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Chapter 1

Test Generation using Symbolic

Animation of Models

In the domain of embedded systems, models are often used either to generate code, possibly

after refinement steps, but they also provide a functional view of the system that will be used

to produce black box test cases, without considering the actual details of implementation

of this system. In the latter process, the tests are generated by appling given test selection

criteria on the model. These test cases are then played on the system and the results obtained

are compared with the results predicted by the model, in order to ensure the conformance

between the concrete system and its abstract representation. Test selection criteria aim at

achieving a reasonable coverage of the functionalities or requirements of the system, without

involving a heavyweight human intervention.

We present in this chapter works on the B notation as a support for the model design,

intermediate verification, and test generation. In B machines, the data model is described

using abstract data types (such as sets, functions, relations) and the operations are written

in a code-like notation based on generalized substitutions. Using a customized animation

tool, it is possible to animate the model, i.e., to simulate its execution, in order to ensure

that the operations behave as expected w.r.t. the initial informal requirements. Further-
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2 CHAPTER 1. TEST GENERATION USING SYMBOLIC ANIMATION OF MODELS

more, this animation process is also used for the generation of test cases, with more or less

automation. More precisely, our work focuses on symbolic animation that improves classical

model animation by avoiding the enumeration of operation parameters. Parameter values

become abstract variables whose values are handled by dedicated tools (provers or solvers).

This process has been tool-supported with the BZ-Testing-Tools framework, that has been

industrialized and commercialized by the company Smartesting. We present in this chapter

the techniques used to perform the symbolic animation of B models using underlying set-

theoretical constraint solvers, and we describe two test generation processes based on this

process.

The first one employs animation in a fully-automated manner, as a mean for building

test cases that reach specific test targets computed so as to satisfy a structural coverage

criterion over the operations of the model, also called static test selection criterion. On the

contrary, the second one is a scenario-based testing approach, also said to satisfy a dynamic

test selection criterion, in which manually-designed scenarios are described as sequences of

operations, possibly targeting specific states. These scenarios are then animated in order to

produce the test cases. We illustrate the use and the complementarity of these two techniques

on the industrial case of a smart card application, named IAS –Identification Authentication

Signature– an electronic platform for loading applications on last-generation smart cards.

1.1 Motivations and Overall Approach

In the domain of embedded systems, a model-based approach for design, verification or

validation is often required, mainly because these kind of systems are used to be considered

as critical [5]. In that sense, a defect can be relatively costly in terms of money or human

lives. The key idea is thus to detect the possible dysfunctions as soon as possible. The

use of formal models, on which mathematical reasoning can be performed, is therefore an

interesting solution. In the context of software testing, the use of formal models makes

it possible to achieve an interesting automation of the process, the model being used as a

basis from which the test cases are computed. In addition, the model predicts the expected
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results, named the oracle, that describe the response that the System Under Test (SUT)

should provide (modulo data abstraction). The conformance of the SUT w.r.t. the initial

model is based on this oracle.

We rely on the use of behavioral models, that are models describing an abstraction of the

system, using state variables, and operations that may be executed, representing a transi-

tion function described using generalized substitutions. The idea for generating tests from

these models is to animate them, i.e., simulating their execution. The sequences obtained

represent abstract test cases that have to be concretized to be run on the system under

test. Our approach considers two complementary test generation techniques that use model

animation in order to generate the tests. The first one is based on a structural coverage

of the operations of the model, and the second is based on dynamic selection criteria using

user-defined scenarios.

Before going further into the details of our approach, let us define the perimeter of the em-

bedded systems we target. We consider embedded systems that do not present concurrency,

or strong real time constraints (i.e., time constraints that can not be discretized). Indeed,

our approach is suitable for validating the functional behaviors of electronic transaction ap-

plications, such as smart cards applets, or discrete automotive systems such as front-wipers

or cuise controllers.

1.1.1 Context: the B Abstract Machines Notation

Our work focuses on the use of the B notation [1] for the design of the model to be used for

testing an embedded system. Several reasons motivate this choice. B is a very convenient

notation for modelling embedded systems, grounded on well-defined semantics. It makes it

possible to easily express the operations of the system using a functional approach. Thus,

each command of the system under test can be modelled by a B operation, that acts as a

function updating the state variables. Moreover the operations’ syntax displays conditional

structures (IF...THEN...ELSE...END) that are similar to any programming language. One

of the advantages of B is that it does not require the user to know the complete topology of
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the system (compared to automata-based formal notations) which simplifies its usage in the

industry. Notice that we do not consider the whole development process described by the B

method, starting from an abstract machine and involving successive refinements, that would

be useless for test generation purposes (i.e., if the code is generated from the model, there

is no need to test the code). Here, we focus on abstract machines; this does not restrict the

expressiveness of the language, since a set of refinement can naturally be flatten into a single

abstract machine.

B is based on a set-theoretical data model that makes it possible to abstract complex

structures using sets, relations (set of pairs) and a large variety of functions (total/partial

functions, injections, surjections, bijections), along with numerous set/relational operators.

The dynamics of the model, namely the initialization and the operations, are expressed using

Generalized Substitutions, that describe the possible evolution of the state variables including

simple assignments (x := E), parallel assignments (x, y := E, F also written x := E ‖ y :=

F), conditional assignments (IF Cond THEN Subst1 ELSE Subst2 END), bounded choice

substitutions (CHOICE Subst1 OR .... OR SubstN END) or unbounded choice substitutions

(ANY z WHERE Predicate(z) THEN Subst END) (see. [1, p. 227] for a complete list of

generalized substitutions).

An abstract machine is organised in clauses that describe: the constants of the system and

their associated properties, the state variables and the invariant (containing the data typing

information, and actual invariant properties that one wants to see preserved through the

possible execution of the machine), the initial state and the atomic state evolution described

by the operations.

Figure 1.1 gives an example of a B abstract machine that will be used to illustrate the

various concepts presented in the chapter. This machine models an electronic purse, similar

as those embedded on smart cards, managing a given amount of money (variable balance).

A PIN code is also used to identify the card holder (variable pin). The holder may try to

authenticate using operation VERIFY PIN. Boolean variable auth states whether or not the

holder is authenticated. A limited number of tries is given for the holder to authenticate

(3 in the model). When the user fails to authenticate the number of tries decreases until
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MACHINE
purse

SETS
BOOLEAN = {true, false}

CONSTANTS
max tries

PROPERTIES
max tries ∈ N ∧ max tries = 3

VARIABLES
balance, pin, tries, auth

INVARIANT
balance ∈ N ∧ balance ≥ 0 ∧ pin ∈ -1..9999 ∧
tries ∈ 0..max tries ∧ auth ∈ BOOLEAN ∧ ...

INITIALIZATION
balance := 0 ‖ pin := -1 ‖ tries := max tries ‖ auth := false

OPERATIONS
sw ← SET PIN(p) =̂ ...
sw ← VERIFY PIN(p) =̂ ...
sw ← CREDIT(a) =̂ ...
sw ← DEBIT(a) =̂ ...

END

Figure 1.1: A B abstract machine modelling a simplified electronic purse

reaching 0, corresponding to a state in which the card is definitely blocked (i.e., no command

can be successfully invoked). The model provides a small number of operations that make

it possible: to set the value of the PIN code (SET PIN operation), to authenticate the holder

(VERIFY PIN operation), and to credit the purse (CREDIT operation) or to pay a purchase

(DEBIT operation).

1.1.2 Model-Based Testing Process

We present in this part the use of B as a formal notation that makes it possible to describe

the behavior of the system under test. In order to produce the test cases from the model,

the B specification is animated using constraint solving techniques. We propose to develop

two test generation techniques based on this principle, as depicted in Figure 1.2.

The first technique is fully automated and aims at applying a structural coverage criterion

on the operations of the machine so as to derive test cases that are supposed to exercise all

the operations of the system, involving decision coverage and data coverage as a boundary
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analysis of the state variables. Unfortunately, this automated process show some limitations,

that we will illustrate. This leads us to consider a guided technique based on the design of

scenarios. Both techniques rely on the use of animation, either to compute the test sequences

by a customized state exploration algorithm, or to animate the user-defined scenarios.

These two processes compute test cases that are said to be abstract, since they are ex-

pressed at the model level. These test thus need to be concretized to be run on the system

under test. To achieve that, the validation engineer has to write an adaptation layer that

will be in charge of bridging the gap between the abstract and the concrete level (basically

model operations are mapped to SUT commands, and abstract data values are translated

into concrete data values).

Figure 1.2: Test generation processes based on symbolic animation
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Plan of the Chapter

The chapter is organised as follows. Section 1.2 describes the principle of symbolic animation,

that will be used in the subsequent sections. The automated boundary test generation

technique is presented in section 1.3, whereas the scenario based testing approach is described

in Section 1.4. The usefulness and complementarity of these two approaches is illustrated in

Section 1.5 on an industrial case studies on smart card applets. Finally, Section 1.6 presents

the related work and Section 1.7 concludes and gives an overview of the open issues.

1.2 Principles of Symbolic Animation

Model animation may be used for ensuring that the model behaves as described in the initial

requirements. When a B model is animated, the user chooses which operation he wants to

invoke. Depending on the current state of the system and the values of the parameters, a

dedicated animation tool computes the resulting states that can be obtained. By comparing

these states with the informal specification, the user can evaluate its model and correct it

if necessary. This process is complementary to the verification that involves properties that

have to be formally verified on the model.

The symbolic animation improves the “classical” model animation by giving the possibility

to abstract the operation parameters. Once a parameter is abstracted, it is replaced by

a symbolic variable that is handled by dedicated constraints solvers. Abstracting all the

parameter values turns out to consider each operation as a set of “behaviors”, that are the

basis from which symbolic animation can be performed [13].

1.2.1 Definition of the Behaviors

A behavior is a part of the operation that represents one possible way of executing the op-

eration, in terms of resulting activated effect. Each behavior can be defined as a predicate,

representing its activation condition, and a substitution that represents its effect, namely the
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evolution of the state variables and the instantiation of the return parameters of the opera-

tion. The behaviors are computed as the paths in the control flow graph of the considered

B operation, represented as a before-after predicate1.

Example 1 (Computation of behaviors) Consider a smart card command, named VER-

IFY PIN aiming at checking a PIN code proposed in parameter against the PIN code of the

card. As for every smart card commands, this command returns a code, named sw for status

word, that indicates whether the operation succeeded or not, and possibly indicating the cause

of the failure. The precondition specifies the typing information on the parameter p (a four

digit number). First, the command can not succeed if there are no remaining tries on the

card and if the current PIN code of the card has been previously set. If the PIN codes match,

the card holder is authentified, otherwise there are two cases: either there are enough tries

on the card, and the returned status word indicates that the PIN is wrong, or the holder

has performed his last try, and the status word indicates that the card is now blocked. This

operation is given in Figure 1.3, along with its control flow graph representation. This com-

mand presents 4 behaviors, that are made of the conjunction of the predicates on the edges

of a given path, that is denoted by the sequence of nodes from 1 to 0. For example, behavior

[1,2,3,4,0], defined by predicate p ∈ 0..9999 ∧ tries > 0 ∧ pin 6= −1 ∧ p = pin ∧ auth’ =

true ∧ tries’ = max tries ∧ sw = ok represents a successful authentication of the card

holder. In this predicate, X ′ designates the value of variable X after the execution of the

operation.

1.2.2 Use of the Behaviors for the Symbolic Animation

When performing the symbolic animation of a B model, the operation parameters are ab-

stracted and thus, the operations are considered through their behaviors. Each parameter

is thus replaced by a symbolic variable whose value is managed by a constraint solver.

Definition 1 (Constraint Satisfaction Problem (CSP)) A Constraint Satisfaction Prob-

lem is a triplet 〈X, D, C〉 in which
1A before-after predicate is a predicate involving state variables before the operation and after, using a primed notation.
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sw ← VERIFY PIN(p) =̂
PRE p ∈ 0..9999 THEN

IF tries > 0 ∧ pin 6= -1 THEN
IF p = pin THEN

auth := true ‖
tries := max tries ‖
sw := ok

ELSE
tries := tries - 1 ‖
auth := false ‖
IF tries = 1 THEN

sw := blocked
ELSE

sw := wrong_pin
END

END
ELSE

sw := wrong_mode
END

END

1

2

p ∈ 0..9999

3

tries > 0

∧ pin 6= -1

9

tries ≤ 0

∨ pin = -1

sw =

wrong mode

4

p=pin

auth’ = true ∧

tries’ = max tries

∧ sw = ok

5

p6=pin

6

tries’= tries - 1

∧ auth’ =false

7

tries=1

8

tries6=1

0

sw =

blocked

sw =

wrong pin

Figure 1.3: B code and control-flow graph of the VERIFY PIN command

- X = {X1, . . . , XN} is a set of N variables

- D = {D1, . . . , DN} is a set of domains associated to each variable

- C is a set of constraints that relate variable values altogether

A CSP is said to be consistent if there exists at least one valuation of the variables in X that

satisfies the constraints of C. It is inconsistent otherwise.

Activating a transition from a given state is equivalent to solving a CSP whose variables X

are given by the state variables of the current state (i.e., the state from which the transition

is activated), the state variables of after state (i.e., the state reached by the activation

of the transition) and the parameters of the operation. Accordingly to the B semantics,

the domain D of the variables can be found in the invariant of the machine (resp. in the

precondition of the operation) for the state variables (resp. for the operation parameters).

The contraints C are the predicates composing the behavior that is being activated, enriched

with equalities between the before and after variables that are not assigned within the

considered behavior.
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The feasibility of a transition is defined by the consistency of the CSP associated to the

activation of the transition from a given state. From a given (symbolic or concrete) state,

the iteration between the possible activable behaviors is given by performing a depth-first

exploration of the behavior graph.

Example 2 (Behavior activation) Consider the activation of the VERIFY PIN opera-

tion given in Example 1. Suppose the activation of this operation from the state s1 defined

by: tries = 2, auth = false, pin = 1234. Two behaviors can be activated. The first one

corresponds to an invocation ok ← VERIFY_PIN(1234) that covers path [1,2,3,4,0], and pro-

duces the following consistent CSP (notice that data domains have been reduced so as to give

the most human-readable representation of the corresponding states):

CSP1 = 〈{tries, auth, pin, p, tries′, auth′, pin′},

{{2}, {false}, {1234}, {1234}, {3}, {true}, {1234}},

{Inv, Inv′, tries > 0, pin 6= −1, p = pin, tries′ = 3,

auth′ = true, pin′ = pin}〉

(1.1)

where Inv (resp. Inv′) designates the constraints from the machine invariant that apply on

the variables before (resp. after) the activation of the behavior. The second activable behavior

corresponds to an invocation wrong_pin ← VERIFY_PIN(p), that covers path [1,2,3,5,6,8,0]

and produces the following consistent CSP:

CSP2 = 〈{tries, auth, pin, p, tries′, auth′, pin′},

{{2}, {false}, {1234}, 0..1233∪ 1235..9999, {1}, {false}, {1234}},

{Inv, Inv′, tries > 0, pin 6= −1, p 6= pin, tries′ = tries− 1,

auth′ = false, tries 6= 1, pin′ = pin}〉

(1.2)

State variables may also become symbolic variables, if their after value is related to the

value of a symbolic parameter. A variable is said to be symbolic if the domain of the

variable contains more than one value. A system state that contains at least one symbolic

state variable is said to be a symbolic state (by opposition to a concrete state).
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Example 3 (Computation of Symbolic States) Consider a the SET PIN operation sup-

posed to set the value of the PIN on a smart card:

sw ← SET PIN(p) =̂

PRE p ∈ 0..9999 THEN

IF pin = -1 THEN pin := p ‖ sw := ok

ELSE sw := wrong mode END

END

From the initial state, in which auth = false, tries = 3 and pin = -1, the SET PIN op-

eration can be activated to produce a symbolic state associated to the following CSP:

CSP0 = 〈{tries, auth, pin, p, tries′, auth′, pin′},

{{3}, {false}, {−1}, 0..9999, {3}, {false}, 0..9999},

{Inv, Inv′, pin = −1, pin′ = p}〉

(1.3)

The symbolic animation process works by exploring the successive behaviors of the consid-

ered operations. When two operations have to be chained, this process acts as an exploration

of the possible combinations of successive behaviors for each operation.

In practice, the selection of the behaviors to be activated is done in a transparent manner

and the enumeration of the possible combinations of behaviors chaining is explored using

backtracking mechanisms. For animating B models, we use CLPS-BZ [12], a set-theoretical

constraint solver written in SICStus Prolog [34] that is able to handle a large subset of the

data structures existing in the B machines (sets, relations, functions, integers, atoms, etc.).

Once the sequence has been played, the remaining symbolic parameters can be instan-

tiated by a simple labelling procedure, that consists in solving the constraints system and

producing an instantiation of the symbolic variables, obtaining an abstract test case.

It is important to notice that constraint solvers work with an internal representation of

constraints (involving constraint graphs and/or polyhedra calculi for relating variable values

altogether). Nevertheless, consistency algorithms used to acquire and propagate constraints
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are not sufficient to ensure the consistency of a set of constraints, and a labelling procedure

always has to be employed to guarantee the existence of solutions in a CSP associated to a

symbolic state.

The next two sections will now describe the use of symbolic animation for the generation

of test cases.

1.3 Automated Boundary Test Generation

We present in this section the use of the symbolic animation for automating the generation

of model-based test cases. This technique aims at a structural coverage of the transitions of

the system. To make it simple, each behavior of each operation of the B machine is targeted;

the test cases thus aim at covering all the behaviors. In addition, a symbolic representation

of the system states makes it possible to perform a boundary analysis from which the test

targets will result [27, 2]. This technique is recognized as a pertinent heuristics for generating

test data [5].

The tests that we propose are made of four parts, as illustrated in Figure 1.4. The first

part, called preamble, is a sequence of operations that brings the system from the initial

state to a state in which the test target, namely a state from which the considered behavior

can be activated, is reached. The body is the activation of the behavior itself. Then, the

identification phase is made of user-defined calls to observation operations, that are supposed

to retrieve internal values of the system so that they can be compared to model data in order

to establish the conformance verdict of the test. Finally, the postamble phase is similar to the

preamble, but it brings the system back to the initial state or to another state that reaches

another test target. The latter part is important to chain the test cases. It is especially used

Figure 1.4: Composition of a Test Case



1.3. AUTOMATED BOUNDARY TEST GENERATION 13

when testing embedded systems, since the execution of the tests on the system is very costly

and such systems take usually much time to be reseted by hand.

This automated test generation technique requires some testability hypotheses to be em-

ployed. First, the operations of the B machine have to represent the control points of the

system to be tested, so as to ease the concretization of the test cases. Second, it is mandatory

that the concrete data of the SUT can be compared to the abstract data of the model, so

as to be able to compare the results produced by the execution of the test cases with the

results predicted by the model. Third, the SUT has to provide observation points that can

be modeled in the B machine (either by return values of operations, such as the status words

in the smart cards, or by observation operations).

We will now describe how the test cases can be automatically computed, namely how the

test targets are extracted from the B machine, and how the test preambles, and postambles,

are computed.

1.3.1 Extraction of the Test Targets

The goal of the tests is to verify that the behaviors described in the model exist in the SUT

and produce the same result. To achieve that, each test will focus on one specific behavior

of an operation. Test targets are defined as the states from which a given behavior can

be activated. These test targets are computed so as to satisfy a structural coverage of the

machine operations.

Definition 2 (Test Target) Let OP = 〈(Act1,Eff1)[] . . . [](ActN ,EffN)〉 be the set of behav-

iors extracted from operation OP , in which Acti denotes the activation condition of behavior

i, Effi denotes its effect, and [] is an operator of choice between behaviors. Let Inv be the

machine invariant. A test target is defined by a predicate that characterizes the states of the

invariant from which a behavior i can be activated: Inv ∧Acti.

The use of underlying constraint solving techniques makes it possible to provide interesting

possibilities for data coverage criteria. In particular, we are able to perform a boundary



14CHAPTER 1. TEST GENERATION USING SYMBOLIC ANIMATION OF MODELS

analysis of the behaviors of the model. Concretely, we will consider boundary goals, that are

states of the model for which at least one of the state variable is at an extremum (minimum

or maximum) of its current domain.

Definition 3 (Boundary Goal) Let minimize(V, C) (resp. maximize(V, C)) be a func-

tion that instantiates a symbolic variable V to its minimal value (resp. its maximal value),

under the constraints given in C. Let Acti be the activation condition of behavior i, let ~P

be the parameters of the corresponding operation, and let ~V be the set of state variables that

occur in behavior i, the boundary goals for the variables ~V are computed by:

BGmin = minimize(f(~V ), Inv ∧ ∃~P .Acti)

BGmax = maximize(f(~V ), Inv ∧ ∃~P .Acti)

in which f is an optimization function that depends on the type of the variable:

if ~X is a set of integers, f( ~X) =
∑

x∈ ~X x

if ~X is a set of sets, f( ~X) =
∑

x∈ ~X card(x)

otherwise, f( ~X) = 1

Example 4 (Boundary test targets) Consider behavior [1,2,3,4,5,0] from operation VER-

IFY PIN presented in Figure 1.3. The machine invariant gives the following typing infor-

mations:

Inv=̂tries ∈ 0..3 ∧ pin ∈ −1..9999 ∧ auth ∈ {true, false}

The boundary test targets are computed using the minimization/maximization formulas:

BGmin = minimize(tries + pin, Inv ∧ ∃p ∈ 0..9999.(tries > 0 ∧ pin 6= −1 ∧ pin = p))

 tries = 1, pin = 0

BGmax = maximize(tries + pin, Inv ∧ ∃p ∈ 0..9999.(tries > 0 ∧ pin 6= −1 ∧ pin = p))

 tries = 3, pin = 9999

In order to improve the coverage of the operations, a predicate coverage criterion [30] can

be applied by the validation engineer. This criterion acts as a rewriting of the disjunctions

in the decisions of the B machine. Four rewritings are possible, that make it possible to
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N Rewriting of P1 ∨ P2 Coverage criterion

1 P1 ∨ P2 Decision Coverage (DC)
2 P1 [] P2 Condition/Decision Coverage (C/DC)
3 P1 ∧ ¬P2 [] ¬P1 ∧ P2 Full Predicate Coverage (FPC)
4 P1 ∧ P2 [] P1 ∧ ¬P2 [] ¬P1 ∧ P2 Multiple Condition Coverage (MCC)

Table 1.1: Decision coverage criteria depending on rewritings

satisfy different specification coverage criteria [30], as given in Table 1.1.

Rewriting 1 leaves the disjunction unmodified. Thus, the Decision Coverage criterion

will be satisfied if a test target satisfies either P1 or P2 indifferently (also satisfying the

Condition Coverage criterion (CC). Rewriting 2 produces two test targets, one considering

the satisfaction of P1, the other the satisfaction of P2. Rewriting 3 will also produce two

test targets, considering an exclusive satisfaction of P1 without P2 and vice-versa. Finally,

Rewriting 4 produces three test targets that will cover all the possibilities to satisfy the

disjunctions.

Notice that the consistency of the resulting test targets is checked so as to eliminate

inconsistent test targets.

Example 5 (Decision coverage) Consider behavior [1,2,9,0] from operation VERIFY PIN

presented in Figure 1.3. The selection of the Multiple Condition Coverage criterion will pro-

duce the following test targets:

1. Inv ∧ ∃p ∈ 0..9999 . (tries ≤ 0 ∧ pin = −1)

2. Inv ∧ ∃p ∈ 0..9999 . (tries > 0 ∧ pin = −1)

3. Inv ∧ ∃p ∈ 0..9999 . (tries ≤ 0 ∧ pin 6= −1)

providing contexts from which boundary goals will then be computed.

We now describe how these targets are reached by symbolic animation by computation

of the test preamble.
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1.3.2 Computation of the Test Cases

Once the test targets and boundary goals are defined, the idea is to employ symbolic anima-

tion in an automated manner that will aim at reaching each target. To achieve that, a state

exploration algorithm, variant of the A* path-finding algorithm and based on a Best-First

exploration of the system states, has been developed.

This algorithm aims at finding automatically a path, from the initial state, that will

reach a given set of states characterized by a predicate. The informal principle of the

algorithm is given in Figure 1.5. From a given state, the symbolic successors, through

each behavior, are computed using symbolic animation (procedure compute successors).

Each of these successors is then evaluated to compute the distance to the target. This

latter is based on a heuristics that considers the “distance” between the current state and

the targeted states (procedure compute distance). To do that, the sum of the distances

between each state variable is considered; if the domains of the two variables intersect, then

the distance for these variables is 0, otherwise a customized formula, involving the type of the

variable and the size of the domains, computes the distance (see [17] for more details). The

computation of the sequence restarts from the most relevant state, i.e., the one presenting

the smallest distance to the target (procedure pop minimal distance returning the most

interesting triplet (state,sequence,distance) and removing it from the list of visited states).

The algorithm starts with the initial state (denoted by s init and obtained by initializing

the variables according to the INITIALIZATION clause of the machine denoted by the

initialize function). It ends if a zero-distance state is reached by the current sequence, or

if all sequences have been explored for a given depth.

Since reachability of the test targets can not be decided, this algorithm is bounded in

depth. Its worst case complexity is O(nd) where n is the number of behaviors in all the

operations of the machine and d is the depth of the exploration (maximal length of test se-

quence). Nevertheless, the heuristics consisting in computing the distance between the states

explored and the targeted states to select the most relevant states improves the practical

results of the algorithm.
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SeqOp ← compute preamble(Depth, Target)
begin

s init ← initialize ;
Seq curr ← [init] ;
dist init ← compute distance(Target,s init) ;
visited ← [(s init, Seq curr, dist init)] ;
while visited 6= [] do

(s curr, Seq curr, MinDist) ← pop mininal distance(visited) ;
if length(Seq curr) < Depth then

[(s 1, Seq 1), . . . , (s N, Seq N)] ← compute successors((s curr, Seq curr)) ;
for each (s i, Seq i) ∈ [(s 1, Seq 1), . . . , (s N, Seq N)] do

dist i ← compute distance(Target,s i) ;
if dist i = 0 then

return Seq i;
else

visited ← visited ∪ (s i, Seq i, dist i) ;
end if

done
end if

done
return [];

end

Figure 1.5: State exploration algorithm

The computation of the preambule ends for three possible reasons. It may have found the

target, and thus, the path is returned as a sequence of operations/behaviors. Notice that, in

practice, this path is often the shortest from the initial state, but it is not always the case

because of the heuristics used in during the search. The algorithm may also end by stating

that the target has not been reached. This can be due to the fact that the exploration depth

was too small, but it may also be due to the unreachability of the target.

Example 6 (Reachability of the test targets) Consider the three targets given in Ex-

ample 5. The last two can easily be reached. Target 2 can be reached by setting the value

of the PIN, and Target 3 can be reached by setting the value of the PIN, followed by three

successive authentication failures.

Nevertheless, the first target will never be reached since the decrementation of the tries

can only be done if pin 6= -1. In order to avoid considering unreachable targets, the machine

invariant has to be complete enough to catch at best the reachable states of the system,

or, at least, to exclude unreachable states. In the example, completing the invariant by:
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pin = −1 ⇒ tries = 3 makes Target 1 inconsistent, and thus, removes it from the test

generation process.

The sequence returned by the algorithm represents the preamble, to which is concate-

nated the invocation of the considered behavior (representing the test body). If operation

parameters are still constrained, they are also minimized or maximized, for their instanti-

ation. The observation operations are specified by hand, and the (optional) postamble is

computed on the same principle as the preamble.

1.3.3 Leirios Test Generator for B

This technique has been industrialized by the company Smartesting2, a startup created

from the research work done at the university of Franche-Comté in 2003, in a tool-set named

Leirios3 Test Generator for B machines [21] (LTG-B for short). This tool presents features of

animation, test generation and publication of the tests. In a perspective of industrial use, the

tool brings out the possibility of requirements traceability. Requirements can be tagged in the

model by simple markers that will make it possible to relate them to the corresponding tests

that have been generated (see [9] for more details). The tool also presents test generation

reports that shows the coverage of the test targets and/or the coverage of the requirements,

as illustrated in the screenshot shown in Figure 1.6.

1.3.4 Limitations of the automated approach

Despite this automated approach has been used successfully in various industrial case studies

on embedded systems (as will be described in Section 1.5), the feedback from the field

experience has shown some limitations.

The first issue is the problem of reachability of the test targets. Even if the set of system

states is well-defined by the machine invariant, the experience shows that some test targets

2www.smartesting.com
3former name of the company Smartesting
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Figure 1.6: A screenshot of the LTG-B user interface

require an important exploration depth to be reached automatically, which may strongly

increase the test generation time. Second, the lack of observations on the SUT may weaken

the conformance relationship. As explained before, it is mandatory to dispose of a large

number of observations points on the SUT to improve the accuracy of the conformance

verdict. Nevertheless, if a limited number of observation is provided by the test bench

(e.g. in smart cards only status words can be observed) it is mandatory to be able to

check that the system has actually and correctly evolved. Finally, an important issue is the

coverage of the dynamics of the system (e.g. ensure that a given sequence of commands

can not be executed successfully if the sequence is broken). Knowing the test generation

driving possibilites of the LTG-B tool, it is possible to encode the dynamics of the system

by additional (ghost) variables on which a specific coverage criterion will be applied. This

solution is not recommanded because it requires a good knowledge of how the tool works to

be employed, which is not necessarily the case of any validation engineer. Again, if limited

observation points are provided, this task is all the more complicated. This weakness is
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amplified by the fact that the preambles are restricted to a single path from the initial state,

and do not cover possibly interesting situations that would have required different sequences

of operation to be computed (longer, involving loops, etc.).

These reasons led us to consider a complementary approach, also based on model anima-

tion, that would overcome the limitations described previously. This solution is based on

user-defined scenarios, that will capture the know-how of the validation engineer and assist

him in the design of his test campaigns.

1.4 Scenario-Based Test Generation

Scenario-Based Testing (SBT) is a concept according to which the validation engineer de-

scribes scenarios of use cases of the system, thus defining the test cases. In the context

of software testing, it consists in describing sequences of actions, more or less formal, that

exercise the functionalities of the system. We have chosen to express scenarios as regular ex-

pressions representing sequences of operations, possibly presenting intermediate states that

have to be reached.

Such an approach is related to combinatorial testing, that use combinations of operations

and parameter values, as done in the Tobias tool [25]. Nevertheless, combinatorial approaches

can be seen as input-only, meaning that they do not produce the oracle of the test, and only

provide a syntactical mean for generating tests, without checking the adequacy of the selected

combinations w.r.t. a given specification. Thus, the various combinations of operations calls

that can be produced may turn out to be not executable in practice. In order to improving

this principle, we have proposed to rely on symbolic animation of formal models of the system

in order to free the validation engineer from providing the parameters of the operations [18].

This makes it possible to only focus on the description of the successive operations, possibly

punctuated with checkpoints, as intermediate states, that guide the steps of the scenario. The

animation engine is then in charge of computing the feasibility of the sequence at unfolding-

time and to instantiate the operation parameters values. One of the advantages of our SBT

approach is that it helps the production of test cases by considering symbolic values for
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the parameters of the operations. Thus, the user may force the animation to reach specific

states, defined by predicates, that add constraints to the state variables’ values. Another

advantage is that it provides a direct requirement traceability of the tests, considering that

each scenario addresses a specific requirement.

1.4.1 Scenario Description Language

We present here the language that we use for designing the scenarios, first introduced in [23].

Its core are regular expressions that are then unfolded and played by the symbolic animation

engine. The language is structured in three layers: the sequence layer, the model layer, and

the directive layer, that are now described.

Sequence and Model Layers. The sequence layer (Fig. 1.7) is based on regular ex-

pressions that make it possible to define test scenarios as operation sequences (repeated or

alternated) that may possibly lead to specific states. The model layer (Fig. 1.8) describes

the operation calls and the state predicates at the model level and constitutes the interface

between the model and the scenario. A set of rules specifies the language.

Rule SEQ describes a sequence of operation calls as a regular expression. A step in the

sequence is either a simple operation call, denoted by OP1, or a sequence of operation calls

that leads to a state satisfying a state predicate, denoted by SEQ  (SP). This latter repre-

sents an improvement w.r.t. usual scenarios description languages, since it makes it possible

SEQ ::= OP1 | ”(” SEQ ”)”
| SEQ ”.” SEQ
| SEQ REPEAT ALL or ONE
| SEQ CHOICE SEQ
| SEQ ” (” SP ”)”

REPEAT ::= ”?” | n | n..m

Figure 1.7: Syntax of the sequence layer

OP ::= operation name
| ”$OP”
| ”$OP \ {” OPLIST ”}”

OPLIST ::= operation name
| operation name ”,” OPLIST

SP ::= state predicate

Figure 1.8: Syntax of the model layer



22CHAPTER 1. TEST GENERATION USING SYMBOLIC ANIMATION OF MODELS

CHOICE ::= ”|” OP1 ::= OP | ”[”OP”]”
| ”⊗” | ”[” OP ”/w” BHRLIST ”]”

| ”[” OP ”/e” BHRLIST ”]”
ALL or ONE ::= ” one”

| ǫ BHRLIST ::= bhr label (”,” bhr label)*

Figure 1.9: Syntax of the test generation directive layer

to define the target of an operation sequence, without necessarily having to enumerate all

the operations that compose the sequence. Scenarios can be composed of the concatenation

of two sequences, the repetition of a sequence, or the choice between two or more sequences.

In practice, we use bounded repetition operators: 0 or 1, exactly n times, at most m times,

between n and m times. Rule SP describes a state predicate, whereas OP is used to describe

the operation calls that can be (i) an operation name, (ii) the $OP keyword, meaning “any

operation”, or (iii) $OP\{OPLIST} meaning “any operation except those of OPLIST”.

Test Generation Directive Layer. This layer makes it possible to drive the step of test

generation, when the tests are unfolded. We propose three kinds of directives that aim at

reducing the search for the instantiation of a test scenario. This part of the language is given

in Fig. 1.9.

Rule CHOICE introduces two operators denoted | and ⊗, for covering the branches of a

choice. For example, if S1 and S2 are two sequences, S1 | S2 specifies that the test generator

has to produce tests that will cover S1 and other tests that will cover schema S2, whereas

S1 ⊗ S2 specifies that the test generator has to produce test cases covering either S1 or S2.

Rule ALL or ONE makes it possible to specify if all the solutions of the iteration will be

returned (ǫ – by default) or if only one will be selected ( one).

Rule OP1 indicates to the test generator that it has to cover one of the behaviors of the

OP operation (default option). The test engineer may also require all the behaviors to be

covered by surrounding the operation with brackets. Two variants make it possible to select

the behaviors that will be applied, by specifying which behaviors are authorized (/w) or

refused (/e) using labels that have to tag the operations of the model.
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Example 7 (An example of scenario) Consider again the VERIFY_PIN operation from

the previous example. A piece of scenario that expresses the invocation of this operation

until the card is blocked, whatever the number of remaining tries might be, is expressed by

(VERIFY PIN0..3 one)  (tries=0).

1.4.2 Unfolding and Instantiation of Scenarios

The scenarios are unfolded and animated on the model at the same time, in order to produce

the test cases. To do that, each scenario is translated into a Prolog file, directly interpreted

by the symbolic animation engine of BZ-Testing-Tools framework. Each solution provides

an instantiated test case. The internal backtracking mechanism of Prolog is used to iterate

on the different solutions. The instantiation mechanism involved in this part of the process

aims at computing the values of the parameters of the operations composing the test case,

so that the sequence is feasible [1, p. 290]. If a given scenario step can not be activated (e.g.

due to an unsatisfiable activation condition) the subpart of the execution tree related to the

subsequence steps of the sequence is pruned and will not be explored.

Example 8 (Unfolding and instantiation) When unfolded, scenario (VERIFY PIN0..3 one)

 (tries=0) will produce the following sequences:

(i)  (tries=0)

(ii) VERIFY PIN(P1)  (tries=0)

(iii) VERIFY PIN(P1) . VERIFY PIN(P2)  (tries=0)

(iv) VERIFY PIN(P1) . VERIFY PIN(P2) . VERIFY PIN(P3)  (tries=0)

where P1, P2, P3 are variables that will have to be instantiated afterwards. Suppose that

the current system state gives tries=2 (remaining tries) and pin=1234. Sequence (i) can

not be satisfied, (ii) does not make it possible to block the card after a single authentication

failure, sequence (iii) and (iv) are feasible, leading to a state in which the card is blocked.

According to the selected directive ( one), only one sequence will be kept (here, (iii) since it

represents the smallest number of iterations).
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The solver then instantiates parameters P1 and P2 for sequence (iii). This sequence

activates behavior [1, 2, 3, 5, 6, 8, 0] of VERIFY_PIN followed by behavior [1, 2, 3, 5, 6, 9, 0] that

blocks the card (cf. Figure 1.3). The constraints associated to the variables representing

the parameters are thus P1 6= 1234 and P2 6= 1234. A basic instantiation will then return

P1 = P2 = 0, resulting in sequence: VERIFY_PIN(0); VERIFY_PIN(0).

These principles have been implemented into a tool named jSynoPSys [18], a Scenario-

Based Testing tool working on B Machines. A screenshot of the tool is displayed in Fig. 1.10.

The tool makes it possible to design and play the scenarios. Resulting tests can be displayed

in the interface or exported to be concretized. Notice that this latter makes it possible to

reuse existing concretization layers that would have been developed for LTG-B.

Figure 1.10: The jSynoPSys Scenario-Based Testing tool
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1.5 Experimental Results

This section relates the experimental results obtained during various industrial collabora-

tion in the domain of embedded systems: smart card applets [6] or operating systems [10],

ticketing applications, automotive controllers [11], or space on-board software [15]. We first

illustrate the relevance of the automated test generation approach compared to manual test

design. Then, we show the complementary of the two test generation techniques presented

in this chapter.

1.5.1 Automated vs. Manual Testing - the GSM 11.11 Case Study

In the context of an industrial partnership with the smart card division 4 of the Schlumberger

company, a comparison has been done between a manual and an automated approach for

the generation of test cases. The selected case study was the GSM 11.11 standard [20], that

defines, on mobile phones, the interface between the Subscriber Identification Module (SIM)

and the Mobile Equipment (ME).

The part of the standard that has been modeled consisted in the structure of the SIM,

namely its organization in directories (called Dedicated Files – DF) or files (called Elementary

Files – EF), and the security aspects of the SIM, namely the access control policies applied

to the files. Files are accessible for reading, with 4 different access levels: ALWays (access

can always be performed), CHV (access depends on a Card Holder Verification performed

previously), ADM (for administration purposes) or NEVer (the file can not be directly access

through the interface). The commands modeled were: SELECT FILE (used to explore

the file system), READ BINARY (used to read in the files if permitted), VERIFY CHV

(used to authenticate the holder), UNBLOCK CHV (used to unblock the CHV when too

many unsuccessful authentication attempts with VERIFY CHV happened). In addition,

a command named STATUS makes it possible to retrieve the internal state of the card

(current EF, current DF and current values of tries counters). Notice that no command was

modeled to create/delete files or set access control permission: the file system structure and

4now Gemalto — www.gemalto.com
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permission have been modeled as constants and manually created on the test bench.

The B model was about 500 lines of code. 42 boundary goals have been computed, leading

to the automated computation of 1008 test cases. These tests have been compared to the

existing test suite, that had been hand-written by the validation team, and covering the

same subset of the GSM 11.11 standard.

This comparison showed the automated test suite included 80% of the manual tests. More

precisely, since automated test cases cover behaviors atomically, a single manual test may

usually exercise the SUT in the same way that several automated tests would do. On the

opposite, 50% of the automated tests were not absent from the manual test suite. Among

the 20% of tests that were not produced automatically, three reasons appear. Some of the

missing tests (5%) consider boundary goals that have not been generated. Other tests (35%)

consider the activation of several operations from the boundary state, that is not considered

by the automated approach. Whereas these two issues are not crucial, and do not put

the process into question, it appeared that the rest of the tests (60%) cover parts of the

informal requirements that were not expressed in the B model. To overcome this limitation,

a first attempt of scenario-based testing has been proposed, asking the validation engineer

to provide tests designed independently, with the help of the animation tool.

The study also compared the efforts for designing the test cases. As shown in Table 1.2

the automated process reduces test implementation time, but adds time for the design of

the B model. On the example, the overall effort is reduced by 30%.

Manual design Automated Process

Design of the test plan
6 m/d

Modelling in B 12 m/d
Test generation automated

Implementation and test execution 24 m/d Test execution 6 m/d
Total 30 m/d Total 18 m/d

Table 1.2: Comparison in terms of time spent on the testing phase in men/day



1.5. EXPERIMENTAL RESULTS 27

1.5.2 Completing functional tests with scenarios – the IAS Case Study

The scenario-based testing process has been designed during the French National project

POSE5 that involved the leader of smart cards manufacturers, Gemalto, and aimed at the

validation of security policies for the IAS platform.

IAS stands for Identification, Authentication and electronic Signature. It is a standard for

Smart Cards developed as a common platform for e-Administration in France, and specified

by GIXEL. IAS provides identification, authentication and signature services to the other

applications running on the card. Smart cards such as the french identity card, or the

“Sesame Vitale 2” health card are expected to conform to IAS. Being based on the GSM 11.11

interface, the models present similarities. This platform presents a file system containing

DFs and EFs. In addition, DFs host Security Data Objects (SDO) that are objects of

an application containing highly sensitive data such as PIN codes or cryptographic keys.

The access to an object by an operation in IAS is protected by security rules based on the

security attributes of the object. The access rules can possibly be expressed as a conjunction

of elementary access conditions, such as Never (which is the rule by default, stating that the

command can never access the object), Always (the command can always access the object),

or User (user authentication: the user must be authenticated by means of a PIN code). The

application of a given command to an object can then depend on the state of some others

SDOs, which complicates the access control rules.

The B model for IAS is 15500 lines long. The complete IAS commands have been modelled

as a set of 60 B operations manipulating 150 state variables. A first automated test genera-

tion campaign had been experimented, producing about 7000 tests. A close examination of

the tests concluded to the same weakness as for the GSM 11.11 case study, namely, inter-

esting security properties were not covered at best, and manual testing would be necessary

to overcome this weakness.

The idea of the experiment was to relate to the Common Criteria (C.C.) norm [14], a

standard for the security of Information Technology products that provides a set of assurances

w.r.t. the evaluation of the security implemented by the product. When a product is

5http://www.rntl-pose.info
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delivered, it can be evaluated w.r.t. the C.C. that ensure the conformance of the product

w.r.t. security guidelines related to the software design, verification and validation of the

standard. In order to pass the current threshold of acceptance, the C.C. require the use of a

formal model and evidences of the validation of the given security properties of the system.

Nevertheless, tracing the properties in the model in order to identify dedicated tests was not

possible, since some of the properties were not directly expressed in the original B model.

For the experimentation, we started by designing a simplified model, focusing on the

access control features, and called Security Policy Model (SPM). This model is 1100 lines

long with 12 operations manipulating 20 state variables, and represents the files management

with authentications on their associated SDOs.

In order to complete the tests generated automatically from the complete model, three

scenarios have been designed for exercising specific security properties that could not be

covered previously. The scenarios and their associated tests provide direct evidences of the

validation of given properties. Each scenario is associated to a test needs that informally

expresses the intention of the scenario w.r.t. the property, and provides documentation on

the test campaign.

• The first scenario exercises a security property stating that the access to an object

protected by a PIN code requires to gain an authentication over the PIN code. The

tests produced automatically exercise this property in a case where the authentication is

gained, and in a case where it is not. The scenario completes these tests by considering

the case in which the authentication has first been obtained, but lost afterwards. The

unfolding of this scenario provided 35 instantiated sequences, illustrating the possible

ways of losing an authentication.

• The second scenario exercises the case of homonym PIN files located in differents DFs,

and their involvment in the access control conditions. In particular, it aimed at ensuring

that an authenticated PIN in a specific DF is not mistakenly considered in an access

control condition that involves another PIN displaying the same name but located in

another DF. The unfolding of this scenario resulted in 66 tests.

• The third and last scenario exercises a property specifying that the authentication
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gained over a PIN not only depends on the location of the PIN, but also on the life

cycle state of the DF where a command protected by the PIN is applied. This scenario

aimed at testing situations where the life cycle state of the directory is not always

activated (which was not covered by the first campaign). The unfolding of this scenario

produced 82 tests.

In the end, the three scenarios produced 183 tests that were run on the SUT. Even if

this approach did not reveal any errors, the execution of these tests help increasing the

confidence in the system w.r.t. the considered security properties. In addition, the scenarios

could provide direct evidence of the validation of these properties, which were useful for the

Common Criteria evaluation of the IAS.

Notice that, when replaying the scenarios on the complete IAS model, the scenario-based

testing approach detected a non-conformance between the SPM and the complete model,

due to a different interpretation of the informal requirements in the two models.

1.5.3 Complementarity of the Two Approaches

These two case studies illustrate the complementarity of the approaches. The automated

boundary test generation approach is efficient at replacing most of the manual design of

the functional tests, saving efforts in the design of the test campaigns. Nevertheless, it is

mandatory to complete the test suite at least to exercise properties related to the dynamics

of the system to be tested. To this end, the scenario-based testing approach provides an

interesting way to assist the validation engineer in the design of complementary tests. In

both cases, the use of symbolic techniques ensure the scalability of the approach.

1.6 Related Work

This section is divided in two. The first subsection is dedicated to automated test genera-

tion using model coverage criteria. The second compares with other scenario based testing
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approaches.

1.6.1 Model-Based Testing Approaches using Coverage Criteria

Many model-based testing approaches rely on the use of a Labeled Transition System or a

Finite State Machine from which the tests are generated using dedicated graph exploration

algorithms [26]. Tools like TorX [37] or TGV [22] use a formal representation of the system

written as Input-Output Labeled Transition Systems (IOLTS), on which test purposes are

applied to select the relevant test cases to be produced. In addition, TorX proposes the use of

test heuristics that help filtering the resulting tests according to various criteria (test length,

cycle coverage, etc.). The conformance is established using the ioco [38] relationship. The

major differences with our automated approach is that, first, we do not know the topology of

the system. Second, these processes are based on the online (or on-the-fly) testing paradigm

in which the model program and the implementation are considered altogether. On the

contrary, our approach is assimilated to offline testing, that requires a concretization step

for the tests to be run on the SUT and the conformance to be established.

The STG tool [16] improves the TGV approach by considering Input-Output Symbolic

Transitions Systems, on which deductive reasoning applies, involving constraint solvers or

theorem provers. Nevertheless, the kind of data manipulated are often restricted to integers

and booleans, whereas our approach manipulates additional data types, assimilated to col-

lections (sets, relation, functions, etc.) that may be useful for the modeling step. Similarly,

AGATHA [7] is a test generation tool based on constraint solving techniques that works

by building a symbolic execution graph of systems modelled by communicating automata.

Tests are then generated using dedicated algorithms in charge of covering all the transitions

of the symbolic execution graph.

The CASTING [40] testing method is also based on the use of operations written in DNF

for extracting the test cases [19]. In addition, CASTING considers decomposition rules that

have to be selected by the validation engineer so as to refine the test targets. CASTING

has been declined for B machines. Test targets are computed as constraints applying on
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the before and after states of the system. These contraints define states that have to be

reached by the test generation process. To achieve that, the concrete state graph is built

and explored. Our approach improves this technique by considering symbolic techniques,

that make it possible to perform a boundary analysis for the test data, potentially improving

the test targets. Moreover, the on-the-fly exploration of the states graph avoids the complete

enumeration of all the states of the model.

Also based on B specifications, ProTest [33] is an automated test generator coupled with

the ProB model-checker [28]. ProTest works by first, building the concrete system state graph

by model animation, that is then explored for covering states and transitions, using classical

algorithms. One point in favor of ProTest/ProB is that it covers a large subset of the B

notation as our approach, notably dealing with sequences. Nevertheless, the major drawback

is the exhaustive exploration of all the concrete states, that complicates the industrial use

of the tool on large models. In particular, the IAS model used in the experiment reported

in Section 1.5.2 can not be handled by the tool.

1.6.2 Scenario Based Testing approaches

In the litterature, a lot of scenario based testing works focus on extracting scenarios from

UML diagrams, such as the SCENTOR approach [41] or SCENT [32] using statecharts.

The SOOFT approach [39] proposes an object oriented framework for performing scenario-

based testing. In [8], Binder proposes the notion of round-trip scenario test that cover all

event-response path of an UML sequence diagram. Nevertheless, the scenarios have to be

completely described, contrary to our approach that abstracts the difficult task of finding

well-suited parameter values.

In [4], the authors propose an approach for the automated scenario generation from

environment models for testing of real-time reactive systems. The behavior of the system is

defined as a set of events. The process relies on an attributed event grammar (AEG) that

specifies possible event traces. Even if the targeted applications are different, the AEG can

be seen as a generalization of regular expressions that we consider.
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Indirectly, the test purposes of the STG [16] tool, described as IOSTS (Input/Output

Symbolic Transition Systems) can be seen as scenarios. Indeed, the test purposes are com-

bined with an IOSTS of the system under test, by an automata product, that restricts the

possible executions of the system to those illustrating the test purpose. Such an approach

has also been adapted to the B machines, in [24].

A similar approach is the test by model-checking, where test purposes can be expressed

in the shape of temporal logic properties, as is the case in [3] or [35]. The model checker

computes witness traces of the properties by a synchronized product of the automata of the

property and of a state/transition model of the sytem under test. These traces are then

used as test cases. A input/output temporal logic has also been described in [31] to express

temporal properties w.r.t. IOSTS. The authors use an extension of the AGATHA tool to

process such properties.

As explained in the article, we were inspired by the TOBIAS tool [25] that works with

scenarios expressed using regular expressions representing the combinations of operations and

parameters. Our approach improves this principle by avoiding to enumerate the combinations

of input parameters. In addition, our tool provides test driving possibilities that may be used

to easily master the combinatorial explosion, inherent to such an approach. Nevertheless,

the TOBIAS input language is more expressive than ours and a combination of these two

approaches, that would employ the TOBIAS tool for describing the test cases, is currently

under study. Notice that an experiment has been done in [29] for coupling TOBIAS with

UCASTING, the UML version of the CASTING tool [40]. This work made it possible to use

UCASTING for (i) filtering the large tests sequences combinatorially produced by TOBIAS,

by removing traces that were not feasible on the model, or (ii) to instantiate operation

parameters. Even if the outcome is similar, our approach differs since the inconsistency of

the test cases is detected without having to completely unfold the test sequences. Moreover,

the coupling of these tools did not include as much test driving options as we propose.

The technique for specifying scenarios can be related to Microsoft Parameterized Unit

Tests (PUT for short) [36], in which the user writes skeletons of test cases involving param-

eterized data, that will be instantiated automatically using constraint solving techniques.
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Moreover, the test cases may contain basic structures such as conditions and iterations, that

will be unfolded during the process, so as to produce test cases. Our approach is very similar

in its essence, but some differences exist. First, our scenarios do not contain data parame-

ters. Second, we express them on the model, whereas the PUT approach aims at producing

test cases that will be directly executed on the code, leaving the question of the oracle not

addressed. Nevertheless, the question of refining the scenario description language so as to

propagate some symbolic parameterized data along the scenario is under study.

1.7 Conclusion and Open Issues

This chapter has presented two test generation techniques using the symbolic animation of

formal models, written in B, used for automating test design for in the context of embedded

systems such as smart cards. The first technique relies on the computation of boundary

goals that define tests targets. These are then automatically reached by a customized state

exploration algorithm. This technique has been commercialized by the Smartesting com-

pany, and applied on various case studies in the domain of embedded systems, in particular

in the domain of electronic transactions. The second technique uses user-defined scenarios,

expressed as regular expressions on the operations of the model and intermediate states,

that are unfolded and animated on the model so as to filter the inconsistent test cases.

This technique has been designed and experimented during an industrial partnership. This

scenario based testing approach has shown to be very convenient, firstly with the use of

a dedicated scenario description language that is easy to put into practice. Moreover, the

connection between the tests, the scenarios and the properties from which they originate can

be directly established, providing a mean for ensuring the traceability of the tests, which is

useful in the context of high-level evaluation of Common Criteria, that requires evidences of

the validation of specific properties of the considered software.

The work presented here has been applied to B models, but it is not restricted to this

formalism, and the adaptation to UML, in partnership with Smartesting, is currently being
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studied.

Even if the scenario based testing technique overcomes the limitations of the automated

approach, in terms of relevance of the preambles, reachability of the test targets, and obser-

vations, the design of the scenario is still a manual step that requires the validation engineer

to intervene. One interesting lead would be to automate the generation of the scenarios,

in particular using high-level formal properties that they would exercise. Another approach

is to use model abstraction for generating the tests cases, based on dynamic test selection

criteria, expressed by the scenarios.

Finally, we have noticed that the data coverage for the operation parameters is relatively

limited. We are thus investingating to complete the scenario description language by re-

introducing the operation parameters and giving the possibility to define symbolic values

inside the scenario, that would propagated throughout the whole test case, unlike in the

Parametrized Unit Tests [36].
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[16] Duncan Clarke, Thierry Jéron, Vlad Rusu, and Elena Zinovieva. Stg: a tool for generat-

ing symbolic test programs and oracles from operational specifications. In ESEC/FSE-9:

Proceedings of the 8th European software engineering conference held jointly with 9th

ACM SIGSOFT international symposium on Foundations of software engineering, pages

301–302, New York, NY, USA, 2001. ACM.

[17] S. Colin, B. Legeard, and F. Peureux. Preamble Computation in Automated Test Case

Generation using Constraint Logic Programming. The Journal of Software Testing,

Verification and Reliability, 14(3):213–235, 2004.

[18] F. Dadeau and R. Tissot. jSynoPSys – a scenario-based testing tool based on the

symbolic animation of B machines. In MBT’09, 5rd Int. Workshop on Model-Based

Testing, co-located with ETAPS’2009), York, United Kingdom, March 2009. To appear

in ENTCS.

[19] J. Dick and A. Faivre. Automating the generation and sequencing of test cases from

model-based specifications. In J. Woodcock and P. Gorm Larsen, editors, FME ’93:

First International Symposium of Formal Methods Europe, volume 670 of LNCS, pages

268–284, Odense, Denmark, April 1993. Springer.

[20] European Telecommunications Standards Institute, F-06921 Sophia Antipolis cedex -

France. GSM 11-11 V7.2.0 Technical Specifications, 1999.

[21] E. Jaffuel and B. Legeard. LEIRIOS Test Generator: Automated test generation from

B models. In B’2007, the 7th Int. B Conference - Industrial Tool Session, volume 4355

of LNCS, pages 277–280, Besancon, France, January 2007. Springer.

[22] C. Jard and T. Jron. Tgv: theory, principles and algorithms, a tool for the automatic

synthesis of conformance test cases for non-deterministic reactive systems. Software

Tools for Technology Transfer (STTT), 6, October 2004.

[23] J. Julliand, P.-A. Masson, and R. Tissot. Generating security tests in addition to

functional tests. In AST’08, 3rd Int. workshop on Automation of Software Test, pages

41–44, Leipzig, Germany, May 2008. ACM Press.

[24] J. Julliand, P.-A. Masson, and R. Tissot. Generating tests from B specifications and

test purposes. In ABZ’2008, Int. Conf. on ASM, B and Z, volume 5238 of LNCS, pages



1.7. CONCLUSION AND OPEN ISSUES 37

139–152, London, UK, September 2008. Springer.

[25] Y. Ledru, L. du Bousquet, O. Maury, and P. Bontron. Filtering TOBIAS Combinatorial

Test Suites. In M. Wermelinger and T. Margaria, editors, Fundamental Approaches to

Software Engineering, 7th Int. Conf., FASE 2004, volume 2984 of LNCS, pages 281–294,

Barcelona, Spain, 2004. Springer.

[26] D. Lee and M. Yannakakis. Principles and methods of testing finite state machines - a

survey. In Proceedings of the IEEE, pages 1090–1123, 1996.

[27] B. Legeard, F. Peureux, and M. Utting. Automated boundary testing from Z and B.

In Proc. of the Int. Conf. on Formal Methods Europe, FME’02, volume 2391 of LNCS,

pages 21–40, Copenhaguen, Denmark, July 2002. Springer.

[28] M. Leuschel and M. Butler. ProB: A model checker for B. In K. Araki, S. Gnesi,

and D. Mandrioli, editors, FME 2003: Formal Methods, volume 2805 of LNCS, pages

855–874. Springer, 2003.

[29] O. Maury, Y. Ledru, and L. du Bousquet. Intgration de TOBIAS et UCASTING pour

la gnration de tests. In 16th International Conference Software and Systems and their

applications-ICSSEA, Paris, 2003.

[30] A.J. Offutt, Y. Xiong, and S. Liu. Criteria for generating specification-based tests.

In Proceedings of the 5th IEEE International Conference on Engineering of Complex

Computer Systems (ICECCS’99), pages 119–131, Las Vegas, USA, October 1999. IEEE

Computer Society Press.

[31] N. Rapin. Symbolic execution based model checking of open systems with unbounded

variables. In TAP’09, Tests and Proofs, pages 137–152, 2009.

[32] J. Ryser and M. Glinz. A practical approach to validating and testing software systems

using scenarios, 1999.

[33] M. Satpathy, M. Leuschel, and M. Butler. ProTest: An Automatic Test Environment

for B Specifications. Electronic Notes in Theroretical Computer Science, 111:113–136,

January 2005.

[34] Swedish Institute of Computer Sciences. SICStus Prolog 3.11.2 manual documents, June

2004. http://www.sics.se/sicstus.html.

[35] L. Tan, O. Sokolsky, and I. Lee. Specification-based testing with linear temporal logic.

In IRI’2004, IEEE Int. Conf. on Information Reuse and Integration, pages 413–498,



38CHAPTER 1. TEST GENERATION USING SYMBOLIC ANIMATION OF MODELS

November 2004.

[36] N. Tillmann and W. Schulte. Parameterized unit tests. SIGSOFT Softw. Eng. Notes,

30(5):253–262, 2005.

[37] G. J. Tretmans and H. Brinksma. Torx: Automated model-based testing. In A. Hartman

and K. Dussa-Ziegler, editors, First European Conference on Model-Driven Software

Engineering, Nuremberg, Germany, pages 31–43, December 2003.

[38] Jan Tretmans. Conformance testing with labelled transition systems: Implementation

relations and test generation. Computer Networks and ISDN Systems, 29(1):49–79,

1996.

[39] W. T. Tsai, A. Saimi, L. Yu, and R. Paul. Scenario-based object-oriented testing

framework. qsic, 00:410, 2003.

[40] L. van Aertryck, M. Benveniste, and D. Le Mtayer. Casting: A formally based software

test generation method. Formal Engineering Methods, International Conference on,

0:101, 1997.

[41] J. Wittevrongel and F. Maurer. Scentor: Scenario-based testing of e-business appli-

cations. In WETICE ’01: Proceedings of the 10th IEEE International Workshops on

Enabling Technologies, pages 41–48, Washington, DC, USA, 2001. IEEE Computer So-

ciety.


