

I I ACT| VATE_FI LE, TERM NATE_FI LE, or DELETE_FI LE, ...

([ oFflecz | [ Pnpnoz ][ Keviieyos |[ eriecs | Finally, a group of commands allows to set attributes. Fangxe

_____________ RESET_RETRY_COUNTER is for resetting the try counter to its ini-
Figure 1: A sample IAS tree structure tial value, CHANGE_REFERENCE_DATA is for changing a PIN code

value,VERI FY sets a validation flag tbr ue or f al se depending
on the success of an identification over a PIN code, etc.

2.3 |AS Premium Case Study As usual with APDU commands, the IAS platform responds by
means of astatus word(i.e. a codified number), which indicates
'whether the APDU command has been correctly executed or not.
Otherwise, the status word returned by the APDU indicatest

ture of the problem that prevented the command to end noymall

As stated before, the P@&roject aims at producing conceptual
methodological and technical tools for the conformity gation of
a system to its security policy, with smart card applicatias a tar-
get domain. Experiments have been made with a real sizetialus ] )
application, the IAS platform. We give all the technicalalistre- 2-3-3  Functional Model of IAS - The B model for IAS is 15,500
quired to fully understand the examples that illustrateftfiewing NS long. The complete IAS commands have been modelled as a
sections. set of 60 Boperations As the B model of IAS is intended to serve as
an oracle for the tests, and for the operations to behave'RDU-

IAS stands forldentification, Authentication and electronic Sig- " - it has b - defensive f | S
nature Itis a standard for Smart Cards developed as a common pléltlfhg manner, rI]t as ekgn written as ade epﬁlve ”orma d foadion.
form for e-Administration in France, and specified (19) b)xGL*. This means that invoking an operation with well-typed paztars

IAS provides identification, authentication and signatsgevices to Is always aIIo_\If\;]ed, as 'ts_ pre-condltcllonbonly Che_CkS thelrtgptltfrglle
the other applications running on the card. Smart cards as¢he parameters. The operation responds Dy returning a valtien S

french identity card, or the “Sesame Vitale 2" Gaale expected to a status word, and that indicates if the operation shouldemd: or
conform to IAS fail from a functional point of view. For example, trying tppaly the

o . erationDEACTI VATE_FI LE’ to a file that is already deactivated
As a beginning, functional tests have been produced by almo . L
. . returns a status word valtief error meaning that the file is already
based approach for a Gemalto implementation of IAS. For, that

functional model has been written in B by Smartesting anddLiRd deactivated.

an concretization layer have been written by Gemalto. Wedes 2.3.4 Security Target for IAS  Due to the complexity of the IAS
scribe below some aspects of the IAS case study and of thiopsev platform, we have focused our security target on the comtfohe
functional model. Then we focus on the access control sgqueit  APDU commands execution, depending on the current files end s
of this platform, i.e. how APDU command executions are ailed. ~ Curity data objects. This target describes subjects, ggaitributes
Finally, we describe how the SPM has been formalized, inraimle and rules, in conformance with the Common Criteria sectiine-

be compatible with the Common Criteria and the Bproach.  tional components. Here is an example of an instance of timgpoe

) ) nent ACF.1.2 (class FDP):
2.3.1 IAS File System Overview IAS conforms to the ISO 7816 .
The operationVERI FY(r ef _sdo, PI N.code) can be exe-

standard, and can be implemented either as a JavACardas a d by th bi £ and onlv ifr ef sd |
standalone application. The file system of IAS is illustdatéth an cuted by the su JquRM NAL iF'and only 1T €1 SO cur_rer_1ty
denotes a well-defined PIN object, belonging to an activdiled

example in Fig. 1. Files in IAS are eithBlementary FilegEF), or s .
Directory Files(DF), such a$ i | e_01 andf i | e_03 in Fig. 1. The and if the access conditions attached to the command VERIFY f
! N - - this object are verified in the current state of the applioati

file system is organized as a tree structure whose root iguEsias
MF (Master Filg). Directory files hosBecurity Data ObjectéSDO). The access to an object by an operation (an APDU command) in
SDO are objects of an application that contain highly sdesiata AS is protected by security rules based on the securitibates of
such as PIN codes or cryptographic keys (see for exapipte02  the object. The access rules can possibly be expressed agiaco
orkey_01 in Fig. 1), that can be used to restrict the access to soni®n of elementary access conditions, suchNeser (which is the
of the data of the application. rule by default, stating that the command can never accesstth

) ) ject), Always(the command can always access the object))sar
2.3.2 Some Data and Commands of IAS The services provided |,qe authentication: the user must be authenticated bysneiea
by the IAS platform can be invoked by means of various AI9DUPIN code). Application of a given APDU command to an object

commands. , can then depend on the state of some other SDOs: for insthace t
Some of these commands allow to create objects: for expmmandVvERI FY can successfully be applied @i n_02 only if
ample CREATE_FI LE.DF is for creating a directory file and pi n_01 has been previously verified with success.

PUT_DATA.GBJPI N.CREATE is for creating a PIN code, etc. We give below some variables of the security model that we use

— in the remainder of this paper.
“http://ww. gi xel . fr - it is the trade association in hap

France for electronic components industries
5A card with medical and personal data of the holder of the card  "More precisely, the operation in the model correspondiripé¢o
®Application Protocol Data Unit it is the communication unit APDU commandDEACTI VATE_FI LE.
between a reader and a card; its structure conforms to th& 836 8More precisely, a number that corresponds to a status word of
standards the functional specification.



Domains of values The setOBJ_I D denotes the set of refer-
ences attached to objects manipulated by the IAS platfortds(P
files, SDOs, ...). The variablé®BJ | i st , DF_l i st, SDOI i st,

PI NI i st respectively denote the subsets of objects, directory, files
Security Data Objects and Personal Identification numtaheaur-
rent application@BJ_| i st C OBJ_I D, DFlist C OBJ.ist,
SDOlist COBJlist,PINIist CSDOIist).

The files and SDOs hierarchy The variablecur r ent _DF (€

DF_l i st) stores the reference of the current selected DF. The vari-
able PI N.2_df Parent (¢ PINIist — DF.list) associates
with a PIN reference the reference to the DF in which the PIN ob
ject is located. In the same way, the variallle_2_df Par ent

(¢ DF.list — DF.ist) associates with a DF referencd

the reference to the DF wherf is located. These dependen-

cies can be extended to the closure: for instance the variabl ) ) )
DF_2.df Parent .cl osure (¢ DF.list <« DF.list) asso- Figure 2: Functional Model-Based Test Generation Process

ciates a DF with all its antecedents, including itself.

. ) i . e Concretization.As the tests computed have the abstraction level
Security . dependen(:les. The variable rul e-2.obj of the functional model FM, they have to be transformed aun-
(.e CB‘].‘I I st e (SDalist U {al ways,never })) asso- crete testsat the level of the implementation. This step relies on
ciates with an object reference the SDO that protects it. An the concretization layer which maps the operations and dta

EbjeCt 0 thalt is always (resp. | never) acceSSible’\:S _reprﬁsented the model FM to the operations and data of the IUT, as further
y (o — al ways) (respectively(o — never)). Notice that explained in Sec. 3.4,

al ways and never are two particular SDO references that are
not in the SDO list. The variablgi n_aut hent i cat ed_2_df o Execution.In this step the verdict of the execution of a concrete

(€ PINI i st « DF.li st) associates with a pin reference the DF  test is given by the comparison between the outputs pretimte
references where the PIN object is authenticated. the FM and the outputs given by the IUT (see Sec. 3.4).

Consider for example the data structure of Fig. 1. The pair The dashed circled parts in Fig. 2 shows what in the procels wi
pin02 — file0l € PIN2.df Parent means that the PIN pe reused to generate security tests, in addition to theiéunat ones.
objectpi n_02 is located inthe DF i | e 01. The pairf i | 02 —  Thjs will be performed by replacing the functional testsegintg the
pin.02 e rul e.2.obj means that the access tothe BH e 02 |ower dashed circled part by functional security tests Gee 4.2).
is protected by a user authentication over the SPI_02. If The next three sections detail the composition of the tests;a
pin02 — file02 e pinauthenticated2df,thenthe the generation of test targets by application of coverageria and
access to the DFi | e_02 is authorized, otherwise it is forbidden. finally the concretization of test sequences into execatatlipts.

3 Model-Based Testing using LTG 3.2 Test Case Composition

This section describes the principles of the Model Basetifiggap-  The purpose of the model-based testing approach of LTG diars a
proach used to perform a functional test campaign on the H#s® c tivating the operations of the B model. More precisely, itises
study. This approach is implemented within the Leirios Tésher- on a path-coverage of the control flow graph of the operations
ator (LTG) tool (23) from Smartestin§ that takes a B model (1) as which each path is namésthavior Thus, each operation is covered
an input and automatically computes functional test cagssdon a according to its structure, by extracting its nested bedravi Each

structural coverage of the operations of the model. behavior is composed of two elements: an activation camuiind
. an effect that describes the evolution of the state varsabtbe acti-

3.1 Model-Based Testing Process vation condition is satisfied.

The process for computing model-based functional testsrissa- For each behavior, a test target is defined as its activatiodie

rized by Fig. 2. The process is made of three steps. tion (decision). The tests covering the behavior will bestitated of

. . L . apreamblethat puts the system in a state that satisfies the activation
e Test GenerationA set of functional testss first statically com- . - 4iion of the behavior. To achieve that. a customizedritym
pu_ted_ from a functional model FM e_lccc_)rding to some selectio%utomatically explores the state space defined by the B naodkl
lee“a' In our case, the tesft genehratlon(;s Iperforrged t@'gme finds one path from the initial state to a state verifying theyét.
too co mputes test targets romt € model according t_o e_hav LTG automatically selects the shortest preamble that esatife test
decision and data coverage criteria, as will be furtherilkdetan target. It is equipped with a constraint solver and procésdsym-
Sec. 3.2 and Sec. 3.3. bolic animation to valuate the parameters of a test sequence

°DF_2_df Par ent is arbitrarily extended by the paif — M Apart from the preamble, a test is thus composed of the 4 ele-
in the case of the master file. ments, as shown in Fig. 3. The téstdyconsists in the invocation of
Lformerly Leirios Technologies; see the tested operation with the adequate parameters so éhediisid-

http://ww. smartesting. com ered behavior is effectively activated. Tidentificationphase is a set



of user-defined operation calls that are supposed to pertioerob-
servation of the system state. Their invocation when piayie test
case on the IUT will make it possible to compare the congyatbt
served values w.r.t. their expected values computed frenmtbdel.
Finally, a test case is ended byastamblehat is a (facultative) se-
quence of operations calls that resets the system to iialisiaite so
as to chain the test cases.

3.3 Coverage Criteria for Test Target Generation

From the previous basic definition of a test target, basedhemdv-
erage of the structure of the operation, two other model remee
criteria can be applied, namely predicate and data cover@gese
criteria are selected by the validation engineer.

Predicate coveragemakes it possible to increase the test tar-

gets number, and possibly their error detection capadsliti This
provides a mean for satisfying usual predicate coverageriei

such as: (i) Decision CoveragéDC) stating that the tests evalu-

ate the decisions (each activation condition) at least,oficeCon-

dition/Decision Coverag€¢C/DC) stating that each boolean atomic

subexpression (called a condition) in a decision has bealuaed

as true and as fals€;i:) Modified Decision/Condition Coverage

(MC/DC) stating that each condition can affect the resulit®n-

compassing decision, giv) Multiple Condition Coverage (MCC)
stating that the tests evaluate each possible combinait&atisfying

a predicate. In practice, different rewriting rules arelaggpon the

disjunctive predicate form of the decisions, so as to refiretest
targets in order to take this coverage criteria into account

Data coveragemakes it possible to indicate which of the test dat

have to be computed in order to instantiate the tests. Thenspap-
plied to operation parameters and/or state variablespgea choice
between: (7)

for numerical data, that will be instantiated to their erieevalues
(minimal and maximal values).

3.4 Executable Scripts and Verdicts

a

all the possible values for a given variable/parameter
that satisfy the test targetii) a smart instantiation that selects a
single value for each test data, @i7) a boundary values coverage,

calls is approximately 5. Running these tests on the simordatf
Gemalto took two days.

For each test, the verdict is established by comparing thutsi
of the system in response to inputs sent as successive iopsrat
The concretization layer is in charge of delivering the ietrdoy
implementing functions that perform the comparison. s tintext,
the more observation operations (identification phase @f B)i are
available, the more accurate the verdict is.

Limitations  This approach aims at ensuring that the behaviors de-
scribed in the model also exist in the IUT, and their impletagan
conforms to the model. Nevertheless, this approach suffarssev-
eral limitations.

First, the preamble computed by LTG is systematically thertsh
est path from the initial state to the test target. As a camsecg,
possibly interesting scenarios for reaching this target beamissed.
This implies a lack of variety in the composition of thesegmmles,
that may possibly miss some errors. Second, the preamblputam
tion is bounded in depth and/or time. This may prevent a seget
to be automatically reached.

Third, the accuracy of the conformance verdict depends en th
testabilityof the IUT, i.e., the number of observation points that are
provided. When using LTG, one has to provide a systematic se-
guence of operations that can be used to observe the sysitam st
Nevertheless, in smart card applets, the complexity of canthtalls
(embedded within APDU buffers) prevents this solution teehsily
set up, reducing the observation points to comparing thesteords
of the commands. Thus, the tests have to be built so as to dicst
voke an error, and, second, observe the resulting defemighran
unexpected output status word.

Finally, the security requirements of the security tarfgtwhich
the Common Criteria require testing evidences, may notyehsi
expressed in the model and related to the numerous funttista.

To overcome these limitations, we develop, in the remainder
the paper, a security model-based testing approach thatsternn
using scenarios in order to ensure that security propeatiescor-
rectly implemented. It is important to notice that a diréoklcan
be established between a scenario and the security recariténad-

Once the abstract test cases have been computed, they hbge talresses.

translated into the test bench syntax so as to be autonwptead-
cuted on the IUT. This is the concretization step.

To achieve that, the validation engineer has to provide tovoee
spondence tables. One of these tables maps the operat@isigs
of the B model to the control points of the test bench. Therotine
maps the abstract constant values of the B model to the aitdata
values of the IUT. By using an appropriate translator, a sespt
is automatically generated into the syntax of the test bereddy

to be run on the IUT. The correspondence tables and the atansl|

implement the concretization layer.

4 Security Property Based Testing Process

We illustrate in this section the concepts of security prigpand test
purpose and we detail the different steps of BEGs®curity model
based testing process.

4.1 Test Needs and Test Purposes

We see dest purpos@s a mean to exercise the system in a particular
situation w.r.t. a property. Based on its know-how, an eigpeed se-
curity engineer will imagine possible dangerous situationwhich

Concretely, about 7000 tests were generated by LTG on the |A§property needs to be tested

case study. The average length of these tests in number Htagre

Figure 3: Composition of a LTG test case

Consider for example an access cons®turity propertyfor IAS
stating that to write inside a directory file, a given accessdition
has to be true, otherwise the writing is refused. Functioesting
of this property with LTG activates two kinds of behaviors fhe
operation of writing: a success is reached by placing theesyito
a state where the access condition is true, whereas a faligached
by placing the system into a state where it is false. Secearigineers
involved in the POS project have expressed a need for testing such a



security property in other situations. For example, thexettaought
of the case when the access condition is true at an instamd then

mapping functionV/ that links the functional and security results.
A non-conformance reveals an inconsistency between the SPM

becomes false at-d¢. The test need is to make sure that the previous and the FM (see Sec. 7.2.3).

true value for the access rule has no side effect at the timeitifig.
A test purpose corresponding to this test need iseach a state
where the access rule is true; perform the writing operatfpreach
a state where the access rule is false; perform the writingration.
This example illustrates that one often wants to expresstate-
pose as both states to be reached and operations to perfoen.
have designed a language for expressing such test purppsesins
of states and actions (see (26)). Once formalized, a tepbparis

called atest pattern In our process, we use test patterns as selec-

tion criteria to compute abstract security tests. adastract tesis a
sequence of operation calls, with parameters computeddingao
a (functional or security) model. The abstract test alsoriporates
the expected result of each call and thus provides an oreclié
concrete test that will be executed on the IUT.

4.2 PO Process for Generating Security Tests

Our process for generating security tests uses a securitglnas an
oracle and test purposes as dynamic selection criteriatactxests
from this model. The idea is to reuse the dashed circled pattse
MBT process of Fig. 2, by replacing the functional tests ithc-
tional security tests. Figure 4 illustrates our approatie abstract
security test generation process is represented in Fip. Wdle the
valuation of these tests into functional security testefgesented in
Fig. 4(b). The process is made of five steps, numbered fronbirto
Fig. 2.

1. Formalization of the static and dynamic access control sgcu

Security
Tt target
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1
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1

Func. Sec. Tests

Abs. Sec. Tests

(a) Security Tests Generation

(b) Tests Valuation

Figure 4: Security tests generation process

In this process the parameters are added to the operatisratal
successive steps of the process. The parameters are celyplet
stracted at step 3 in the test patterns, then step 4 addschstge
parameters to the calls and finally the functional parareete com-
puted at step 5. Some implementation parameters can alsidbd a
at concretization time (see Fig. 2), where the abstractabiper calls

rules In this step, the security engineer writes a semi-format do are translated into concrete calls of the implementatioRZAIs in

ument from the security specifications, called sieeurity target

It is written as a Common Criteria document. For access obntr

requirements, he formalizes both the access control rillesfle-
based model) and how subjects, objects and security a#sioan
change (the dynamic model).

2. Generation of a security policy model SPWhis step takes as

the case of IAS).

Consider for example the operatiodERI FY that performs
an identification by means of a PIN code. A call to this
operation would appear a¥ERI FY in a TP (step 3) and as
VERI FY(ref .sdo, Pl Ncode) (see Sec. 2.3.4) in an abstract
security test (step 4), withef .sdo and Pl N.code being some
sdo and pin values. Then the call appear¥BRI FY(r ef _sdo,

input the two previous models and automatically produces-a bp| N code. | N.SMLevel . | N.Good_SM in a functional se-

havioral SPM that abstracts the system in a level that ordydes
on security aspects.

curity test (step 5) because IAS operations have additipagm-
eters in FM that indicate the level of secure messaging twiee

3. Formalization of test patternsBased on their security expertise card and the termin&l. Finally, in the case of th¥/ERI FY com-

and their knowledge of the security policy model, the seguamn-
gineers state some test patterns using a well-defined lgegak
lowing to describe sequence of operations and conditionson
able values. The parameters are not instantiated in theximer
calls.

4. Generation of a set of abstract security testhis step takes as
input a test pattern TP and an SPM to produce a sabefract
security testén which security the parameters are instantiated.

5. Valuation of the abstract security tests into functionatiséty

mand, no implementation parameters are added at the cizatict
step, but the operation calls are translated into APDUSs.

4.3 Discussion

This process completes the model-based generation of theefo
functional tests. We re-use the functional model FM, thecoetiva-
tion layer and the execution ground installation of the cetectests.
The security engineer has to design and to formalize therisgcu
policy model SPM and the test pattern TP. With this approdud,
security engineer is only concerned by the security poljmgci-

tests In this step, security tests are replayed on the FM in oreation. He does not need to know the remainder of the furation

der to valuate the functional parameters and results. Thidges

specification. In addition, our process is consistent whia €om-

functional security testsDuring the valuation, the conformance mon Criteria approach that explicitly distinguishes betwéhe se-

between the functional and security models is checked. war.t

Hthis is for making sure that before the loss of the right tateyri
the writing operation was indeed possible, and not refusedty
other reason.

curity and application models and imposes to relate thesarad-
els (our conformance relationship). From a practical pofntiew,

12These parameters are not considered in our SPM that only fo-
cuses on the verification of access conditions.



the use of the security model for test generation allows usaster
the combinatory: because the security model is more abgtran
the functional model, the state space explored for the g¢inerof
security tests is smaller. For instance in the IAS case stivelf-M
contains about 15,500 lines and 60 operations and the SRMont
tains about 1,100 lines and 12 operations.

In the next sections we detail how the different steps of 0sP
security model based testing process have been effecivedie-
mented and applied on the IAS case study.

5 Security Policy Model Formalization

From this target of evaluation, a formal model of the access c
trol part has been developed. This model can be assimilatdtbt
assurance requirement SPM (for Security Policy Model) efdlass

ADV. A language based on the B method has been developed in orde

to formally specify and verify security access control medd his
language is supported by a tool, named Meca (20, 14).

5.1 PO Security Model of IAS

Inthe POE approach, a security model contains the traditional rules

part attached to access control policies but also a dynaroidem
describing how security attributes, subjects and objeatsevolve.

MACHINE IAS_.RULE
SETS
OPERATION = {SELECT.FILE_.DF_CHILD, CREATE_FILE_DF, ...}
CONSTANTS
/* Permission relationship */
permission
PROPERTIES
permission € OPERATION <> DF_list A
I{* access rule relative to the command SELECT_FILE_DF_CHILD */
V(df.id).(
/* df_id denotes a child of the current directory file */
DF_2_dfParent(df_id)=current_DF
/* the current directory file is activated. */
A DF_2_life_cycle_state(current_.DF) = {activated}

= (SELECT-FILE_DF_CHILD +> df.id) € permission)

/* access rule relative to the command CREATE_FILE_DF */

Therule-based modedpecifies subjects, objects, security attributes A

and operations whose execution is controlled.

We give in Fig. 5 a sub-part of this model allowing to describe=pp

conditions attached to the comma&ELECT_FI LE_DF_CHI LD.

In this example the access control rule does not depend ob-a su

Figure 5: Rule-based part of the security model of IAS

ject: per mi ssi on is then a binary relationship between operations

whose execution has to be controlled and the object on whiebp-
eration is applied. Here, the comma8BLECT_FI LE_.DF_CHI LD
can be invoked only if the current directory is activated #nithe
selected directory filaf _i d is effectively a sub-directory of the
current directory file. Security attributes are here the kfcle
of files OF_2_1i fe_cycl e_st ate), the file and SDOs hierar-
chy (Pl N.2_df Par ent and DF_2_df Par ent ) and the state of
the pin authenticationg( n-aut henti cat ed_2_df ). Variables
DF.2.1ife_cycl esstate is a total function fromDF_l i st to
the sef{ activated, deactivated, terminated}. Other variables have
been already defined Sec. 2.3.

eration, if security conditions are verified, or to a nullexéon. This
operation returns a new resuits, indicating if the execution has
been authorized or nosccess/er r or ). For instance lebut +
op(i) = PRE P THEN S END be the definition of the operatiamp
in the dynamic model. Lef’ = (s — op — 0) € permission
be the unique rule associated with the operatpn(to simplify).
The generated security model contains a new operation als@ah
op (Fig. 7) describing how the execution of the operatigris con-
trolled. Predicater e_t yp denotes the part of the preconditiéh
relative to how input parametersre typed. Variablesubj ect and

The dynamic modebives an abstract view of commands, fo-obj ect contain the value of the current subject and object. These

cusing on the behavioral changes of security attributegurgi 6

describes the part of the dynamic model relative to the comima

variables have to be defined in the dynamic model.
The security model can be seen as the specification of alkimpl

SELECT_FI LE.DF_CHI LD. This specification describes how the mentations that conform to the rule-based and dynamic reodie!

current directory file evolves as well as the set of authatgit pins.
In particular, pins that are redefineddfi_i d lose their authenticated
status.

5.2 Generation of the Security Model SPM

The inputs of the Meca tool are the rule-based and the dynarmit:
els. Meca implements some verifications related to the starsiy

tuitively an implementation for which all sequences of figsicalls
(associated to an effective execution of the operations)atso be
played by the security model is conform. In particular theliea
mentation can refuse more executions than the security Infzde
instance for functional reasons. A more formal definitionhofv
functional models and security models can be linked will veryin
Sec. 7.

of these two models and produces a security model, obtaimed i Finally, the use of a formal method can be exploited to eistabl
weaving the two input models. The security model can be seen properties related to security aspects. As pointed out m &€, in

a monitor that traps the execution requests and enforceacttess
control rules. In the context of the PE®roject, this security model

the B method, invariant properties can be stated and proVéx:
first class of properties that has been proved on our seaudtjel

can be assimilated to the SPM assurance component of Commigirelated to the file structure (a tree) and its consisterity the file

Criteria.
For each controlled operation, the security model containew
operation corresponding either to the execution of therodlat op-

life cycle states. A second class of properties is relatédd@onsis-
tency between authenticated pins and the current direfiteryhere
cannot exist an authenticated pin that does not belong teeatdry



SELECT_FILE_.DF_CHILD(df.id) =
PRE df.id € DF_ID A DF_2_dfParent(df-id)=current_DF
THEN

current_DF := df_id /* update of the current df*/

|| LET pin_loosing-auth BE

We give the syntax of each layer and then we give an example of
a test pattern issued from the IAS study.

6.1 Syntax of the Model Layer

pin_loosing-auth = pin_authenticated_2_df~* [{current.DF }] The syntax of the model layer is given in Fig. 8. The r8 de-
N PIN_2_dfParent~ [{df.id}]
IN pin-authenticated_2_df := pin_authenticated-2_df U OoP u= operation_name
(pin_authenticated_2_df ~* [{current_DF}] - (pin_loosing_auth) x {df_id} \ "$OP”
END | "$OP \{"OPLIST"}"
END;
OPLIST = operation_name
| operation_name”,"OPLIST
Figure 6: An operation of the dynamic part of security mode/ A& SP u= state_predicate

Figure 8: Syntactic Rules for the Model Layer
file between the root and the current directory file (see ptg)).

Finally, another class of properties is related to the atys@ficycle  scribes conditions as state predicates over the variablbe GPM.

between security conditions attached to SDOs. The ruleOP allows to describe the operation calls, either by an oper-
ation name indicating which operation is called, or by thestdbOP
V(pi n d, df ).((pi n d — df € pi n_aut hent i cat ed_2.df ) meaning that any operation is called or®@P\ {OPLI ST} meaning
= (pinide @) thatany operation is called but one from the @&L| ST.

-1
(PIN2-dfParent [DF-2.df Parent el osur el {dT 1)) 6.2 Syntax of the Test Generation Directive Layer
Establishing formal properties from the target of evalrafs one  This part of the language is given in Fig. 9. It allows to speguide-
of the requirements in the higher level of assurance in thmr@Gon
Criteria, used both to prove the consistency of the consdformal
models and to show the correspondence between the seeugst t
and the formal models. This allows giving further assuranace
the security target. Furthermore, because the securityehmdy ~ Figure 9: Syntactic Rules for the Test Generation Diredtiger
focuses on some aspects of the system, security attritntgests
and subjects, it is generally small and abstract enough ppest  lines for the test generation step. We propose two kindsrettves

CHOICE = e
OP1 = OP | "TOP'T’

formal verifications. aiming at reducing the search for instantiations of thepgatterns.
The ruleCHO CE introduces two operators denoted asd for
6 Language for Test Patterns Description covering the branches of a choice. 1SgtandS- be two test patterns.

] s ) ] The patterns; | S, specifies that the test generator must generate
In this section, we introduce the language that we have deditp  tests for both the patterl; and the patterrs,. S; ® S, specifies

formally express the tests purposes as test patterns (26). that the test generator must generate tests for either tterp&; or

We want the language to be as generic as possible w.r.t. tde mgnhe patterrSs.
elling language used to formalize the system. The languagtuc- The ruleOP1 tells the test generator to cover one of the behaviors
tured as three different layermode| sequenceandtest generation  of the operatiorOP. It is the default option. The test engineer can
directive also ask for the coverage of all the behaviors of the operdiip

Themodel layeris for describing the operation calls and the statesurrounding its call with brackets.
properties in the terms of the SPM. This layer constitutesinter-
face between the SPM and the test patterns. seipience layeis 6.3 Syntax of the Sequence Layer

based on regular expressions and allows to describe the sfiégst  This part of the language is given in Fig. 10. The r8EQis for
scenarios as sequences of operation calls leading to Biatesatisfy

some state properties. Thest generation directive layés used to SEQ = OP1 | "("SEQ")" | SEQ"~~("SP")"
deal with combinatorial issues, by specifying some sedeatriteria |  SEQ"SEQ
intended to the test generation tool. |  SEQ REPEAT

|  SEQ CHOICE SEQ

out, s < op (i) = REPEAT  := | g |
PRE pre_typ THEN /* typing of parameters */ [ "{"num”}” | "{"num”,}" | "{"aum”}" | "{"num”’num”}"
IF subject=s A object=o A C' A P
THEN S || s := success Figure 10: Syntactic Rules for the Sequence Layer
ELSErs:=error
END describing a sequence of operation calls as a regular eipnes
END A step of a sequence is either an operation call as denot&@by

(see Fig. 9) or an operation call that leads to a state satiséystate
Figure 7: SPM general format of an operation predicate, as denoted ISEQ ~-( SP) .



é\_/ERIFY | CHANGE_REFERENCE_DATA

Sequences can be composed by the concatenation of two ?(RESET SELECT FILE_DF.CHILD) | RESET_RETRY.COUNTER

guences, the repetition of a sequence or the choice betweeset | (SELECT FILE.DF_PARENT . SELECT FILE.DF_CHILD))

quences. We use the usual regular expression repetitioatope ~~(current.DF = file_01 A file.01 ¢ pin_authenticated_2_df[{pin.02}]) // P5

(» for zero or many timest for one or many times? for zero or  gg| ECT_FILE.DF.CHILD

one time), augmented with bounded repetition operafor$ (neans ~(current_DF = file_02) 11 P6

exactlyn times,{n, } means at least times,{, m} means at most .[CREATE_FILE_DF|DELETE_FILE | ACTIVATE_FILE | DEACTIVATE.FILE

m times, and{n, m} means between andm times). Notice that | TERMINATE FILE_DF | PUT_DATA_OBJ_PIN.CREATE |

using the operators and+ possibly define infinite sets of tests. To . )

be of practical interest, they will have to be instantiatsceaplicit Figure 12: Example of a test pattern — execution step

numbers some time in the process. Using these operatorsest a t

pattern allows the engineer to postpone this question, @aiard in .

Sec. 7.1.1. 7 From Security Test Patterns to Concrete Se-
curity Tests Execution

6.4 Test Pattern Example In this part we describe how concrete security tests areuoest

Here, we exhibit one of the test patterns (based on the lgegairo- from test pat_terns, using the PB%ools suit._ The process isin t_hree
duced above) written for the experimentation of our appoakhe ~ Steps. Section 7.1 presents the generation of the abseautity
property to be tested igd access an object protected by a PIN code[€Sts, by unfolding the test patterns and valuating therigqoa-
the PIN must be authenticateand the test need iswe want to test rameters from the SPM. In Sec. 7.2, we describe the valuation
this property after all possible ways to lose an authentiwaover a the functional parameters from the FM. We finally presenttésts
PIN". execution in Sec. 7.3.

The test pattern is given in two stages: the initializatitage and V& @PPly this test generation process to the test pattemjeea
the core testing stage. Figure 11 presents the initiatinattage of ntroduced in Fig. 11 and Fig. 12. We also present the praictiod
the test pattern in four steps, aiming at building the datacttre re-  theoretical restrictions of the proposed approach.
quired on the card to run the test (see Sec. 2.3.4 for the radide of 7.1 Abstract Security Tests Generation
the variables used in this example). The purpose of the faptis to )
create a new DF( | e_01). The second step aims at creating a pIN-1.1  Unfolding of the Test Patterns Each test pattern has to be
object pi n_02) into the DFf i | e_01 and to gain an authentication transformed into the set of test sequences it representio $o, we
over it. The aim of the third step is to create the DiF e_02 into translate a test pattern into an automaton and then unfoldtits
the DFf i | e_01. Finally, the last step aims at setting the current DFgives test sequencethat are made of operation calls and states to
tofil e_01 in order to start the core of the test. The resulting dat&€ach. Notice that we bound the number of repetitions indime
structure is the left part of the Fig. 1: the DF | e_02 is protected the operators " and “+', in order to have a finite number déttee-
by the PINpi n_02 for all commands. guences. The bounds can either be chosen by the validatiimeen

We have given in Fig. 11 and Fig. 12 a label to each target staf¥ set to a default value. Also no‘_[ice that the “exclu_siveim_nbrboper-
predicate expressed in the pattern, so we can refer to inaitds. ator®, aIIowed.by the language in the test generation directiyer|a
These labels appear as double slashed comments on the aight h@ve not been implemented yet.

of each predicater p1, // P2, etc.
‘ CREATE_FILE_DF ‘mPUT_DATA_OBJ_PIN_CREATE

VERIFY

CREATE-FILE_DF

~~ (rule_2_obj[{file_01}] ={always} A current_DF = file_01) I P1
. PUT_DATA_OBJ_PIN_.CREATE . VERIFY
. SELECT_FILE_DF_PARENT CREATE_FILE_DF
~ (PIN_2_dfParent(pin_02) = file_01 P4 )<
A file_01 € pin_authenticated_2_df[{pin_02}]) 11'P2
. CREATE_FILE_DF VERIFY
~ (rule_2_obj[{file_02}] = {pin_02} A current_DF = file_02) 11'P3

'/PS\SELECT FILE_DF_CHILD, (" b

. SELECT.FILE_DF_PARENT A\ 7
. CHANGE_REFERENCE_DATA
~> (current_DF = file_01) 1l P4

CREATE_FILE_DF]
Figure 11: Example of a test pattern — initialization step : / [] \
\ [FUT_DATA_OBJ_FIN_CREATE]/

Figure 12 shows the core testing stage, describing theuesbpe

of a successful authentication after all possible ways s$e lan au- Figure 13: Automaton associated to the test pattern example
thentication. First, the pattern describes the five possiays for
losing the authentication over the PPN n_02 (for instance, a fail- Figure 13 gives the automaton for the test pattern exampengi

ure of theVERI FY command or a reset of the retry counter). Then Fig. 11 and Fig. 12 of Sec. 6.4. The edges are labelled by the
aim of the second step is to select the DH e_02, with the com-  operation names of the pattern and the labels in the ventiesto
mandSELECT_FI LE_DF_CHI LD. The final step of the test pattern the target state predicatBsof Fig. 11 and Fig. 12. Predicate ue
describes the application of six commands, withe the ctidigac-  denotes a state that is not constrained.

tory file beingf i | e_02 in order to test the correctness of the access The unfolding of this pattern gives thirty test sequenciegesfive
conditions. commands provoke the loss of authentication (transitietsvdéen



P4 andP5), and six different commands test the access control (trarf-2.1 Test Valuation from the FM Reusing the layer that con-

sitions betwee®6 and the final stater ue).

7.1.2 Test Generation from the SPM In this step the SPM is
used to compute parameter values for operations that mhth
constraints expressed in the test sequence. For exampleathe
SELECT_FI LE_.DF_CHI LD, between predicateB5 and P6, will
be instantiated iISELECT_FI LE_DF_CHI LD(f i | €.02) returning
the valuesuccess.

We use LTG to compute abstract security tests. By defaulg LT

tries to cover every behavior of every operation of the mod&y
using a test pattern, we guide the test generation by foicligg) to
visit the successive target states and to call the suceesp@rations

given in the pattern. An extension of LTG has been developed f
research purposes in PB% take into account test selection guided

by test pattern. This extension relies on greamble helpemecha-
nism of LTG, which allows to describe a desired test by theisage
of operations it activates. Technically, we have autoradifiadded
one “fictive” operation in the model per state to reach. Sucz
eration reaches the targeted state, provided it is postibieach it
from the current state.

Notice that the efficiency of the computation of the abstsaciu-
rity tests can be improved, by considering a restrictiorhefrmodel
to its executions matching the test pattern. We have show@7p
how this can be obtained in B, by a synchronous product ofasie t
pattern with the model. This synchronous product was notémp

cretizes the tests issued from the FM (see section 3.4)rethat
the tests given by the SPM are brought to the same abstrdetieh
as the FM. We obtain it by “replaying” these tests with the kg,

ting the LTG tool. For a given abstract security test, the i, TG

is the sequence of operation calls with their security patamval-
ues and in omitting the output values. We expect that LTG yeed
some sequences with the same operation calls, enrichedumss\far
functional parameters and output results. In the nextaestive dis-
cuss how the functional security tests are shown to be inardance
with the SPM. Due to the fact that smart card applicationgarer-
ally defensive, i.e. operations are always callable evittafminates
with an error status word, it is always theoretically pokstb obtain
a functional sequence replaying a security test. Table 2r®anres
the possible results for the functional security genenesieep.

Result of the functional security generation step
OK : aset of functional security tests is generate
KO : some LTG limitations are encountered

Table 2: Functional security test generation step

7.2.2 Mappings Between SPM and FM results By means of a
conformance relation, we verify that the results returngthie SPM
and the FM models are consistent. The conformance relatiosmsed

mented in the PO experimental prototype, as it was developedy 5 function, called anapping that associates to each status word

prior to (27).

The valuation of a test sequence may fail when the conssranet
unsatisfiable due for example to an unreachable state. Btamice
the test pattern of Fig. 12 imposes that the execution of time-c
mand SELECT_FI LE_DF_CHI LD leads to the stateur r ent _DF
= fil e.02 (P6) from the initial stateeurrent .DF = fil e01
(P5). As specified in the dynamic model (Fig. 6), this comman
succeeds only if the following condition holds:

DF2 df Parent (fil e02) = file.0l.

If the initial hierarchy does not fit this condition, LTG wilil
and the test pattern will not produce any test. The valuaifantest
sequence may also fail for a more pragmatic restriction,nnthe
test generation tool fails at finding a valuation in some gitime.
Table 1 summarizes the possible results for the abstractigetest
generation step.

Result of the abstract security test generation stey
OK a set of abstract security tests is generated
KO an unsatisfiable scenario is detected or sgme

LTG limitations are encountered

Table 1: Abstract security test generation step

When the abstract security test generation fails, the ntitest se-
guence must be analyzed in order to detect the reason ofthissf
In particular the test pattern associated to the faulty seguence
could be redefined.

7.2 Functional Security Tests Generation

In this section we explain how functional security testspmluced
from abstract security tests.

returned by a given operation, an abstract security statfanging to
the set{success, error}, as defined in section 5.2. Table 3 shows
a part of the mapping function for tHeEL ECT_FI LE_.DF_CHI LD
command.

| Status word| Security status|

A success 6900 success
A security error: the current 6985 error
directory file is not activated

A functional error: the secure 6982 error
messaging parameter is invalid

Table 3: Mapping for th&ELECT_FI LE_DF_CHI LD command

Status words mapped w&uccess correspond to behaviors that
are in conformance with the access control conditions andrig
attributes modifications described in the dynamic modelr iRo
stance for thé/ERI FY command the two behaviors corresponding
to a right or erroneous pin value are both mapped witlecess,
when the access control conditions hold. Status words sporeling
to a violation of a part of the access control conditions aaedatory
mapped t@r r or and security attributes can not be modified, in any
way. In (14, 13) a finer form of mapping has been proposedwallo
ing to distinguish authorized behaviors as iVBRI FY command
that succeeds or fails. Nevertheless, such forms of poweréyp-
pings are in general non-deterministic and have not beathinsaur
case study, in order to master the complexity of mappingesgion.

7.2.3 Functional Security Tests Conformance with respectot
the SPM In this step we verify that the functional security tests,
produced by LTG using the FM, conform to the SPM. A semantic
conformance relationship between a functional and a sgauddel



has been defined in (14). For a given mapping funcfiénall se-
guences of the FM, in which status word values are replaced by
M (sw;), should be accepted by the SPM after elimination of func
tional parameters and calls that are mappeértoor . By this def-
inition, all sequence of successful calls accepted by theshbuld
also be accepted by the SPM. On the contrary, the FM should
more restrictive, for example for functional reasons.

Table 4 gives the conformance verdict, w.r.t. a given mappin
M. In particular we exploit the fact that the SPM is a determin
istic model, as imposed by LTG. Let.= < r,...,r, > and

in terms of refinement (see (13) for a formal definition). Dadte
proximity of the structure of the two models, the mappinghaf IAS
€ase study has been validated by a review process.

7.3 Tests Execution

t}%e fully valuated test sequences are finally concretizemiésns of

the concretization layer, and executed on the IUT.

Practically, this is performed at Gemalto through the EVASE
Validation Application) environment. EVA is the validatidlata base
environment of Gemalto. It uses the Visual Basic 6 langudgis.

7f:| < 5(;01’ d t’)swﬁ >SE('\9/|thedtWr(]) sgﬁﬂuefnces 9f output reSpechseqona proprietary tool, used to write validation stegts and to
tively produced by the and the » fora given sequence (gxecute them on different targets: simulator, emulatonwarscards

operation calls with the same security parameter values.caife
pute the greatest indéxsuch that-; = M (sw;) fori € 1..k.

Conformance verdict
oy conforms to SPM
o ¢ does not conform to SPM

Condition
k=n
k<nArge1 =error
N M (swi41) = success
k < n Argy1 = success
A M (swi4+1) = error

inconclusive

Table 4: Conformance verdict

As summarized in table 4, = n, that means that any operation
call returns the same status word. In other words; idietects a secu-
rity violation theno ; must also detect it. If it is not the case £ n),
and due to the fact that the SPM is a deterministic model, emnin

and with different smart card readers. This environmenotalito use
the same script on the different types of simulator and ¢aingseby
improving the validation in terms of time process and debkig-
ure 14 shows a screenshot of EVA. The “TreeViewer” panel show
the card image, while the “EVA View” panel displays the refl
the execution of the tests. The down part of the screensbetssthe
test code, while a list of available sets can be seen on thiedafl of
the screenshot.

The (security or not) functional tests are run on the IUT byAEV
via a dedicated interface (the concretization layer) relyingttoe
functional model. The concretization layer had been preslpde-
veloped for the non security functional validation testsor Effi-
ciency reasons, the constraint was to use the same coatiatiz
layer in order to avoid additional developments.

This concretization layer implements the definition andtthas-
lation of each operation call of the test by:

sistency is detected between the two models. On the conifary 1 providing concrete values for the parameters of the candsiand

succeeds while s fails, then the FM could be more restrictive than
the SPM. In this case we have to establish wetheis in confor-

mance with the SPM, by verifying if the subsequence of sigfaks 2.

calls are accepted by this model, as defined in the conforenaata-
tionship (14). This verification can be made by playing tieigieence

encapsulating them in specific formats,

initializing the secret data (PIN values, key values) atating
it in the concretization layer, to be used for comparisorcéose
there is no mean to retrieve those values from the card),

on the SPM, with the help of LTG. 3. translating the command into a format understood by the .
Then we have developed a script, written in Perl, that verifie APDU format (22)),
conformance of a functional security test produced by LTGoedt- )
4. sending the command to the card,

ing to table 4. This script is based on a small language dextica
the definition of mappings.

Finally, an important question is the relevance of the fiometl
security tests produced by LTG. For instance, a test thaémsati-
cally chooses functional values producing an error is fatipform,
but not necessary a good test. Then LTG must be guided in tder
target tests as relevant as possible. The strategy thaebkasdopted
is the following one: when a success is expected then thetséar

5. receiving the data response from the card,

. verifying the results, i.e. verifying that the data reeei from the
card equals the one expected by the test design. This irchide
channels verification, e.g. no secret value is returned fitoen
card.

The verdict is thus given facing the results of the IUT to the®

guided by any status words mappedsiaccess. When this search predicted by the oracle, namely the FM. The mapping betweén b
fails, we are looking for an error. On the contrary, when amrer results is a bijection as the functional model returns theesata-
is expected we search both a call producing a status word edapptus words as the implementation (6900, 6985, etc.). If tisalte

tosuccess and a call producing a status word mappeéa or .
This way, if there exists an inconsistency between the SPd/tlam
FM, it will be detected.

To summarize, functional tests produced from abstractrigcu
tests are in conformance with the SPM through a relationgtap
admits more restrictive implementations. The correctrafsthe
conformance relationship, and its application to our secunodel
based testing approach, strongly depends on the relevdnite o

differ, this indicates that there is a problem, either in tH& or in
the model. The problem is reported to the validation engifiee
analysis.

As the security functional tests are computed from the esgioas
of security requirements, the traceability of a test to dgioal re-
quirement is easy to ensure. Every test can, for examplé&dac
a tag that refer to the requirement from which it is issuedngee
quently, a bad verdict can easily be related to an originalisey

mapping functionV/. Due to the fact that the models that are con+equirement. This facilitates the human analysis of a @mbdis-

sidered are formal, the correctness of the mapping can bieder

covered by a test.



ry POSE - Microsslt Yisual Basie [bredk] - [ SOR_POSE C1_ACTIVATE FILE_I [Cude))

ﬁ&hﬁammmww&nuvwmmw—mwuwlmmmlm_mww =15
]|w u-_w.r |l = : +% u';|| » 0o -vzualmﬂm B [ per vee am e coi (& |
| #]

T | T, mm

o 7
&5 SCRIPTy -
@ 5SCR_POSE_C1_ACTIVATE_FILE OPERATION 9- 10P_ SELECT_FILE_DF_CHILD wilbo sxecifed || Fldsr
& SCA_POSE_C_CREATE_DF_ stLEEi _FILE_DF_CHILD: 0074 @ 02 Datalre O0VE Le: 00 Dala Dut
@ SOA_POSE_CT_DEACTIVATE_Fl & w9000 P
sl Pt ool oA Shatus DK S0 £
g f L meaning of SW=9000 ==> conact sxecution ¥00
| EF/OF selocted i row : <-»\IFOONTFSOVONE ExlE
Hame | o wBochn
G HOM_lest_ACTIVATE_FILE_200I_8451_5cb3 | s G0l
G ACTIVATE_FILE_1167_3a22_9dba_I sy (IPE n.:-nun 10: 10P_ACTRVATE_FILE vil b svociited ;"”l:
@ ietl_ACTIVATE_FILE_55%e_lBde_Sd9_| ACTIVATE_PILE 2 v
") Ir o \j 0y = TIVAT r| HHEMN = TFS
@ sl ACTIVATE_FILE_acad_ 3955 9bd | ”!E_,V.i:,ug FILE, '”E MauEn B Sl
il ACTVATE_FILE_dded codd_9db9.1 Siatus OF B0 me
maanimg ol SW=9000 ««» consal axaculion
| | X
| Gorephus LISB Smart Card Feader | Gerrphis USB Stmart Card Froace | Adccated | sesmema0rFDD00000104
« | +) | SCA_POSE_C1_ACTIVATE_FILE| NOM_let_ACTIVATE_FILE_260 in Progress 002186

][Ganonu

x| [woma_test ACTIVATE_FILE_2uiv 84613003 I

"

TOOLE ., display
TOOLS . display
TOOLE . display
TOOLS . display 7

M ommmemomee BTEP —=mm—mm—mmm= 3

T

__________

Call IOP_ACTIVATE_FILE( _
SN _Level none, True, _
ov_Success_activatedlF _
]
caseExit; TOMLS, BottomSeript He,
o Exit Sub

0 i o R i an o i o ik i i i i

<Body>"

"HOYM_test ACTIVATE_FILE_ZhOf_B461_Sdbs_I"

Figure 14: A screenshot of EVA

8 Experimental Results

We describe in this section the three test patterns that we dxer-
imented on the IAS platform, and the test generation basetese
test patterns with LTG. We also present the concretizatimiexecu-
tion steps in an industrial process, and comment the resiiténed
on the IAS implementation.

8.1 Three Test Patterns

For each of the test pattern that have been experimentedifare i
mally give the property from which it is issued, the test nassoci-
ated to the property, and the shape of the test pattern.itself

The first test pattern that we have experimented is the orietddp
in Fig. 11 and Fig. 12 (see Sec. 6.4). The property to be tésthat
the access to an object protected by a PIN code requires ricagai
authentication over the PIN code. Functional tests wilkeise this
property in a case where the authentication is gained, aaccase
where it is not. But they don't take into account if a PIN wasvr
ously authenticated, and that the authentication has lesénSo the
test need is to exercise the access control mechanism iasesof a
loss of authentication, in all possible ways, following eypous gain.
The pattern proceeds by targeting a state where the awthgati is
gained, accessing the object, targeting by all possibleatipas a
state where the authentication is loss, and accessing tgadibject.

As already stated, the unfolding of this pattern gave 30 secgs.
From these sequences, we have obtained 35 abstract sdestiy
from the SPM. This is due to the fact that there were multiglesp
ble valuations for the parameters of the last operation ofesse-
quences. The functional valuation of these abstract sgciasts
gave 35 functional security tests.

The second test pattern aims at testing the access consexd loa
a PIN authentication for various locations of different Rdbjects
with the same name in the file structure. In IAS, each PIN isea fil
saved under a directory. The location of the PIN w.r.t. theent DF
matters for an authentication gained over it. For exampuegssing
the DF parent of the current DF leads to a loss of the authetidit
Thus, the property that we want to test is the same as befbee: t
access to an object protected by a PIN code requires to berdiith
cated over this PIN code. But here, the test need is to exetices
property with several PIN objects saved under multiple aloges
(e.g. the current directory and his child) when these Platijare
homonyms. Indeed, two distinct objects can share the saoa lo
name (they are homonyms) if they are located in two distiriet D

Furthermore, the test need also aims at exploring the differ
combinations of the authentication states of these PIN&s& lest
needs are addressed by a pattern targeting various sitsatioeach
before applying the access commands. For example, it tesdoy
state predicates the directory selected as the currerttaliye and



Model Number | Number of [ Number of
of lines operations | variables
FM 15,500 60 150
|
rule based 200 1 o
model
dynamic
1000 12 20
model
SPM 1100 12 20

Table 5: Size of the different models

which PIN is authenticated or not. Some constraints overtme-
mands sequencing (expressed by concatenations and cloviees
command names), enable to reduce the possible paths tothemeh
state targets. From this test pattern, we have generatéal atoount
of 66 functional security tests.

Maximum | Minimum Average
Test Number | Number | number of | number of | number of
pattern of seq. of func. op. calls op. calls op. calls
(see Sec. 8.1) inTP sec. tests| per test per test per test
1 30 35 10 9 9.4
2 48 66 11 8 9.5
3 68 82 8 5 6.9

Table 6: Experimental results about test generation

products. Nevertheless, our implementation is a reseantbtgpe
whose efficiency could be improved in a second phase.

8.3 Discussion About the Experimentation

We propose in this part to give some experience returns wotbirat
of view of industrial partners.

The authentication gained over a PIN not only depends on the

location of the PIN, but also on the life cycle state of the Direve

a command protected by the PIN is applied. Thus, the thirt te¥alidation, two ways have been deployed to validate the IAS im-

pattern aims at testing some situations where the life steke of the

8.3.1 Functional and Security Validation For the functional

plementation. For the first, we used the model-based approdth

directory is not alwaysctivated In addition to the property already automatic generation of tests and for the second, we usetitie

seen in the two previous test patterns, we exercise the pyaheat

tional approach where the test scripts are developed nmgnddle

when a command is executed in a directory, this one needsito befirst approach has generated more than 7000 tests. The iexecut

an appropriate life cycle state. The functional test casesduch
situations in a static way, with a life cycle state of the diogy that
does not change during the test sequence.

time on the smart card was approximately 2 full days. The raknu
approach has delivered nearly 500 tests, which were magdigded
to complement the automatic generated tests. They wersddan

So, the test need used in this pattern is to change the lifie cydParts that the modeling could not take into account, e.g.eskmit

state of the directory one or several time(s) during thesegtience
(e.g. just before applying the command, or before gaininguahen-

tication over the PIN or before a reset of the card, as if thd vas

removed from the terminal and inserted again). The pattem-c
bines these life cycle state changes with the differentemtitation

states of the PIN protecting the access to the directoryuBétional

security tests have been generated from this pattern.

8.2 Test Generation

Every test pattern gives several abstract security testse&ch ab-
stract security test, we compute only one valuation of timetional
parameters, so one functional security parameter is cadmpér ab-
stract security test. In our experiment, the three tesepattgave a
total amount of 183 tests. This number seems small in cosgrari
to the 7000 tests generated for the non-security functitasalcam-
paign. But it is necessary to consider that these three &#trps
did not intend to address the whole system. Instead, theyséaton
selected properties and test needs, regarding accesslanetrha-
nisms. Furthermore, each of these 183 tests is complengenttire
non-security functional tests previously generated. Thisbe seen
from tables 5 and 6. In table 5, we give the size (number o§linp-
erations and variables) of each model that was used for shge¢a-
eration. Table 6 presents the experimental results (numbtsts
generated, and length of these tests in number of operatidmsit
the test generation using the three patterns presentectir8Se In
comparison, the average length of the non-security funatitests is
5, which is lower than the average leng&26) of the security tests.
For each test pattern, the complete test generation (fost the

SPM and then from the FM) took about two or three hours. It may Let us take the example of homonymy (the second test pattern
example in Sec. 8.1): one could have several SDOs with the sam

seem a little bit long, but our main objective was the corecrete
of the developed approach in the industrial environmenesb rteal

casesstresscases where the test stresses a specific feature (quality

of the random value, memories cell values,...). The coording
execution time was nearly the same than the automatic ptiasep
the time allocated to the stress tests.

The security validation takes advantage of the functional vali-
dation as it was based on the same functional model desgribin
behavior and in particular the tests oracles. All the gaedraecu-
rity tests were correctly executed on the target. As alrestaled, the
three families have delivered 183 tests, executed in one ¢rthe
target. Although no problems were detected in the IAS imgleta-
tion, the approach has improved the confidence in that imgiéaa
tion. This is crucial for the certification of products emted) the
IAS application because this step is part of the testing tiaakwill
be done by the evaluator. Indeed, although the approacholesac
only a subset of the security properties of the IAS (only tbeeas
control on PIN objects), the global concept has been valat the
industrial framework.

Additionally, one test issued from the security model hase
a non conformance between the security model and the funadtio
one. This was due to distinct interpretations in the two nwodé
an imprecise point of the specification. The previous (necusty)
functional test campaign alone would not have pointed dstspec-
ification ambiguity.

8.3.2 Coverage For the functional validation, the coverage of a

specific behavior was done manually, using the parametiizéta-
tures to force the tool to cover a specific path in the modee djr
proach used for the security validation, with test pattelescription
and their unfolding allows a systematic coverage, thatrgela

reference but at different levels within the file structuBeit the ac-



cess conditions relying on a SDO PIN in a specific DF are differ

model based testing approach, and its tools suite, has tregadp

from another SDO PIN with same reference but inside a diffiere to be realistic even for a sizeable application. The difficalf the

DF. The non security functional validation campaign, tHoaganu-
ally parameterized to cover this point, only generated fstst In
comparison, 66 tests were obtained to exercise this sequoint

with the security validation approach. Indeed, the segteits were
designed using the know-how of the security experts andetsting

experience of the validation engineer. Having a systenmagan to
design the security tests is the main advantage of this appro

8.3.3 Conclusion From the industrial point of view, the main ad-
vantages of the POSE methodology are the following:

cost reduction of the validation process: capitalizing loe de-
velopments required by the functional validation, i.e. dtional
model and interface of the concretization layer.

time improvement of the validation process: the securitidea
tion step is no longer a “subtask” of the validation phasedwt
independent phase. This separation allows for a signifgarnhg
time in the validation of the product because the securibper-
ties are clearly identified and their test is reproducible.

quality improvement of the validation process: completaich
that provides a traceability between the abstract progertythe
corresponding test suites. This traceability is criticedtffor the
certification of the product and secondly for the securitidedion
of several products based on the same specification.

9 Conclusion

We have presented in this paper a security model basedgesiin
proach, that has been successfully deployed on a real siastimal
application, the IAS platform for smart cards. To conclude dis-
cuss about the proposed security model based testing abpaoa
the theoretical contributions of the Pé$roject .

9.1 The POE security model based testing
approach

The method makes use of already existing material, writtiembdel
based functional testing: the functional model and the ietimation
layer. An additional dedicated model is written for moduwdlithe
security rules. Abstract security tests are obtained hygugst pur-
poses as patterns for extracting relevant tests from theigemodel.
These tests are then automatically replayed on the furaitiondel
in order to bring them to the abstraction level required teriact with
the implementation, through the concretization layer. Tethod
easily ensures the traceability of the tests generatedetmttiginal
test patterns, since the tests are computed from thesernzatfdso,
with the mechanism for functional test generation offergd_BG,
we exactly know which behaviors of the operations have begn c
ered.

From a methodological point of view, the distinction betwee-
curity models and functional models effectively corresgoto dis-
tinct stages in the life cycle of secured applications. Auségmodel
is written by security engineers and exploited by certifaatvalu-
ators, independently of a given implementation. This méoelses
on some particular aspects and is generally small enougb sud
cessfully exploited for validation and verification. Fugtmore sev-
eral security models can be written, corresponding to séespects
of security, mastering in that the complexity of the validatand
verification process. From a practical point of view, thepgosed

test generation part is in finding, with the help of LTG, sorné-s
able instantiations for parameters. Due to the fact thaséwairity
model is small and abstract enough, the use of LTG with the SPM
generally succeeds. On the other hand, search for suitadikntia-
tions for functional parameters is strongly guided, beeaus reuse
sequences generated at the first level. Finally, we gain same
fidences in our formal models because we test the FM agaiest th
SPM.

On the contrary, the proposed approach is time and cost gensu
ing because two models have to be written. In the general tase
effort is disproportionate. But when Common Criteria derditions
are targeted, like often for smart cards and especiallyif@iAS on
which several kinds of products (ID card, e-passport orthezdrd)
are built, formal models are a central piece for reusablédatziogy.

In particular a new certification must be conducted as so@resv
implementation or a new hardware support is used. In ourcazpr,
security and functional models, as well as the proposedadetbgy,
can be reused to be adapted to new versions of the IAS standard
new implementations. Furthermore, the IAS case study inarge
platform dedicated to the development of proper applicatiahat
also have to be certified. An application deployed on the |14&-p
form firstly consists in a personalization specifying a joaitar set of
PINs, keys, SDOs and files and their security dependencisscé
rity model attached to such an application can be definedinstef
a specialization of the generic IAS security model or as defen-
dent model that can be confronted to this generic modehinistted
by the given personalization. Finally, the proposed apgrazan be
used in a light manner, only in using a security model. In taise
the concretization layer is in charge of bringing the gapveen the
security abstraction level and the implementation.

Theoretical contributions of the project PE@re the proposition
of the MECA form of access control security models in coneod
with the Common Criteria requirements, a formal definitiba oon-
formance relationship based on a notion of mapping relatindels
stated at different levels of abstraction and a languagesbatterns
allowing to express security tests requirements.

9.2 Security model and conformance relationship

There are several sorts of formalisms dedicated to accegsoto
specifications. Usual formalizations are based on rules428, 37)
and mainly focus on access control conditions. On the othadh
security automata (38) describe behaviors resulting bbticoess
control conditions and some operational specification. dncor-
dance with the Common Criteria approach, the Meca approseh d
tinguishes these two parts, through the rule-based andytientc
models. In this way a traceability is established betweenirifor-
mal security policies described in the security target drelSPM
(the rule-based part corresponds to the User Data proteciiss of
Common Criteria and the dynamic part to the Security Managgm
class). Finally these two models are woven to produce a latav
model that can be assimilated to a security model. Such aitom
can be obtained for instance with the help of tools (12, 31).

The B method has already been used as a support for access con-

trol policies (5, 39). In (5), the authors propose a form ofdeling
attached to Or-BAC access control, including permissiomsaohi-
bitions, and characterize behaviors which conform to argaecess
control policy. Our approach can be seen as an extension 8B}5



taking into account the conformance of an application wispect
to a security model, with the help of a mapping corresponeldre:
tween models stated at different levels of abstraction3®),(the au-
thors use Labeled Transition Systems (LTS) to describ@tepbses
from Or-BAC rules specifying access control. They act asracle
for the test execution, based on the ioco conformance oelg41).
Our approach is similar, since they both rely on trace iriohs and
our notion of stuttering is close to the notion of quiescerdever-
theless, our relation is not exclusively destined to be w@sed test
oracle. Indeed, by giving a formal definition of our relatias done
in (13), it would be possible to prove properties on the impmeata-
tion w.r.t. the abstract security model. In this way we amsel to
the Common Criteria approach that requires to establistespon-

Integrating a test need to a security property could thenbbaired
by transforming the formalization of the security propeftye tool
Tobias (30), that unfolds in a combinatorial way tests exped as
regular expressions, could be used to unfold our test patter

We are currently working at identifying and writing suchrtséor-

mation rules, based on the IAS case study. This work needs to b

developed by studying many other case studies, in orderodupe
rules sufficiently generic to be applicable to a variety cdreples.
Rules could also be automatically deduced from the symtaoti
pression of a property, as suggested by (8) for propertipeeszed
in JTPL, a temporal logic for IML.

Also, rules could be expressed for transforming other fdismes
than regular expressions. In particular, we think of rutest tould

dences between the SPM and some application models, dagendiransform automata. They could be applied to security ptigse

on the targeted assurance level.

9.3 Tests patterns and security tests

expressed as temporal logic formulas, as well as regulaesgjons.
Another follow-up to this work would be to explore the podiip
to use several smaller security models, instead of justtmatecbntain

Many other works use temporal logic properties or test pegpo all the security features. These models could be very easyite as
as selection criteria to extract tests from a model. By dkplo they would focus on a limited set of security features at &tithe
ones concerned by some particular test purposes. The tesfaited
from any of these models could still be brought to the abttrac
level of the functional model by replaying them on it.

ing its ability to produce counter-examples, a model-ckeatan
be used to compute tests from temporal properties w.r.t.rragb
model (18, 34, 2, 21, 40). Linear temporal logic model-climgk
uses cycles search algorithms to compute tests from eixphcisi-

tion systems, while we use artificial intelligence constraiolving Acknowledgments

techniques to compute tests directly from B models. The T@V a This work is funded by the ANR Agence Nationale de la
Recherchg in France. The POSE project is a RNTR&seau Na-
tional de recherche et d'innovation en Technologies Latdiiey
project, recorded under the number ANR-05-RNTL-01001.

proach (17, 24), and works from the Vertecs prdje¢se, 35, 11)
use explicit test purposes to extract tests from specifioatiboth
given as Input/Output Symbolic Transition Systems (IOSTR)r
approach differs since our test purposes mix operatios ealll tar-
get states description. In (2) and (40), the test purposediregar
temporal logic formulas describing state sequences. I (26)
and (30), the test purposes are sequences of operatioexpaiessed
either by IOSTS or by regular expressions. Moreover in (33,
symbolic tests are generated independently from a belzviwdel,
which leads to a combinatorial explosion of the number ofstes
Also, our approach is methodologically different becauseioten-
tion is to use abstract models. Finally, the language weaisrgress
the test purposes can be instantiated, thanks to the mogél héth
various modelling languages. We have performed expersngith
formal specifications written in B and in UML/OCL. The langea
is intended to be easily manipulated by the security enginee

In (29), the authors show how tests dedicated to exerciseea gi
security policy can be obtained by reusing functional telstom-
parison, we do not reuse the existing functional tests, leLaugment
them with security tests, independent from the functionalso What
we reuse is the existing functional material (i.e. the fior@l model
and the concretization layer). They mention two types dtsgies
for generating security tests w.r.t. functional tests. @pproach
fits in their independent strategy. And as a difference wéttusity
policies specified through OrBAC-like models, our SPM is adist
of static rules, but models also dynamic operational maatifics of
the security attributes.

9.4 Further Works

In a previous work (33), we have foreseen the possibilityttfiertest
purposes to be automatically computed, by modelling thenesds
as syntactic transformation rules that transform regutpressions.

Bhttp://www.irisa.fr/vertecs/
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