
Nordic Journal of Computing

Approximation-based Tree Regular Model-Checking

Y. Boichut1 P.-C. Héam2

O. Kouchnarenko2

1 INRIA/PAREO 2 INRIA/CASSIS
615 rue du Jardin Botanique LIFC / University of Franche-Comté

BP-101 16 route de Gray
F-54602 Villers-Lès Nancy Cedex F-25030 Besançon Cedex

boichut@loria.fr kouchna@lifc.univ-fcomte.fr

heampc@lifc.univ-fcomte.fr

Abstract. This paper addresses the following general problem of tree regular model-
checking: decide whether R∗(L) ∩ Lp = ∅ where R∗ is the reflexive and transitive closure
of a successor relation induced by a term rewriting system R, and L and Lp are both regular
tree languages. We develop an automatic approximation-based technique to handle this –
undecidable in general – problem in most practical cases, extending a recent work by
Feuillade, Genet and Viet Triem Tong. We also make this approach fully automatic for
practical validation of security protocols.
Key-words: Verification, model-checking, regular languages, security protocols.
Computing Reviews Categories: D.2.4 and F.4.2.

1. Introduction

Automatic verification of software systems is one of the most challenging research
problems in computer aided verification. In this context, regular model-checking
has been proposed as a general framework for analysing and verifying infinite state
systems. In this framework, systems are modelled using regular representations:
the systems configurations are modelled by finite words or trees (of unbounded
size) and the dynamic behaviour of systems is modelled either by a transducer
or a (term) rewriting system. Afterwards, a system reachability-based analysis
is reduced to the regular languages closure computation under (term) rewriting
systems: given a regular language L, a relation R induced by a (term) rewriting
system and a regular set LP of bad configurations, the problem is to decide whether
R∗(L)∩Lp = ∅ where R∗ is the reflexive and transitive closure of R. Since R∗(L) is
in general neither regular nor decidable, several approaches handle restricted cases
of this problem.

In this paper we address this problem for tree regular languages by automati-
cally computing over- and under-approximations of R∗(L). Computing an over-
approximation Kover of R∗(L) may be useful for the problem if Kover ∩ Lp = ∅,
proving that R∗(L) ∩ Lp = ∅. Dually, under-approximation may be suitable to
prove that R∗(L) ∩ Lp , ∅. This approach is relevant if the computed approxima-
tion are not too coarse. Another important point is that in general, there are some

Received February 2008.

2 BOICHUT, HÉAM, KOUCHNARENKO

restrictions on the rewriting systems in order to ensure the soundness of the above
approach. This paper 1) generalises this approach for any kind of term rewriting
systems, and 2) describes its successful application for the security protocol anal-
ysis.

1.1 Contributions

This paper extends an expert-human guided approximation technique introduced
in [Feuillade et al. 2004] for left-linear term-rewriting systems. The contributions
of this paper are:

1. We show how to extend the over-approximation approach of [Feuillade et al.
2004] to all term rewriting systems,

2. We show how the under-approximation approach of [Feuillade et al. 2004]
may be extended to a suitable sub-class of non-left-linear term-rewriting sys-
tems,

3. We explain how 1. can be efficiently implemented, particularly for quadratic
rewriting rules that are very useful in practice.

4. We explain how to make the approach fully automatic and how to success-
fully exploit this approach in the context of security protocols verification.

Notice that 1. and 2. were respectively presented in [Boichut et al. 2006] and
in [Boichut et al. 2007] without proofs nor explicit examples.

1.2 Related Works

Model checking is a central verification technique based on state exploration. Since
for infinite state systems an exhaustive exploration is impossible, several symbolic
techniques (consisting in representing infinite sets of states by a symbolic finite
representation) have been developed.

1.2.1 Regular Model Checking

Regular Model Checking (RMC for short) is a symbolic approach using finite au-
tomata [Abdulla et al. 1998] [Boigelot and Wolper 1998] [Boigelot and Godefroid
1996] [Pnueli and Shahar 2000] [Jonsson and Nilsson 2000] [Dams et al. 2002]
(and sometimes regular expressions [Bouajjani et al. 2001]) in order to encode in-
finite sets of states. Most of these works deal with word automata (see [Finkel and
Leroux 2002] for automata with Presuburger constraints, [Bardin et al. 2004] for
automata with counters, [Finkel et al. 1997] for pushdown automata, etc). These
techniques have been successfully used for verifying mutual exclusion protocols
[Touili 2001], for lossy communicating system modelling and verification [Abdulla
et al. 1999] [Cece and Finkel 2005] or for static analysis of programs [Bouajjani et
al. 2003] [Gall and Jeannet 2007].

Tree data structures are more complex objects, and adapting or developing new
techniques remains a deep challenge. In [Bouajjani and Touili 2002][Bouajjani et

APPROXIMATION-BASED TREE REGULAR MODEL-CHECKING 3

al. 2005] [Bouajjani et al. 2006][Abdulla et al. 2006], authors show how to extend
some word techniques to tree data structures.

1.2.2 Term Rewriting Systems and Reachability Analysis on Regular Languages

Given a term rewriting system R and two ground terms s and t, deciding whether
s →∗

R
t is a central question in automatic proof theory. This problem is shown

decidable for term rewriting systems which are terminating but it is undecidable
in the general case. Several syntactic classes of term rewriting systems have been
pointed out to have a decidable accessibility problem, for instance by providing an
algorithm to compute R∗(L) when L is a regular tree language [Dauchet and Tison
1990] [Coquidé et al. 1991] [Gilleron and Tison 1995] [Jacquemard 1996] [Réty
and Vuotto 2002] [Salomaa 1988].

In [Feuillade et al. 2004], authors focus on a general completion based human-
guided technique. This technique has been successfully used (not automatically) to
prove the security of cryptographic protocols [Genet and Klay 2000] and recently
Java Bytecode programs [Boichut et al. 2007]. This framework was extended in
[Ohsaki and Takai 2004] to languages accepted by AC-tree automata.

1.2.3 Verification of Security Protocols

The challenge we want to take on is to automate [Feuillade et al. 2004] for the se-
curity protocol verification in a very general context. Cryptographic protocols are
widely used to secure information exchange over open modern networks. It is now
widely accepted that formal analysis can provide the level of assurance required by
protocols both the developers and the users. But, whatever the used formal model,
analysing cryptographic protocols is a complex task because the set of configura-
tions to consider is very large, and can even be infinite. Indeed, any number of
sessions (sequential or parallel executions) of protocols, sessions interleaving, any
size of messages, algebraic properties of encryption or data structures give rise to
infinite-state systems. In the context of protocols verification, the security prob-
lem we are dealing with consists in deciding whether a protocol preserves secrecy
against an intruder, or not.

Complexity Issues. For this problem, current model-checking based verification
methods can be applied whenever the number of participants and the number of ses-
sions between the agents are bounded. In this case, the protocol security problem is
co-NP-complete [Rusinowitch and Turuani 2001]. The work in [Truderung 2005]
presents new decidability results for a bounded number of sessions, restricted to
the case where the initial knowledge of the intruder is a regular language and un-
der the assumption that the keys used in protocols are atomic. When the num-
ber of sessions is unbounded, the security problem of cryptographic protocols be-
comes undecidable, even when the length of the messages is bounded [Durgin et al.
1999]. Decidability can be recovered by adding some restrictions to protocols as,
for instance, in [Comon-Lundh and Cortier 2005]. Another way to circumvent

4 BOICHUT, HÉAM, KOUCHNARENKO

the problem is to employ abstraction-based approximation methods [Monniaux
1999][Genet and Klay 2000].

Theoretical Works and Tools. A lot of theoretical work has been done for analy-
sing cryptographic protocols for different kinds of protocols and intruders models
(wireless network [Nanz and Hankin 2006], time-stamps [Bozga et al. 2005], com-
binations of theories [Chevalier and Rusinowitch 2005], abelian groups [Lafour-
cade et al. 2007], homomorphisms [Comon-Lundh and Treinen 2003], isomor-
phisms [Delaune 2006], xor [Comon-Lundh and Shmatikov 2003] [Chevalier et al.
2005], probabilistic encryption [Delaune and Jacquemard 2006], voting protocols
[Kremer and Ryan 2005] [Nielsen et al. 2005], non-repudiation protocols [Aldini
and Gorrieri 2002], Diffie-Hellman like protocols [Goubault-Larrecq et al. 2005],
e-mail-certification [Abadi and Blanchet 2005], etc), with different approaches
(tree automata [Ohsaki and Takai 2004][Küsters and Wilke 2004], SAT-solving
[Armando and Compagna 2005], model-checking [Basin et al. 2003]) and many
tools (ProVerif [Blanchet 2001], Athena [Song 1999], AVISPA [Armando et al.
2005], Hermes [Bozga et al. 2003], Murϕ [Mitchell et al. 1997], ...) have been
developed.

Close Works on Automated Protocol Analysis. An independent work close to
our approach is presented in [Zunino and Degano 2006] where authors use a pro-
cess algebra based model and constraints-guided over-approximations. This ap-
proach has been successfully applied to the complex Kerberos protocol. However,
[Zunino and Degano 2006] does not presently handle under-approximations.

There already exists a number of tools in the literature that provide automated
semi-decision procedures for security protocols with an unbounded number of ses-
sions: Blanchet’s ProVerif, Ernie Cohen’s TAPS, Isabelle proof assistant for the
Protocol Composition Logic (PCL) from Stanford.

The CL-AtSe tool (Constraint Logic based Attack Searcher) [Chevalier et al.
2005] now supports complete analysis of cryptographic protocols modulo the xor,
including all the intruder deduction rules for that operator, and modulo the exp
except for the rule g1 = g2 (i.e. exponentials are tagged). CL-AtSe analyses are
performed for a bounded number of sessions.

The On-the-fly Model-Checker (OFMC) [Basin et al. 2003] tool-set, is based on
two symbolic techniques and now supports the specification of cryptographic op-
erators algebraic properties, and typed or untyped protocol models, in the context
of a bounded number of sessions. For verifying security protocols without bound-
ing the number of sessions, Mödersheim [2007] develops an abstract interpretation
based approach.

The Proverif tool [Blanchet 2001] allows an unbounded number of sessions but
– like in our models – abstractions are performed on fresh data and thus false
attacks can be detected. Moreover, in [Blanchet et al. 2007], the authors note that
their technique does have limitations, and in particular, it does not apply to some
equational theories.

The recent Scyther tool [Cremers 2006] can verify protocols with an unbounded
number of sessions and nonces. It can handle verification of complex authentica-
tion properties, handle non-atomic keys, and generate correct attacks. A perfor-

APPROXIMATION-BASED TREE REGULAR MODEL-CHECKING 5

mance comparison between Scyther and a number of other tools has been detailed
in [Cremers and Lafourcade 2007]. Notice that [Cremers and Lafourcade 2007]
reports on a set of protocols that excludes protocols using algebraic properties.

One of the new features of the Maude-NPA tool is that it allows to equation-
ally reason about security when facing attempted attacks on low-level algebraic
properties of the functions used in a protocol such as, for example, associativity-
commutativity, Boolean theory, and some forms of modular exponentiation [Es-
cobar et al. 2007]. The Maude-NPA tool follows an approach similar to that of
OFMC since the authors consider depth parameters for unification problems in
some equational theories. However, the Maude-NPA tool needs the help of expert
users.

In the survey [Cortier et al. 2006], the authors emphasise the fact that the re-
sults often remain theoretical, and very few implementations automatically verify
protocols with algebraic properties.

1.3 Layout of the paper

Section 2 introduces notations and the basic completion approach. Next, Section 3
presents the main theoretical contributions of the paper. We introduce the notion
of (l → r)-substitutions in Section 3.1. We show how it can be used to develop
an over-approximation based technique for tree regular model-checking in Sec-
tion 3.2. The case of under-approximations is handled in Section 3.4, while Sec-
tion 3.3 is dedicated to an example. Section 4 exposes how the techniques are
successfully exploited for analysing security protocol.

2. Formal Background

As for prerequisites, the reader is expected to be familiar with basic notions on
term rewriting systems and tree automata. We just recall the terminology which is
consistent with [Comon et al. 2002], thus making our exposition as self-contained
as possible.

2.1 Notations

Given the set N of natural integers, N∗ denotes the finite strings over N. Let F be
a finite set of symbols, associated with an arity function ar : F → N. The set of
symbols of F of arity i is denoted Fi. Let X be a countable set of variables. We
assume that X ∩ F = ∅. T (F ,X) denotes the set of terms, and T (F) denotes the
set of ground terms (terms without variables).

A finite ordered tree t over a set of labels (F ,X) is a function from a prefix-closed
set Pos(t) ⊆ N∗ to F ∪ X. A term t over F ∪ X is a labelled tree whose domain
Pos(t) satisfies the following properties: 1) Pos(t) is non-empty and prefix closed,
2) for each p ∈ Pos(t), if t(p) ∈ Fn (with n , 0), then {i | p.i ∈ Pos(t)} = {1, . . . , n},
and 3) for each p ∈ Pos(t), if t(p) ∈ X or t(p) ∈ F0, then {i | p.i ∈ Pos(t)} = ∅. The
empty sequence ε denotes the top-most position.

6 BOICHUT, HÉAM, KOUCHNARENKO

Each element of Pos(t) is called a position of t. For each subset K of F ∪X and
each term t PosK (t) is the subset of positions p’s of t such that t(p) ∈ K . Each
position p of t such that t(p) ∈ F , is called a functional position.

A subterm t|p of t ∈ T (F ,X) at position p is defined by the following: Pos(t |p) =
{i | p.i ∈ Pos(t)}, and for all j ∈ Pos(t|p), t|p(j) = t(p. j). The term t[s]p is obtained
from t by replacing the subterm t|p by s. Var(t) is the set of variables occurring
within t and is formally defined as follows: Var(t) = {t(p) | p ∈ Pos(t)∧ t(p) ∈ X}.

For all sets A and B, we denote by Σ(A, B) the set of functions from A to B. If
σ ∈ Σ(X, B), then for each term t ∈ T (F ,X), the term tσ is obtained from t by
replacing for each x ∈ X, the variable x by σ(x).

A term rewriting system (TRS for short) R over T (F ,X) is a finite set of pairs
(l, r) from T (F ,X) ×T (F ,X), written l → r, such that the set of variables occur-
ring in r is included in the set of variables of l. A TRS is left-linear if for each
rule l → r, every variable occurring in l occurs once at most. For each ground
term t, we denote by R({t}) the set of ground terms t′ such that there exist a rule
l → r of R, a function µ ∈ Σ(X,T (F)) and a position p of t satisfying t |p = lµ and
t′ = t[rµ]p. The relation {(t, t′) | t′ ∈ R({t})} is classically denoted →R. If t →R t′

for t, t′ ∈ T (F), then t is a rewriting predecessor of t′ and t′ is rewriting successor
of t. For a set of ground terms B, R∗(B) is the set of ground terms related to an
element of B modulo the reflexive-transitive closure of→R.

A tree automaton A is a tuple (Q,∆, F), where Q is the set of states, ∆ the tran-
sition set, and F the set of final states. Transitions are rewriting rules of the form
f (q1, . . . , qk) → qk+1, where f ∈ Fk and the qi’s are in Q. Such transitions are so
called normalised transitions. A term t ∈ T (F) is accepted or recognised by A
if there exists q ∈ F such that t →∗

∆
q (we also write t →∗

A
q). The set of terms

accepted by A is denoted L(A). For each state q ∈ Q, we write L(A, q) for the
tree language L((Q,∆, {q})). A tree automaton is finite if its set of transitions is
finite.

2.2 Completion

Given a tree automaton A and a TRS R, for several classes of automata and TRSs,
the tree automata completion algorithm computes a tree automaton Ak such that
L(Ak) = R∗(L(A)) when it is possible and such that L(Ak) ⊇ R∗(L(A)) other-
wise [Genet and Klay 2000][Feuillade et al. 2003]. The tree automata completion
works as follows. FromA = A0 the completion builds a sequenceA0,A1, . . . ,Ak

of automata such that if s ∈ L(Ai) and s →R t then t ∈ L(Ai+1). If the automaton
Ak is a fixpoint, i.e. if R(L(Ak)) = L(Ak), then we have L(Ak) = R∗(L(A0)) (or
L(Ak) ⊇ R∗(L(A)) if R is not in one class of [Feuillade et al. 2003]). To build
Ai+1 from Ai, a completion step is performed which consists in finding critical
pairs between→R and→Ai . For a substitution σ : X 7→ Q and a rule l→ r ∈ R, a
critical pair is an instance lσ of l such that there exists q ∈ Q satisfying lσ →∗

Ai
q

and rσ 6→∗
Ai

q. For every critical pair lσ→∗
Ai

q and rσ 6→∗
Ai

q detected between R
and Ai, Ai+1 is constructed by adding new transitions to Ai to recognise rσ in q,
i.e. rσ→Ai+1 q.

APPROXIMATION-BASED TREE REGULAR MODEL-CHECKING 7

lσ

Ai

R
rσ

q

∗

Ai+1

∗

However, the transition rσ → q is not necessarily a normalised transition of the
form f (q1, . . . , qn) → q′ and so has to be normalised first. For example, to nor-
malise a transition of the form f (g(a), h(q′)) → q, we need to find some states
q1, q2, q3 and replace the previous transition by the following set of normalised
transitions: {a→ q1, g(q1)→ q2, h(q′)→ q3, f (q2, q3)→ q}.

Assume that q1, q2, q3 are new states, then adding the transition itself or its nor-
malised form does not make any difference. Now, assume that q1 = q2, the nor-
malised form becomes {a → q1, g(q1) → q1, h(q′) → q3, f (q1, q3) → q}. This set
of normalised transitions represents the regular set of non normalised transitions of
the form f (g∗(a), h(q′))→ q, which contains among many others the transition we
initially wanted to add. Hence, this is an over-approximation. We could have made
an even more drastic approximation by identifying q1, q2, q3 with q, for instance.

The above method does not work for all TRSs. For instance, consider a con-
stant A and the tree automaton A = ({q1, q2, q f }, {A → q1, A → q2, f (q1, q2) →
q f }, {q f }) and the TRS R = { f (x, x) → g(x)}. There is no substitution σ such that
lσ →∗

A
q, for a q in {q1, q2, q f }. Thus, following the procedure, there is no transi-

tion to add. But f (A, A) ∈ L(A). Thus g(A) ∈ R(L(A)). Since g(A) < L(A), the
fixpoint automaton obtained is not an over-approximation of R∗(L(A)).

This constraint may prevent someone from specifying a system, in particular
concerning protocols. Unfortunately, to be sound, the approximation-based anal-
ysis described in [Genet and Klay 2000] requires using of left-linear TRSs. Nev-
ertheless, this method can still be applied to some non left-linear TRSs, which
satisfy some weaker conditions. In [Feuillade et al. 2003] the authors propose new
linearity conditions. However, these new conditions are not well-adapted to be au-
tomatically checked in the sense that, they are verified as soon as the computation
is over. And if these conditions are not satisfied then the computation must be done
again by changing some inputs of the approximation technique.

3. Main Results – Sound Completion for any Kind of TRSs

The challenge of this section is to describe an alternative way for the technique
[Feuillade et al. 2003] in order to make it sound for any kind of TRSs. We first
introduce in Section 3.1 the notion of (l → r)-substitutions and the normalisation
related to it. This kind of substitution allows variables to store different values.
Second, we present in Section 3.2 an extension of the completion procedure to any
TRS for computing sound over-approximations. This algorithm is then detailed on
an example in Section 3.3. Third Section 3.5 discusses theoretical and practical
aspects for applying the developed techniques to a large class of applications.

8 BOICHUT, HÉAM, KOUCHNARENKO

3.1 (l→ r)-substitutions, Normalisation

In this technical subsection, we define the notion of a (l → r)-substitution suitable
for the present work.

D 1. Let R be a term rewriting system and l → r ∈ R. A (l → r)-
substitution is an application from PosX(l) into Q.

Let l → r ∈ R and σ be a (l → r)-substitution. We denote by lσ the term
of T (F ,Q) defined as follows: Pos(lσ) = Pos(l), and for each p ∈ Pos(l), if
p ∈ PosX(l) then lσ(p) = σ(l(p)), otherwise lσ(p) = l(p). Similarly, rσ is the term
in T (F ,Q) defined by: Pos(rσ) = Pos(r), and for each p ∈ Pos(r), if p < PosX(r)
then rσ(p) = r(p) and rσ(p) = σ(l(p′)) otherwise, where p′ = min(Posr(p)(l))
(positions are lexicographically ordered).

E 1. Let us consider l = f (g(x), h(x, f (y, y))) and r = f (h(x, y), h(y, x)) rep-
resented by the following trees (elements after the comma are the positions in the
term; l is represented on the left and r on the right):

f , ε

g, 1 h, 2

x, 1.1 x, 2.1 f , 2.2

y, 2.2.1 y, 2.2.2

f , ε

h, 1 h, 2

x, 1.1 y, 1.2 y, 2.1 x, 2.2

Variable positions of l are 1.1 and 2.1 for x, and 2.2.1 and 2.2.2 for y. Let
σ(1.1) = q1, σ(2.1) = q2, σ(2.2.1) = q3 and σ(2.2.2) = q4; σ is a (l → r)-
substitution and lσ = f (g(q1), h(q2, f (q3, q4))) is the term obtained from l by sub-
stituting the variable in position p by σ(p). Now we explain how to compute rσ.
The minimal position where x [resp. y] occurs in l is 1.1 [resp. 2.2.1]. Thus
rσ is obtained from r by substituting all x’s in r by σ(1.1) = q1 and all y’s by
σ(2.2.1) = q3. Thus rσ = f (h(q1, q3), h(q3, q1)).

As mentioned before, the completion procedure does not work for all tree au-
tomata and TRSs. That is why we introduce a notion of compatibility between
finite tree-automata and (l → r)-substitutions. The intuition behind the next def-
inition is that different occurrences of a variable may be substituted by different
states if there exists a term recognised by all these states, at least. Notice that the
condition required below is weaker than the conditions in [Feuillade et al. 2003].
Moreover, it is more general and can be applied to a larger class of applications.

APPROXIMATION-BASED TREE REGULAR MODEL-CHECKING 9

D 2. Let A be a finite tree automaton. We say that a (l → r)-substitution
σ is A-compatible if for each x ∈ Var(l),

⋂

p∈Pos{x}(l)

L(A, σ(p)) , ∅.

E 2. LetAexe = ({q0, q f },∆exe, {q f }) with the set of transitions ∆exe = {A→
q0, A → q f , f (q f , q0) → q f , h(q0, q0) → q0}. Let Rexe be the TRS such that Rexe =

{ f (x, h(x, y)) → h(A, x)}. The automaton Aexe recognises the set of trees such
that every path from the root to a leaf is of the form f ∗h∗A. Let us consider the
substitution σexe defined by σexe(1) = q f , σexe(2.1) = q0 and σexe(2.2) = q0. The
tree t = A can be reduced to q f and belongs to L(A, σexe(1)). Furthermore t → q0,
so t ∈ L(A, σexe(2.2)). Therefore σexe is A-compatible.

The notion of normalisation and approximation functions are close to the ones
given in [Feuillade et al. 2003][Boichut et al. 2005]. Indeed, the definitions below
are simply adapted to our notion of (l→ r)-substitutions.

D 3. Let A be a finite tree automaton. An approximation function (for
A) is a function which associates a function from Pos(r) to Q to each tuple (l →
r, σ, q), where l → r ∈ R, σ is an A-compatible (l → r)-substitution and q a state
ofA.

E 3. Consider the automaton Aexe, the TRS Rexe and the substitution σexe

defined in Example 2. For σexe, an approximation function γexe may be defined by

γexe(l→ r, σexe, q0) : {ε 7→ q1, 1 7→ q2, 2 7→ q f }

To totally define γexe, the others (finitely many) Aexe-compatible substitutions
should be considered too.

The notion of normalisation below is basic. The only difference comes from our
notion of (l→ r)-substitutions.

D 4. LetA = (Q0,∆0, F0) be a finite tree automaton, γ an approximation
function for A, l → r ∈ R, σ an A-compatible (l → r)-substitution, and q a state
of A. We denote by Normγ(l → r, σ, q) the following set of transitions, called
normalisation of (l→ r, σ, q):

{ f (q1, . . . , qk)→ q′ |p ∈ PosF (r), r(p) = f ,

q′ = q if p = ε otherwise q′ = γ(l→ r, σ, q)(p)

qi = γ(l → r, σ, q)(p.i) if p.i < PosX(r),

qi = σ(min{p′ ∈ PosX(l) | l(p′) = r(p.i)}) otherwise}

The min is computed for the lexical order.

10 BOICHUT, HÉAM, KOUCHNARENKO

Notice that the set {p′ ∈ PosX(l) | l(p′) = r(p.i)} used in the above definition is
not empty as soon asVar(l) is not empty. Indeed, in a TRS, variables occurring in
its right hand-sides must, by definition, occur in the left-hand side too.

E 4. Following Example 3, ε is the unique functional position of the term
r = h(A, y). We set q′ of the definition to be equal to q f . Thus Normγexe (l →
r, σexe, q f) is of the form {A → q?, h(q?, q??) → q f }. Since for r, the position 1
is a functional position and 2 is in PosX(r), we use the last line of the definition
to compute q??, and q? is defined by the approximation function γexe. Finally, we
obtain:

Normγexe (l→ r, σexe, q f) = {r(1)→ γexe(1), r(ε)(γexe(1), σexe(1)) → q f }

= {A→ q0, h(q0, q f)→ q f }.

L 1. Let A be a finite tree automaton, γ an approximation function, l → r ∈
R, σ an A-compatible (l → r)-substitution, and q a state of A. If lσ →∗

A
q then

rσ→∗Normγ(l→r,σ,q) q.

The proof is obvious. The transitions in Normγ are precisely those added to
reduce rσ to q.

3.2 Over-Approximations for TRSs without Left-Linearity Constraint

This section is dedicated to the proof of the main result and explains how to build
a regular over-approximation of R∗(A). The following definition presents the con-
struction of a tree automaton Cγ(A0) from the tree automaton A0, the approxima-
tion function γ and the TRS R. This construction is usually named a completion
step. Again, the only considered substitutions are (l→ r)-substitutions.

D 5. Let R be a TRS. Let A0 = (Q0,∆0, F0) be a finite tree automaton
and γ an approximation function for A0. The automaton Cγ(A0) = (Q1,∆1, F1) is
defined by:

∆1 = ∆0 ∪
⋃

Normγ(l→ r, σ, q)

where the union involves all rules l → r ∈ R, all states q ∈ Q0, all A0-compatible
(l→ r)-substitutions σ such that lσ→∗

A0
q and rσ 6→∗

A0
q,

F1 = F0 and Q1 = Q0 ∪ Q2,

where Q2 denotes the set of states occurring in left or right-hand sides of ∆1 tran-
sitions.

The above lemma shows that a completion step computes an over-approximation
of terms obtained by one rewriting step.

L 2. LetA0 = (Q0,∆0, F0) be a finite tree automaton and γ be an approxima-
tion function forA0. Let R be a TRS. One has L(A0) ∪ R(L(A0)) ⊆ L(Cγ(A0)).

APPROXIMATION-BASED TREE REGULAR MODEL-CHECKING 11

P. Let t ∈ L(A0) ∪ R(L(A0)). By definition of Cγ(A0) one has L(A0) ⊆
L(Cγ(A0)). Consequently, if t ∈ L(A0) then one has t ∈ L(Cγ(A0)). Thus we now
assume that t ∈ R(L(A0)). Thus there exists a rule l → r ∈ R, a term t0 in L(A0),
a position p of t0 and a substitution µ in Σ(X,T (F)) such that

t0|p = lµ and t = t0[rµ]p. (3.1)

t[]p = t0[]p

lµ

t0 : t[]p = t0[]p

rµ

t :

Since t0 ∈ L(A0), there exist a state q ∈ Q0 and a state q f ∈ F0 such that

lµ→∗A0
q and t0[q]p →

∗
A0

q f . (3.2)

Since lµ →∗
A0

q there exists an (l → r)-substitution σ such that lµ →∗
A0

lσ.
Furthermore, for each x ∈ Var(l),

µ(x) ∈
⋂

p∈Pos{x}(l)

L(A, σ(p)),

thus the (l → r)-substitution σ is A0 compatible. Therefore, using Lemma 1 (by
hypothesis, lσ→∗

A0
q), one has

rσ→∗Cγ(A0) q. (3.3)

For each variable x occurring in l and all positions p of x in l, one has µ(x)→∗
A0

σ(p). In particular, for each variable x occurring in l, µ(x) →∗
A0
σ(p′), where p′

is the minimal position where x occurs in l. Consequently and by definition of rσ,
one has

rµ→∗A0
rσ. (3.4)

We are now able to conclude: using (3.1) one has t = t0[rµ]p. Now, by (3.4)
t →∗

A0
t0[rσ]p. To finish, using (3.3) and then (3.2) we obtain the following deriva-

tion: t →∗
Cγ(A0) t0[q]p →

∗
A0

q f . Thus t ∈ L(Cγ(A0)), proving the lemma. �

Let us remark that using well-chosen approximation functions may iteratively
lead to a fixpoint automaton which recognises an over-approximation of R∗(A0).
One can formally express this by the following (soundness) main theorem.

T 1. Let (An) and (γn) be respectively a sequence of finite tree automata
and a sequence of approximation functions defined by: for each integer n, γn is
an approximation function for An and An+1 = Cγn(An). If there exists a positive
integer N, such that for every n ≥ N,An = AN , then R∗(L(A0)) ⊆ L(AN).

The proof is by induction using Lemma 2.

12 BOICHUT, HÉAM, KOUCHNARENKO

3.3 Completion Example

In this section we explain how our approach works on an example in touch with
the mathematical world.

We consider terms defined over F0 = {0}, F1 = {Opp, s}, F2 = {+} and Fk≥3 = ∅.
Here, the symbol s denotes the successor function. For instance, s(s(s(0))) is the

successor of the successor of the successor of 0 and denotes the integer 3. The
operator Opp denotes the opposite value of an integer. For example, Opp(s(0)) is
the opposite value of the successor of 0 and denotes the integer −1. We use the
following TRS to encode addition and subtraction over Z. To simplify notations,
we write (x + y) or x + y for +(x, y).

R = {Opp(Opp(x))→ x (3.5)

x→ Opp(Opp(x)) (3.6)

x + Opp(x)→ 0 (3.7)

x + y→ y + x (3.8)

x + (y + z)→ (x + y) + z (3.9)

x + 0→ x (3.10)

x + s(0)→ s(x) (3.11)

s(x)→ x + s(0) (3.12)

Opp(s(x))→ Opp(s(s(x))) + s(0)} (3.13)

Notice that this TRS is not left-linear (Rule (3.7)). We are interested in the fol-
lowing problem: given three integers a, b and c, are there integers λ and µ such that
λa + µb = c? A basic number theory result states that the answer to the previous
question is yes if and only if c is a multiple of the greatest common divisor of a
and b.

For instance, it is possible for a = 7, b = 3 and c = 15 (since gcd(a, b) = 1).
We may prove it using the above TRS. Indeed, from s7(0) and s3(0) one can reach
s15(0) using +, Opp and rewriting rules. For example, s3(0) →∗12 s(0) + s(0)) +
s(0). Consequently, s3(0) + s3(0) →∗(3.12),(3.9) s6(0). Similarly one has (((s7(0) +

s7(0)) + s7(0)) →∗(3.12),(3.9) s21(0). Moreover, Opp(s3(0) + s3(0)) →∗(3.12),(3.9),(3.8)

Opp(s21(0)) + s15(0). Therefore, (((s7(0) + s7(0)) + s7(0)) + Opp(s3(0) + s3(0))
→∗(3.8),(3.12),(3.9) (s21(0) + Opp(s21(0))) + s15(0) →∗(3.7),(3.10) s15(0).

Now we prove that the problem has no solution for a = 2, b = 4 and c = 5 (this
is mathematically trivial, the goal is just to illustrate that it can be automatically
proved using our over-approximation approach).

We consider for initial terms the language accepted by the following tree au-
tomaton A whose states are q0, q1, q2, q3, q4, q−2 q−4 and q f , whose final states
are q2,q−2, q−4, q4, and q f , and whose transitions are 0 → q0, s(q0) → q1,
s(q1) → q2, s(q2) → q3, s(q3) → q4 (encodes that s2(0) and s4(0) are ini-
tially known), Opp(q4) → q−4 (encodes that one can compute the opposite value
of 4), Opp(q2) → q−2 (encodes that one can compute the opposite value of 2),

APPROXIMATION-BASED TREE REGULAR MODEL-CHECKING 13

q f1 + q f2 → q f for all final states q f1 , q f2 , (encodes that one can do the addition
of two computed integers terms). We want to prove that s5(0) < R∗(L(A)). Some
details on the first completion step are given below.

Rule (3.5) This rule provides no new transition. Indeed, there is no state q in A such
that Opp(Opp(q)) can be reduced inA to a state.

Rule (3.6) For each state q one has to add the normalisation of the transition Opp(
Opp(q))→ q. Assume that

γ(Rule(6), {ε 7→ q1}, q1)(1) = q3.

Then during the completion step, the normalisation of Opp(Opp(q1)) → q1

adds the transitions Opp(q1) → q3 and Opp(q3) → q1. With similar as-
sumptions on γ, one adds during the first completion step Opp(q0) → q0,
Opp(q−4 → q4) and Opp(q−2)→ q2.

Rule (3.7) Since q4 + Opp(q4) →∗
A

q f , one has to add the transition 0 → q f (we may
easily verify this is the only compatible l→ r-substitution).

Rule (3.8-3.11) These rules don’t provide new transitions.

Rule (3.12) Since s(q0) →A q1 and q0 + s(0) 6→∗
A

q1, one has to add the following
transitions (with correct assumptions on γ) 0 → q0, s(q0) → q1 (these two
transitions are already in A) and q0 + q1 → q1. Similarly, one has to add
transitions q0 + q2 → q2, q0 + q3 → q3, q0 + q4 → q4.

Rule (3.13) Since Opp(s(q1)) →∗
A

q−2 and Opp(s(s(q1)) + s(0)) 6→∗
A

q−2, one has to
add the transitions (with correct assumption on γ), s(0) → q1, s(q1) → q2,
s(q2)→ q3, Opp(q3)→ q1, q1 + q1 → q2 and Opp(q2)→ q−2.

Similar completion steps lead to the following tree automaton B:
◦ States of B are q−4, q−2, q1, q2, q3, q4 and q f . Final states are q2, q4, q−2, q−4

and q f , transitions on constants are 0→ q0 and 0→ q f .

◦ Transitions with symbol s are given by the following table:

q0 q1 q2 q3 q4

s q1 q2 q3 q4 q1

For instance, s(q2)→ q3 is a transition.

◦ Transitions with symbols Opp and +are given by the following tables:

q−4 q−2 q0 q1 q2 q3 q4 q f

Opp q4 q2 q0 q3 q−2 q1 q−4 q f

14 BOICHUT, HÉAM, KOUCHNARENKO

+ q−4 q−2 q0 q1 q2 q3 q4 q f

q−4 q−4, q f q−2, q f q−4 q1 q2, q f q3 q4, q f q f

q0

q−2 q−2, q f q0, q f q−2, q f q3 q0, q4, q f q1 q2, q f q f

q0 q−4, q f q−2, q f q0 q1 q2, q f q3 q4, q f ∅

q1 q1 q3 q1 q2, q f q3 q0, q f q f ∅

q4 ∅

q2 q2, q f q4, q f q2, q f q3 q f , q0 q1 q2, q f q f

q0 q4 q f

q3 q3 q1 q3 q4 q1 q2, q f q3 ∅

q4 ∅

q4 q0, q4 q2, q f q4, q0 q1 q2, q f q3 q4, q f q f

q f q f q0

q f q f q f ∅ ∅ q f ∅ q f q f

The automaton B is stable by the Cγ completion. Consequently, it accepts an
over-approximation of reachable terms of A by R. Since s5(0) < L(B), we may
not have λ.2 + µ.4 = 5 with λ, µ ∈ Z.

3.4 Under-Approximations for TRSs without Left-Linearity Constraint

The main idea (and problem) behind the under-approximations is that one wants
the languages of computed tree automata to be in the set of terms reachable by
rewriting. Having some conditions on the TRS allows us to prove that a term is
actually reachable.

In order to obtain under-approximations, we do not want the completion pro-
cedure to introduce unreachable terms. Classically, we then work with injective
approximation functions. We define here γ to be an injective approximation func-
tion from R × (N∗ 7→ Q) × N∗ × Q into Q. Theorem 2 shows that with such
an approximation function, an under-approximation of the set of reachable terms
is possible. Before, Lemma 3 presents an intermediary result useful for proving
Theorem 2: this result reveals some features of terms recognised by Cγ(A) for
which there exists a rewriting predecessor recognised by A. In the following, we
introduce the notation NLV(t) which for a term t of T (F ,X), denotes the set of
non-linear variables of t, i.e., the set of variables occurring at least twice within t.

L 3. Let R be a right-linear TRS for which NLV(l) ∩ Var(r) = ∅ for all l →
r ∈ R. Let A be a tree automaton. There exists t0 ∈ T (F) such that t0 ∈ L(A, q)
and t0 →R t, if there exist a ground term t over F , a state q of A and a function
τ from Pos(t) to Q such that t ∈ L(Cγ(A), q), t < L(A, q) and τ satisfies the
following conditions: (i) τ(ε) = q; (ii) for all p ∈ Pos(t), t |p ∈ L(Cγ(A), τ(p)) and,
(iii) for all p ∈ Pos(t) \ {ε}, if τ(p) is a state ofA, then t |p ∈ L(A, τ(p)).

P. To simplify the notations we denote by ∆1 the set of transitions of the
automaton Cγ(A), ∆0 the set of transitions ofA, and Q0 the set of states ofA.

The proof consists of 1) the construction of a term s1 ∈ T (F ,Q) such that

APPROXIMATION-BASED TREE REGULAR MODEL-CHECKING 15

t →∗∆1
s1 →Normγ(l→r,σ,q) q, (3.14)

2) the construction, by iterating a backward process, of a term s ∈ T (F ,Q) such
that

t →∗∆1
s→∗Normγ(l→r,σ,q) q, and (3.15)

3) the proof that
t →∗∆0

rσ→∗Normγ(l→r,σ,q) q. (3.16)

First, using (ii) at the position ε gives t|ε →∗∆1
τ(ε). Since t = t|ε and since

τ(ε) = q (by (i)), one has t →∗
∆1

q.
Since t ∈ T (F) one has t , q, and every derivation t →∗

∆1
q has the length one,

at least. Consequently, there exists s1 ∈ T (F ,Q) such that t →∗
∆1

s1 →∆1 q.
We now show by contradiction that the transition s1 → q < ∆0. Suppose that

s1 → q is a transition of ∆0. Then s1 ∈ T (F ,Q0). Thus, using (iii), t →∗
∆0

s1 →∆0

q, a contradiction (t 6→∗
∆0

q).
Therefore, the transition s1 → q is in ∆1 \ ∆0. By definition of ∆1 (see Defini-

tion 5), there exist q′, σ : PosX(l)∗ 7→ Q and l → r ∈ R such that s1 →Cγ(A) q ∈
Normγ(l→ r, σ, q′) and

lσ→∗∆0
q′. (3.17)

Now by definitions of Normγ(l→ r, σ, q′) and γ, each target state of a transition
in Normγ(l → r, σ, q′) is either Q \ Q0, or is equal to q′. Since s1 →Cγ(A) q ∈
Normγ(l → r, σ, q′), either q ∈ Q \ Q0, or q = q′. Because q ∈ Q0, one has q = q′

and t →∗
∆1

s1 →Normγ(l→r,σ,q) q.

We are done for (3.14). We now perform an iterative construction. If s1 <

T (F ,Q0), then there exists a position p of s1 such that s1(p) ∈ Q \ Q0. Thus s1(p)
is of the form s1(p) = γ(l → r, σ, q)(p). Since γ is injective, the only transition of
∆1 leading to s1(p) is

r(p)(γ(l → r, σ, q)(p.1), . . . , γ(l→ r, σ, q)(p.`)) → s1(p).

Consequently, the derivation t →∗
∆1

s1 has to conclude by t →∗
∆1

s2 → s1 where

s2 = s1[r(p)(γ(l → r, σ, q)(p.1), . . . , γ(l→ r, σ, q)(p.`))]p.

So, one has t →∗
∆1

s2 →Normγ(l→r,σ,q) s1 →Normγ(l→r,σ,q) q.Now, if s2 < T (F ,Q0),
the same construction can be iteratively applied to s2, and so on. Consequently, one
can build a term s ∈ T (F ,Q0) such that Pos(s) = Pos(r) and

t →∗∆1
s→∗Normγ(l→r,σ,q) q, (3.18)

and for each position p of s such that s(p) < Q,

s(p) = r(p). (3.19)

16 BOICHUT, HÉAM, KOUCHNARENKO

We are done for (3.15) .
We can begin the last part of the proof. Let q1, . . . , qn be the states occurring

in s while reading s from the left to the right. Let p1, . . . , pn be respectively the
positions in s of states q1, . . . , qn. Notice that the backward construction of s is
deterministic. Indeed every derivation from t to q can be split up to

t →∗∆1
s→∗Normγ(l→r,σ,q) q.

It implies that for each qi, with i = 1, . . . , n, one has

qi = τ(pi). (3.20)

At this stage, s is of the form rσ since γ is defined for every position of r.
Now using (3.20) and the hypothesis iii), one has

t →∆0 rσ→∗Normγ(l→r,σ,q) q.

The TRS R being right-linear with NLV(l) ∩ Var(r) = ∅ for each rule l → r of
R, one can built a substitution µ : PosX(l) 7→ T (F) such that:
◦ For p ∈ PosVar(r)(l), one can set µ(p) = t′ and t′ = t|p′ with p′ ∈ Pos{l|p}(r).

Moreover, since l|p < NLV(l), one obtains µ(p) = t′ →∗
∆0
σ(p).

◦ For p ∈ PosVar(l)\Var(r)(l), one can proceed in the following way:

– if l(p) ∈ NLV(l) then one can set µ(p′1), . . . , µ(p′1) to t′ where t′ ∈
L(A, σ(p′1)) ∩ ... ∩ L(A, σ(p′n)) with {p′1, . . . , p

′
n} = Pos{l(p)}(l).

– Otherwise, one can set µ(p) to a term t′ ∈ L(A, σ(p)).

By this way, there exists t0 = lµ ∈ T (F) such that t0 →
∗
A0

q and t0 →R t, proving
the lemma. �

The following result shows that each term of the language Cγ(A0) is reachable
by rewriting from A0 using R.

T 2. Let A0 = (Q0,∆0, F0) be a finite tree automaton. Let R be a right-
linear TRS. Given the approximation function γ defined at the beginning of Section
3.4, if for all l→ r ∈ R,Var(r) ∩ NLV(l) = ∅ then L(Cγ(A0)) ⊆ R∗(L(A0)).

P. Let Pn be the following proposition:
For all t ∈ L(Cγ(A0)), if there exists a function τ from Pos(t) to Q such that
τ(ε) = q f and for all p ∈ Pos(t),

t|p →
∗
Cγ(A0) τ(p) and t[τ(p)]p →

∗
Cγ(A0) q f

and such that |{p ∈ Pos(t) | τ(p) ∈ Q0 ∧ t|p 6→
∗
A0
τ(p)}| = n,

then t ∈ R∗(L(A0)).

We prove that Pn is true for all n ≥ 0 by induction on n. To simplify notations,
let

NR(t, τ) = {p ∈ Pos(t) | τ(p) ∈ Q0 and t|p 6→
∗
A0
τ(p)}.

APPROXIMATION-BASED TREE REGULAR MODEL-CHECKING 17

P0 : Assume that t and τ satisfy the hypothesis on P0. We have |NR(t, τ)| = 0. In
particular, ε < NR(t, τ). So, t = t|ε →A0 τ(ε) = q f . Since A0 and Cγ(A0)
have the same set of final states, t ∈ L(A0).

Pn =⇒ Pn+1: Assume that Pn is true for n ≥ 0 and that t and τ satisfy the hypothesis on
Pn+1. Since NR(t, τ) is non-empty, let p be a maximal element of NR(t, τ)
(for the lexicographical order). Then, by maximality of p, one can apply
Lemma 3 to t|p. Thus, there exists t0 ∈ T (F) such that t0 →∗A0

τ(p) and
t0 →R tp. Therefore, there exists a function τ1 from Pos(t0) into Q0 such that
for all p′, t0 →∗A0

τ1(p′), t[τ1(p′)]p′ →
∗
Cγ(A0) τ(p). We define the function τ2

from Pos(t[t0]p) to Q as follows.

– If p is not a prefix of p′, then τ2(p′) = τ(p′),
– Otherwise, if p′ is of the form p.u, then τ2(p′) = τ1(u).

By construction, t[t0]p →R t and |NR(t[t0]p, τ2)| = n− 1. Thus, by induction,
t ∈ R∗(L(A0)).

It follows that Pn is true for all n ≥ 0, proving the theorem. �

Let C(n)
γ (A0) be the tree automaton obtained after n completion steps performed

from A0 by using the TRS R and the approximation function γ. Finally, Proposi-
tion 1 shows that the approximation function γ provides a sound under-approxima-
tion of reachable terms.

P 1. If R is right-linear and for all l → r ∈ R, NLV(l) ∩ Var(r) = ∅
then for all n ≤ 0, L(C(n)

γ (A0)) ⊆ R∗(L(A0)), L(C(n)
γ (A0)) ⊆ L(C(n+1)

γ (A0)) and⋃
n≥0L(C(n)

γ (A0)) = R∗(L(A0)).

P. By definition C(n+1)
γ (A0) = gγ(C

(n)
γ (A0))). Consequently, the set of transi-

tions of C(n)
γ (A0) is included in the transition set of C(n+1)

γ (A0). Thus L(C(n)
γ (A0))

⊆ L(C(n+1)
γ (A0)).

Now, using Lemma 2, one has for all n ≥ 1:

R(L(C(n)
γ (A0))) ⊆ L(C(n+1)

γ (A0)).

Consequently, by a direct induction, R≤n(L(A0)) ⊆ L(C(n+1)
γ (A0)). It implies that

R∗(L(A0)) ⊆
⋃

n≥0

L(C(n)
γ (A0)).

One can prove that for all n ∈ N, L(C(n)
γ (A0)) ⊆ R∗(L(A0)) by direct induction on

n using Theorem 2, and we are done. �

18 BOICHUT, HÉAM, KOUCHNARENKO

3.5 Practical Issues

3.5.1 Approximations for Ensuring Safety

Thanks to the above theoretical contributions, at this point, we have means to com-
pute over-approximations and under-approximations of reachable terms. From a
system verification point of view, by representing the set of initial configurations
of a given system by a tree automaton A0, and by encoding its evolution by a TRS
R, R∗(L(A0)) stands for the set of actually reachable configurations. Given a set
of bad configurations encoded by a tree automatonABad, in order to verify a safety
property, it is enough to decide whether the intersection between R∗(L(A0)) and
L(Abad) is empty. So, as shown in Fig. 3.1, under-approximations are useful to
show that there is one bad configuration reachable, at least. And computing over-
approximations is useful to show that no bad configuration is reachable.

0
L(A)

bad

R*(L(A))
0

γ
R*

...

: approximation function

L(A) 0
L(A)

bad

0
R*(L(A))

γ
R*

: approximation function

L(A)

Figure 3.1: System verification using approximations.

3.5.2 Application to Protocols with Algebraic Properties

The completion procedure in Sect. 3.2 fits with all non left-linear TRSs. However,
the user may be interested in developing algorithms to efficiently handle the com-
pletion for a particular class of non-linear rewrite rules. In the security protocol
analysis framework, the problematic non left-linear rules usually concern the de-
coding abilities of an intruder and the algebraic properties of some cryptographic
primitives. A particularity of such rules is that they are quadratic, i.e. , rules where
a variable can occur at most twice within the left-hand side of the rule; let mention
x ⊕ x → 0 for example. For this application field, this section gives an algorithm
to efficiently handle the completion on TRSs with quadratic rules, called quadratic
completion. This algorithm is then used for the experiments described in Section
4.1.

Recall that each completion step requires the computation of (l → r)-substitu-
tions compatible with the current tree automaton. In Example 2, the rule in Rexe is
quadratic, and the substitution σexe isAexe-compatible because L(Aexe, σexe(1))∩
L(A, σexe(2.2)) , ∅. This last computation can be done thanks to the square of
Aexe by establishing the non emptiness of L(Aexe ×Aexe, 〈σexe(1), σexe(2.2)〉).

APPROXIMATION-BASED TREE REGULAR MODEL-CHECKING 19

∆0

∆0

∆1 \ ∆0

∆1 \ ∆0

∆0 × ∆0

��� � �����	��

�������	�
���
� � �����

������� � ������� �����

∆1 \ ∆0

×
∆0

∆0

×
∆1 \ ∆0

∆1 \ ∆0

×
∆1 \ ∆0

D 6. Let A = (Q,∆, F) be a tree automaton. The square of A, denoted
A2, is the automaton = (Q × Q,∆′, F × F〉 where:

∆′ = { f (〈q1,q
′
1〉, . . . , 〈qn, q

′
n〉)→ 〈q, q

′〉 |

f (q1, . . . , qn)→ q ∈ ∆ ∧ f (q′1, . . . , q
′
n)→ q′ ∈ ∆}.

Roughly speaking, for TRSs specifying protocols with quadratic rules, the square
of a tree automaton – the product of a tree automaton with itself – can be computed
by using the square of its predecessor. Computing the square of an automaton
allows us to know whether there is a common datum between two states q and q′

of the built automaton. The quadratic rules are then linearised, and the values taken
by the linearised variables are checked on-the-fly. For example, if variable x occurs
twice in a rule, one of occurrences is replaced by a fresh variable y in this rule the
left-hand side. Then, this rule can be fired if the states q and q′ – taken as values
by resp. x and y – share at least a term.

More formally, letA = (Q,∆, F) be a tree automaton. LetA2 = (QA2 ,∆A2 , FA2)
be the square of the current tree automaton A according to Def. 6. The square of
the tree automaton Cγ(A) can be computed in the following way: (Cγ(A))2 =

(QA2 ∪ (Q× (Q′ \Q))∪ ((Q′ \Q)×Q)∪ ((Q′ \Q)× (Q′ \Q)),∆A2 ∪ (∆× (∆′ \∆))∪
((∆′ \ ∆) × ∆) ∪((∆′ \ ∆) × (∆′ \ ∆)), FA2). Note that the square of Cγ(A) is based
on the square of A.

To decide the firing of a rule, an efficient state-of-the-art algorithm for the empti-
ness decision (see [Comon et al. 2002] for example) and an adapted data struc-
ture updated on-the-fly are used. Doing so, one can decide in a very efficient way
whether the language of the squared automaton recognised by {(q, q′)} is not empty.
In that case, the rule is fired with the computed substitution.

Thanks to these new features, a large number of protocols has been successfully
validated: NSPK-xor, View-only, and also the Encrypted Key Exchange protocol

20 BOICHUT, HÉAM, KOUCHNARENKO

(EKE2) using the exponential operator. All of these improvements are carried out
in the next section.

4. Automatic Approximations and Applications for Verifying Cryptographic
Protocols

Modelling security protocols by tree automata and term rewriting systems is basic,
see[Genet and Klay 2000] for instance. On the one hand, the initial knowledge
and synthesis abilities of the intruder are encoded by a tree automaton A0. On
the other hand, a term rewriting system R encodes protocol steps and intruder’s
analysis abilities. Our main purpose being to automate the protocol analysis in
so far as possible, approximations should be generated automatically. The main
ideas behind such a fully automatic generation are given in Section 4.1. We then
give in Section 4.2 new experimental results obtained with the new version of the
TA4SPtool.

4.1 Automatic Generation of Approximations

Notice that a safe and sound abstraction with only two agents [Comon-Lundh and
Cortier 2003] is considered.

For each rule l → r, each (l → r)-substitution σ, each state q and each position
p one has to define γ(l→ r, σ, q)(p). Note that the approximation function is build
in order to use finitely many nonces (number used once).

Next R is divided into two parts: R1 that encodes protocol steps and R2 that
encodes intruder’s abilities. For rules in R2, γ(l → r, σ, q)(p) is independent of
both σ and q. Moreover, for every pair of rules l1 → r1 and l2 → r2 and positions
of p1 of r1 and p2 of r2, one has γ(l1 → r1)(p1) , γ(l2 → r2)(p2).

For rules in R1, γ(l → r, σ, q)(p) does not depend on q but only on l → r, p and
the value of σ on a finite set of variables {x1, . . . xn}, representing agents names.
The intuition is that one can ensure (by automaton properties) that if lσ→∗

A
q then

σ(xi) may have a bounded number of values. Furthermore, the injectiveness like
for R2 rules is required.

Since there are finitely many rules with finitely many positions, the number of
states introduced during completion steps is bounded. Consequently, the comple-
tion procedure always stops with that approximation function and then computes
an over-approximation. Concerning the under-approximations, roughly speaking
new states are introduced each time it is necessary. We refer the interested reader
to [Boichut et al. 2005] for more details.

4.2 Experimental Results

This section reports on new experimental results obtained when using the new
version of the TA4SP tool 1.
1 http://www.loria.fr/~boichut/ta4sp.html.

APPROXIMATION-BASED TREE REGULAR MODEL-CHECKING 21

The fully automatic TA4SP [Boichut et al. 2005] tool has been plugged into the
high level protocol specification language HLPSL. We have thoroughly assessed the
TA4SP tool by running it against some IETF2 protocols of the AVISPA Library3

and others from the Clark and Jacob library [Clark and Jacob ?]. The experimental
results are reported in Fig. 4.2, below. The diagnostic SAFE means that all secrecy
properties have been verified for an unbounded number of executions of the initial
HLPSL scenario. A contrario, the diagnostic RMU – Rewriting Model is Unsafe
– relates that there exists an attack against one of the secrecy properties in our
unbounded rewriting model. The diagnostic ?? means that no conclusion can be
drawn.

Using implemented under-approximations presented in Sect. 3.4, four protocols
(NSPK, NSPK-XOR, TMN and LPD-MSR) given in Fig. 4.2 have been diagnosed as
flawed and the attack traces have, indeed, been built with other tools of the AVISPA
platform. Nineteen protocols, specified in HLPSL, have been shown secure using
over-approximations as in Sect. 4.1. Notice that we have successfully applied
TA4SP not only to well-known protocols like NSPKL, SHARE, LPD-IMSR, from the
Clark and Jacob library, but also to large-scale IETF protocols as DHCP-Delayed
-Auth, CRAM-MD5, CHAPv2, TSIG, AAA Mobile IP, etc.

The protocols EKE2, h.530-fix and View-only-untyped use cryptographic
operators with algebraic properties: exp and xor. The protocols View-only-
untyped and EKE2 have been successfully analysed despite the computation time
for the latter. Not so good computation time is better than an inconclusive result,
as for h.530-fix. Note that the on-the-fly computation (OFC) in Sect. 3.5.2 has
allowed us to check the protocol View-only-untypedwhen a naive approach was
result-less as shown below.

Completion step 0 1 2 3 4 5 6 7 8
OFC Time (in s) 0.41 0.59 0.97 2.84 4.55 25 1709 7343 8956
Time (in s) 0.25 0.33 0.79 1.67 6.02 73.60 49.55 >18000 ×

Completion step 9 10 Total
OFC Time (in s) 363.12 36.38 18444.57
Time (in s) × × ×

Before concluding this section, let us focus on the interesting but inconclu-
sive result concerning the protocol h.530-fix. In [Basin and Mödersheim S.
and Viganò 2003], the authors have detected an unknown attack against the proto-
col h.530 using OFMC (On-the-Fly Model-Checker). They have then proposed a
new version of this protocol: h.530-fix. OFMC has shown this protocol secure
for the given scenario. So it is quite challenging to show that this protocol is indeed
secure now for an unbounded number of sessions. We have tried to check the new
version but, its analysis leads to an inconclusive result. However, it would be inter-
esting to define finer approximations in order to show the safety of this protocol.
We plan also to investigate in this direction – notably using a trace reconstruction
technique we have developed in [Boichut and Genet 2006].

2 Internet Engineering Task Force
3 Available at http://www.avispa-project.org/.

22 BOICHUT, HÉAM, KOUCHNARENKO

Protocol Computation time(s) Diagnostic
(seconds)

NSPKL 4.12 SAFE

NSPK 10.26 RMU

NSSK 266.88 SAFE

NSPK-XOR 1803.97 RMU

Denning-Sacco sh. key 24.98 SAFE

Yahalom 874.35 SAFE

Andrew Secure RPC 212.01 SAFE

Wide Mouthed Frog 30.45 SAFE

Kaochow v1 227.30 SAFE

Kaochow v2 153.00 SAFE

TMN 109.08 RMU

AAA Mobile IP 1115.00 SAFE

UMTS-AKA 2.55 SAFE

CHAPv2 18.69 SAFE

CRAM-MD5 1.14 SAFE

DHCP-Delayed-Auth 1.05 SAFE

EKE 11.76 SAFE

EKE2 1541.43 SAFE

LPD-IMSR 12.24 SAFE

LPD-MSR 6.52 RMU

h.530-fix 54687.67 ??

TSIG 1140.38 SAFE

SHARE 50.41 SAFE

View-only-untyped 18444.57 SAFE

Figure 4.2: Experiments on some secrecy properties using TA4SP

One last word about the computation times of Fig. 4.2: they are indeed not as
good as we wished, but we are developing a promising new engine for the comple-
tion which gives impressive results. For example, a computation taking four days
long has been reduced to forty-five minutes. This rewrite engine is still in progress,
but we hope to integrate the next engine within TA4SP in the coming months.

5. Conclusion

This paper presents an essential improvement of [Feuillade et al. 2004] showing
how to extend that work to any kind of TRSs. Moreover, we also explained how to
automate this approach in a suitable way. In this context we have provided a new
tree regular model-checking technique. We also exposed how to use the technique
for analysing security protocols, showing that the approach is not a purely domain-
theoretic framework. We want to emphasise the fact that all the algorithms have
been implemented, giving rise to the new version of the TA4SP tool.

APPROXIMATION-BASED TREE REGULAR MODEL-CHECKING 23

The construction presented in this paper has several interesting features. The
automatic generation of approximation functions for security protocols is quite in-
tuitive. Indeed, it can be summarised to the following intuition: "for such a session,
normalise in such a way". But, one can wonder how to generate approximations
automatically for more complex objects, as Java programs [Boichut et al. 2007].
It would also be interesting to investigate similar approaches for unranked-tree au-
tomata that are useful for XML documents analysis. Moreover, a central question
arising out of our work is how to combine the approximation-based techniques
with existing tree automata regular techniques approaches, in order to get benefit
from both approaches.

References

A, M́  B, B. 2005. Computer-assisted verification of a protocol for certified
email. Sci. Comput. Program 58, 1-2, 3–27.

A, P., A, A.,  B, A. 1999. Algorithmic Verification of Lossy Channel
Systems: An Appliction to the Bounded Retransmission Protocol. In TACAS’99, Volume
1579 of LNCS, 208–222.

A, P. A., B, A.,  J, B. 1998. On-the-Fly Analysis of Systems with Un-
bounded, Lossy FIFO Channels. In CAV’98, Volume 1427 of LNCS, 305–322.

A, P A, L, A, ’O, J,  R, A. 2006. Tree regular model
checking: A simulation-based approach. J. Log. Algebr. Program 69, 1-2, 93–121.

A, A  G, R. 2002. Security Analysis of a Probabilistic Non-
repudiation Protocol. In Process Algebra and Probabilistic Methods : Performance Modeling
and Verification, Volume 2399 of LNCS. Springer-Verlag, 17–36.

A, A., B, D., B, Y., C, Y., C, L., C, J., H D, P.,
H́, P.-C., K, O., M, J., M, S.,  O, D., R-
, M., S, J., T, M., V̀, L.,  V, L. 2005. The Avispa Tool for
the automated validation of internet security protocols and applications. In CAV 2005, 17th Int.
Conf. on Computer Aided Verification, Volume 3576 of LNCS. Springer-Verlag, Edinburgh,
Scotland, UK, 281–285.

A, A  C, L. 2005. An Optimized Intruder Model for SAT-based
Model-Checking of Security Protocols. Electr. Notes Theor. Comput. Sci 125, 1, 91–108.

B, S́, F, A,  L, J́̂. 2004. FASTer Acceleration of Counter Au-
tomata in Practice. In Proceedings of the 10th International Conference on Tools and Al-
gorithms for Construction and Analysis of Systems (TACAS’04) , Volume 2988 of LNCS.
Springer, Barcelona, Spain, 576–590.

B, M,  V. 2003. An On-the-Fly Model-Checker for Security Protocol Analy-
sis. In ESORICS: European Symposium on Research in Computer Security. LNCS, Springer-
Verlag.

B, D.  M̈ S.  V̀, L. 2003. An On-The-Fly Model-Checker for Security
Protocol Analysis. In European Symposiou On Research In Computer Security, ESORICS
2003, Proceedings. Volume 2808 of LNCS. Springer-Verlag, 253–270.

B, B. 2001. An Efficient Cryptographic Protocol Verifier Based on Prolog Rules. In the 14th
IEEE Computer Security Foundations Workshop, CSFW 2001, Proceedings. IEEE Computer
Society Press, 82–96.

B, B., A, M.,  F, C. 2007. Automated Verification of Selected Equivalences
for Security Protocols. Journal of Logic and Algebraic Programming ?, , ?–?

B, B. 2001. An Efficient Cryptographic Protocol Verifier Based on Prolog Rules. In
CSFW . IEEE Computer Society, 82–96.

B, Y.  G, T. 2006. Feasible Trace Reconstruction for Rewriting Approximations. In
17th International Conference on Rewriting Techniques and Applications, RTA 2006 , Volume
4098 of LNCS. Springer-Verlag.

24 BOICHUT, HÉAM, KOUCHNARENKO

B, Y., G, T., J, T.,  R, L. L. 2007. Rewriting Approximations for Fast
Prototyping of Static Analyzers. In proceedings of RTA , LNCS 4533. Springer, 48–62.

B, Y., H́, P.-C.,  K, O. 2005. Automatic Verification of Security Protocols
Using Approximations. Tech. Report RR-5727, INRIA.

B, Y., H́, P.-C.,  K, O. 2007. Tree Automata for Detecting Attacks on
Protocols with Algebraic Cryptographic Primitives. In INFINITY’07, Int. Ws. on Verification
of Infinite-State Systems, joint to CONCUR’07. Lisboa, Portugal, 44–53.

B, Y, G, T, J, T P.,  R, L L. 2007. Rewriting Approx-
imations for Fast Prototyping of Static Analyzers. In Term Rewriting and Applications, 18th
International Conference, RTA 2007, Paris, France, June 26-28, 2007, Proceedings, Volume
4533 of LNCS. Springer, 48–62.

B, Y, H́, P-C,  K, O. 2006. Handling Algebraic Prop-
erties in Automatic Analysis of Security Protocols. In ICTAC’06 , Volume 4281 of LNCS.
Springer, 153–167.

B, B.  G, P. 1996. Symbolic Verification of Communication Protocols with In-
finite State Spaces Using QDDs. In Proc. of 8th CAV (August), USA , Volume 1102. LNCS,
1–12.

B, B  W, P. 1998. Verifying Systems with Infinite but Regular State
Spaces. In CAV’98, Volume 1427 of LNCS, 88–97.

B, E,  T. 2003. A Generic Approach to the Static Analysis of Concurrent
Programs with Procedures. IJFCS: International Journal of Foundations of Computer Science
14 , , ?–?

B, A, E, J,  T, T. 2005. Reachability Analysis of Synchro-
nized PA Systems. Electr. Notes Theor. Comput. Sci 138, 3, 153–178.

B, A, H, P, R, A,  V, T́. 2006. Abstract Reg-
ular Tree Model Checking. Electr. Notes Theor. Comput. Sci 149, 1, 37–48.

B, A, M, A,  T, T. 2001. Permutation Rewriting and Algo-
rithmic Verification. In LICS.

B, A  T, T. 2002. Extrapolating Tree Transformations. LNCS 2404 ,
539–??

B, L,  P. 2003. HERMES: An Automatic Tool for Verification of Secrecy in
Security Protocols. In CAV: International Conference on Computer Aided Verification.

B, L, E, C,  L, Y. 2005. A symbolic decision procedure for
cryptographic protocols with time stamps. J. Log. Algebr. Program 65, 1, 1–35.

C  F. 2005. Verification of Programs with Half-Duplex Communication. INFCTRL:
Information and Computation (formerly Information and Control) 202 , , ?–?

C, K, R,  T. 2005. An NP Decision Procedure for Protocol
Insecurity with XOR. TCS: Theoretical Computer Science 338, , ?–?

C  R. 2005. Combining Intruder Theories. In ICALP: Annual International
Colloquium on Automata, Languages and Programming.

C, J.  J, J. ? A Survey of Authentication Protocol Literature: Version 1.0, 17. Nov. 1997.
C, H., D, M., G, R., J, F., L, D., T, S.,  T, M. 2002.

Tree Automata Techniques and Applications.
C-L, H.  C, V. 2003. Security properties: two agents are sufficient. In Proceed-

ings of ESOP’2003, LNCS 2618. Springer-Verlag, 99–113.
C-L, H.  C, V. 2005. Tree Automata with One Memory, Set Constraints and

Cryptographic Protocols. Theoretical Computer Science 331, 1 (Feb.), 143–214.
C-L, H  S, V. 2003. Intruder Deductions, Constraint Solving and

Insecurity Decision in Presence of Exclusive or. In Proceedings of the eightteenth Annual IEEE
Syposium on Logic in Computer Science (LICS-03)9. IEEE Computer Society, Los Alamitos,
CA, 271–280.

C-L, H  T, R. 2003. Easy Intruder Deductions. In Verification: Theory
and Practice, Essays Dedicated to Zohar Manna on the Occasion of His 64th Birthday, Volume
2772 of LNCS. Springer, 225–242.

C́, J.-L., D, M., G, R.,  S., V́̈. 1991. Bottom-Up Tree Pushdown
Automata and Rewrite Systems. In Rewriting Techniques and Applications, 4th International

APPROXIMATION-BASED TREE REGULAR MODEL-CHECKING 25

Conference, RTA-91, LNCS 488. Springer-Verlag, Como, Italy, 287–298.
C, V., D, S.,  L, P. 2006. A Survey of Algebraic Properties Used in

Cryptographic Protocols. Journal of Computer Security 14 , 1–43.
C, C.J.F. 2006. Scyther - Semantics and Verification of Security Protocols. Ph.D. dissertation,

Eindhoven University of Technology.
C, C.J.F.  L, P. 2007. Comparing State Spaces in Security Protocol Analysis.

In In Proc. of AVoCS’07, ENTCS.
D, D, L, Y,  S, M. 2002. Iterating transducers. J. Log. Algebr.

Program 52-53, 109–127.
D  T. 1990. The Theory of Ground Rewrite Systems is Decidable. In LICS: IEEE

Symposium on Logic in Computer Science.
D. 2006. Easy Intruder Deduction Problems with Homomorphisms. IPL: Information Pro-

cessing Letters 97, , ?–?
D, S́  J, F. 2006. Decision Procedures for the Security of Pro-

tocols with Probabilistic Encryption against Offline Dictionary Attacks. J. Autom. Reasoning
36 , 1-2, 85–124.

D, N., L, P., M, J.,  S, A. 1999. Undecidability of bounded security
protocols. In Workshop on Formal Methods and Security Protocols, FLOC 1999, Proceedings.

E, S, M, C,  M, J́. 2007. Equational Cryptographic
Reasoning in the Maude-NRL Protocol Analyzer. Electr. Notes Theor. Comput. Sci 171, 4,
23–36.

F, G., G, T.,  V T T, V. 2003. Reachability Analysis of Term Rewriting
Systems. Tech. Report RR-4970, INRIA.

F, G, G, T,  T, V́ V T. 2004. Reachability Analysis
over Term Rewriting Systems. J. Autom. Reasoning 33, 3-4, 341–383.

F, A  L, J́̂. 2002. How To Compose Presburger-Accelerations: Applica-
tions to Broadcast Protocols. In Proceedings of the 22nd Conference on Fundations of Soft-
ware Technology and Theoretical Computer Science (FSTTCS’02) , Volume 2556 of LNCS.
Springer, Kanpur, India, 145–156.

F, A, W, B,  W, P. 1997. A Direct Symbolic Approach to
Model Checking Pushdown Systems (Extended Abstract). In Proceedings of the 2nd Interna-
tional Workshop on Verification of Infinite State Systems (INFINITY’97) , Volume 9 of Elec-
tronic Notes in Theoretical Computer Science. Elsevier Science Publishers, Bologna, Italy,
27–39.

G, T L  J, B. 2007. Lattice Automata: A Representation for Languages
on Infinite Alphabets, and Some Applications to Verification. In Static Analysis, 14th Interna-
tional Symposium, SAS 2007, Kongens Lyngby, Denmark, August 22-24, 2007, Proceedings,
Volume 4634 of LNCS. Springer, 52–68.

G, T.  K, F. 2000. Rewriting for Cryptographic Protocol Verification. In proceedings of
CADE . Volume 1831 of LNCS. Springer-Verlag, 271–290.

G, R.  T, S. 1995. Regular Tree Languages and Rewrite Systems. Fundamenta Infor-
matica 24 , 1/2, 157–174.

G-L, J, R, M,  V, K N. 2005. Abstraction and Resolution
Modulo AC: How to Verify Diffie-Hellman-like Protocols Automatically. Journal of Logic and
Algebraic Programming 64 , 2 (Aug.), 219–251.

J, F. 1996. Decidable Approximations of Term Rewriting Systems. LNCS 1103, 362–??
J, B  N, M. 2000. Transitive Closures of Regular Relations for Verifying

Infinite-State Systems. In Tools and Algorithms for Construction and Analysis of Systems, 6th
International Conference, TACAS 2000, Held as Part of the European Joint Conferences on the
Theory and Practice of Software, ETAPS 2000, Berlin, Germany, March 25 - April 2, 2000,
Proceedings, Volume 1785 of LNCS. Springer, 220–234.

K  R. 2005. Analysis of an Electronic Voting Protocol in the Applied Pi Calculus. In
ESOP: 14th European Symposium on Programming.

K̈, R  W, T. 2004. Automata-Based Analysis of Recursive Cryptographic
Protocols. In STACS 2004, 21st Annual Symposium on Theoretical Aspects of Computer Sci-
ence, Montpellier, France, March 25-27, 2004, Proceedings, Volume 2996 of LNCS. Springer,

26 BOICHUT, HÉAM, KOUCHNARENKO

382–393.
L, P, L, D,  T, R. 2007. Intruder deduction for the equational

theory of Abelian groups with distributive encryption. Inf. Comput 205, 4, 581–623.
M, J. C., M, M.,  S, U. 1997. Automated Analysis of Cryptographic Protocols

Using Mur. In Proceedings of the 1997 Conference on Security and Privacy (S&P-97) . IEEE
Press, Los Alamitos, 141–153.

M̈, S. 2007. Models and Methods for the Automated Analysis of Security Pro-
tocols. PhD thesis, PhD Thesis, ETH Zürich, Information Security Group, Haldeneggsteig 4,
CH-8092 Zürich.

M, D. 1999. Abstracting cryptographic protocols with tree automata. In proceedings of
SAS, Volume 1694 of LNCS. Springer-Verlag.

N, S  H, C. 2006. A framework for security analysis of mobile wireless
networks. Theor. Comput. Sci 367, 1-2, 203–227.

N, C. R., A, E. H.,  N, H. R. 2005. Static Validation of a Voting Proto-
col. In Automated Reasoning for Security Protocol Analysis (ARSPA 2005) , Volume 135 of
Electronic Notes in Theoretical Computer Science. Elsevier, 115–134.

O, H.  T, T. 2004. ACTAS: A System Design for Associative and Commutative Tree
Automata Theory. In Proceedings of the 5th International Workshop on Rule-Based Program-
ming: RULE’2004 . Aachen, Germany.

P, A  S, E. 2000. Liveness and Acceleration in Parameterized Verification. In
Proceedings of the 12th International Conference on Computer-Aided Verification (CAV’00) ,
Volume 1855 of LNCS. Springer.

R́, P  V, J. 2002. Regular Sets of Descendants by Leftmost Strategy. Electr.
Notes Theor. Comput. Sci 70 , 6, ?–?

R, M.  T, M. 2001. Protocol insecurity with finite number of sessions is NP-
complete. In 14th IEEE Computer Security Foundations Workshop (CSFW ’01) . IEEE, Wash-
ington - Brussels - Tokyo, 174–190.

S. 1988. Deterministic Tree Pushdown Automata and Monadic Tree Rewriting Systems.
JCSS: Journal of Computer and System Sciences 37, , ?–?

S, D X. 1999. Athena: A New Efficient Automatic Checker for Security Protocol
Analysis. In CSFW , 192–202.

T, T. 2001. Regular Model Checking using Widening Techniques. Electr. Notes Theor.
Comput. Sci 50 , 4, ?–?

T, T. 2005. Regular Protocols and Attacks with Regular Knowledge. In Proc. of CADE’05,
Volume 3632 of LNCS. Springer, 377–391.

Z, R.  D, P. 2006. Handling exp, x (and Timestamps) in Protocol Analysis.

