
Abstract

Simulating the mechanical behaviour of heterogeneous structures often requires build-
ing an equivalent homogeneous finite element model in order to reduce the number of
degrees of freedom. Indeed, modelling complex structures, analysing their dynamic
behaviours and updating the models with experimental data all need approximating
global properties with equivalent homogeneous materials. This is a reason why so-
called “homogenization” techniques have been developed, to recreate a given struc-
ture’s behaviour by reducing the multiplicity of its components’ properties and by
enabling the control of the entire model’s properties. Such methods are much desired
for modelling composite materials and complex structures such as laminated stators of
electric machines. While very accurate analytical results have been found in the field
of 2D-dynamics of composite structures, relatively few mature methods yet exist for
the identification of equivalent materials, independent from the structure’s dimensions
and applicable to finite element modelling. For 3D-homogenization and in particular
for heterogeneous structures in which no simplifying assumptions can be made, there
remains much to develop.

In this paper, a novel method of equivalent material identification is proposed for
orthotropic and multi-layered laminated structures. It gathers a set of simple static
simulations on finite element models (i.e. virtual testing), inspired from experimental
testing processes, in order to identify the equivalent material’s nine elastic coefficients
directly: Young’s moduli, shear moduli and Poisson’s coefficients. Unlike the other
homogenization techniques, the method may be applied to superelements in addition
to fully-defined finite element models. The method is applied to the models of two
stators of electric cars. As it is usually the case, a stator consists of a stack of sev-
eral hundreds of steel sheets, less than a half-millimetre-thick and separated from
each other by an insulating resin in order to prevent eddy currents from taking place.
Taking into account the additional heterogeneity due to the weld beads in the stator’s
lateral face, the model is divided into several zones, each of which stands for a specific
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equivalent material. The simulations performed in low frequencies enable predicting
both real stators’ dynamic behaviours with good precision, according to experimental
data. In particular, the cylinder modes, most critical for industrial studies due to their
high probability of coincidence with electromagnetic excitations, are well predicted.
These results offer interesting perspectives in the prediction of the dynamic behaviours
of stators of electric machines during design stages, without need of time-consuming
and delicate model updating procedures with experimental data from expensive pro-
totypes.

Keywords: homogenization, laminated structures, equivalent homogeneous mate-
rial, stator of electric machine, superelements

1 Introduction

Modelling a complex structure’s individual components may become difficult if they
are numerous, small, or if some of the assembly properties are not known. This is
why so-called “homogenization” methods have been developed, to reduce the number
of degrees of freedom in a given heterogeneous structure. Such methods are often
used for modelling composite materials, and especially for laminated structures. A
short review of some existing homogenization techniques is given, as well as brief
discussions over their uses.

Concerning stratified materials, the assumption of plane stresses and strains tends
to simplify many applications (for instance with laminated beams or shells), for which
the theory predicts static and dynamic behaviours with good accuracy (cf. [1, 2]).
Some other analyses however can not be simplified by such assumptions (for example
if no dimension can be neglected in the model), and have to be meshed in 3D.

First of all, the relations that may be the simplest for determining a homogeneous
equivalent material to a 3D-laminated structure, and that are used in the reference
works in the field of composite materials, such as [2] and [3], are weighted averages
of the different components’ elastic constants, sometimes referred to as the “rule of
mixtures”. The expressions are based on the direct identification of an equivalent
material’s elastic constants, have relatively low resource demands, and already give a
good approximation of the structure’s global behaviour. However, their applicability
is limited to stacks of isotropic layers. The analytical method developed by Begis
et al. [4] aims at determining any structure’s equivalent elasticity matrix from its
components’ elasticity matrices, that may even describe a triclinic behaviour, the most
general material definition without any symmetries or simplifications. The general
relation used to describe a material’s stress-strain behaviour is Hooke’s law {σ} =
C {ε}, where {σ} is the stress tensor, C the elasticity matrix and {ε} the strain tensor
[5]. The entire linear system is defined as following:
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where the indices 1, 2 and 3 respectively refer to the directions x, y and z.

Tackling the same issues, this method was compared in [6] to the works [7] and
[8], and has been declared more accurate by the authors. Amongst others, the articles
of Lukkassen et al. [9], Chung et al. [10], Hassan et al. [11] and Kalamkarov et al.
[12] were based on the same general expressions and have proposed similar analytic
approaches, but remain difficult to establish by lack of detailed applications.

At the opposite from analytical and numerical methods, many studies have been
focused on the experimental determination of a given structure’s elastic behaviour.
Amongst others, several ways to calculate a structure’s entire elasticity matrix (that
may even be triclinic) were detailed by Hearmon [13] and Hayes [14], needing how-
ever several types of samples, and very difficult to apply to finite element models. Yet
because of this same difficulty, the uses of other methods such as those developed in
the articles of Pierron et al. [15], Rikards et al. [16, 17, 18] and Araújo et al. [19]
were also compromised.

The following sections will present the development of a new method for the iden-
tification of elastic properties applied to multi-layered orthotropic laminates. In ad-
dition to this, application examples on heterogeneous FE models and the comparison
with experimental results for the stator of an electric motor will be shown.

2 Identification method for multi-layered orthotropic
laminates

In this section, a new approach for determining a heterogeneous structure’s elastic
properties is proposed. The equivalent material defined is orthotropic and is charac-
terised by nine elastic coefficients: Ex, Ey, Ez, Gzy, Gzx, Gxy, νyz, νxz and νxy. The
method has been initially inspired from experimental analyses described in [2]. The
structure taken as an example in this section is a set of 3 isotropic thick layers stacked
along the z-axis, for what the theory predicts to have a global transversely isotropic
behaviour [5]. The cuboid’s dimensions are Lx, Ly and Lz, and its faces’ respective
areas Ax (faces x = 0 and x = 1), Ay (faces y = 0 and y = 1) and Az (faces z = 0
and z = 1).

The first simulation is a pure tension along the x-axis and is shown in Figure 1:
static displacements are enforced along +x and −x to the nodes of the respective
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faces x = 1 and x = 0, with constraints of plane contact applied to the faces y = 0
and z = 0.
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Figure 1: Pure tension along x

Computing the stress along direction x therefore leads to the Young’s modulus Ex.
For the other two Young’s moduli, similar simulations can be applied in the directions
y and z. The three Poisson’s coefficients νij can be computed with the displacements
on the faces y = 1 and z = 1, with the aid of the general relation [20]:

νij =
−εjj
εii

. (2)

Finally, the equivalent material’s shear moduli are computed by simulations of
shear. Yet in the cases of anisotropic materials, and particularly for laminated compos-
ites, some attention must be paid for defining shear. Although the moduli are often de-
fined without respect for either sliding or transverse shear configurations ([6, 20, 2, 1]),
it may be observed in practice that the two behaviours are not equivalent in general.
This is why in this paper, the analysis separates sliding shear (illustrated on Figure 2a)
from transverse shear (illustrated on Figure 2b) in the respective “O1” and “O2” meth-
ods, which are yet completely equivalent for the determination of Young’s moduli and
Poisson’s coefficients.

Sliding shear scheme z − y, which therefore corresponds to the “O1” method (see
Figure 2a), combines an enforced displacement δy along −y on face z = 0, the same
displacement δy along +y on face z = 1, and constraints of plane contact on the same
faces z = 0 and z = 1 in order to generate pure shear. To stabilise the system, the
degree of freedom Tx of node 1 is fixed. Computing the stress σzy yields the shear
modulus Gzy. Finally, the two other shear moduli are then computed in a similar way,
and the nine coefficients identified therefore define an equivalent orthotropic material
entirely.
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(a) Pure sliding shear z − y (O1)
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(b) Pure transverse shear y − z (O2)

Figure 2: Pure shear schemes

3 Experimental-numerical application on stators of elec-
tric machines

3.1 Identification of equivalent materials

Numerical and experimental projects involving laminated materials are numerous.
During the last decade, electrical powertrains for hybrid and 100%-electric vehicles
have come under the spotlight in the automotive industry [21]. More precisely, mod-
elling the stator of an electric motor, generally consisting of a laminated steel stack,
presents new challenges for predicting its mechanical behaviour. From a macroscopic
view, the stack may consist in several hundreds of steel sheets whose thicknesses are
about some tenths of millimetres. In this section, two different examples of finite
element models of stators of electric motors are considered. The first model (called
“M1”) is shown on Figure 3, is made of 19,158 elements and 24,768 nodes for 12
teeth. The sheets are stacked along the z-axis, and different zones are detailed, each
corresponding to a specific behaviour and therefore a specific material.

The first zone to be analysed is “prox”, gathering the elements which are closest
to the weld beads. In this zone, the proximity to the weld beads ensures the stator’s
tightest cohesion between the steel sheets, and imply therefore the best regularity in
the successive varnish layers’ thicknesses. This means that the cell <half-thick steel
sheet; varnish sheet; half-thick steel sheet> is repeated regularly through the stator’s
length (dimension along z), with the same thicknesses everywhere. The industrial
stator corresponding to the model on Figure 3, has been analysed experimentally. A
modal basis has been measured on this structure, and stands for a reference in this sec-
tion. The stator is composed of isotropic steel sheets of thickness 360 µm, separated
by 3-µm-thick isotropic epoxy layers. The cell corresponding to the zone “prox” is
thus a 3-layered cuboid with a square base of length 400 µm, and is detailed in Fig-
ure 4. In the FE model, the same density ρ is applied to all the zones, and directly
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Figure 3: Zoning of the finite element model - stator “M1”

taken from the measurements on the stator:

ρ =
mtot

V tot
= 7750 kg ·m−3 ,

where mtot and V tot respectively refer to the stator’s total mass and volume.
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Figure 4: Base cell

Applying the method “O1” to the base cell of zone “prox” yields an equivalent
material defined by the following elastic constants:

Eprox
x = Eprox

y = 205 GPa , Eprox
z = 157 GPa ,

Gprox
zy = Gprox

zx = 51.2 GPa , Gprox
xy = 82.1 GPa

and
νproxyz = νproxxz = νproxxy = 0.25 .
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Concerning the other zones, the factors 3/4 and 1/2 have been applied to the shear
moduli of the respective zones “yoke” and “teeth”, according to the distance to the
weld beads. The other coefficients remain unchanged. Finally, the different material
properties are detailed in Table 1. A picture of the experimental setting is shown on
Figure 5.
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Ex [GPa] 205 205 205
207Ey [GPa] 205 205 205

Ez [GPa] 157 157 157
Gzy [GPa] 51.2 38.4 25.6

-Gzx [GPa] 51.2 38.4 25.6
Gxy [GPa] 82.1 61.6 41.1
νyz [−] 0.25 0.25 0.25

0.288νxz [−] 0.25 0.25 0.25
νxy [−] 0.25 0.25 0.25

ρ [kg ·m−3] 7750 7750 7750 7750

Table 1: Comparison of elastic coefficients - stator “M1”

3.2 Modal correlation

A convenient way of evaluating the similarities in the modal behaviours of two struc-
tures, a process of correlation can be computed. This aims at comparing the natural
frequencies and the deformed shapes of the models by computing the matrices [∆f ]
and [MAC]. Each component ∆f (me,i,ma,j) of the matrix [∆f ] expresses the rel-
ative difference between the natural frequency of the first structure’s i-th mode m1,i

and the second structure’s j-th mode m2,j , and is defined by the relation:

∆f (m1,i,m2,j) =
f1,i − f2,j

f1,i
, (3)

where f1,i et f2,j are the natural frequencies respectively corresponding to the modes
m1,i and m2,j . The second matrix, [MAC], expresses the similarities between the
deformed shapes of the modes m1,i and m2,j (respectively called {φ1,i} and {φ2,j}),
according to the so-called MAC criterion (Modal Assurance Criterion). Its compo-
nents MAC (m1,i,m2,j) are defined by the expression [22]:

MAC (m1,i,m2,j) =
|{φ1,i}ᵀ {φ2,j}|2

{φ1,i}ᵀ {φ1,i} {φ2,j}ᵀ {φ2,j}
. (4)
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Figure 5: Experimental setting - stator “M1”

With these notions, two models perfectly correlated are defined by a matrix [∆f ]
in which every diagonal component is at 0%, and a matrix [MAC] in which every
diagonal is at 100%, and the others at 0%. Finally, the pairs of modes for which MAC
values are highest are assembled, and are taken into account for the correlation if the
MAC values are above a fixed threshold.

3.3 Results

With the aid of the notions introduced in the previous paragraph, the correlation be-
tween the modal basis calculated from stator M1’s finite element model and the corre-
sponding experimental data is computed. In addition to this, a correlation between
simulation and measurements has been established for another stator: model M2,
48 teeth, 122,880 elements and 149,184 nodes. Considering similar production pro-
cesses, identical materials have been used and applied in the same way for building
model M2, with a similar zoning as for model M1. The results are described in Fig-
ure 6 and Table 2, where the columns “FEA” and “EMA” respectively refer to the
mode frequencies in the FE model and in the experimental modal basis. The averages
|∆f | and MAC have been computed in the bottom lines of Table 2. For both cases,
only mode pairs for which MAC values were over 60% were taken into account.

Judging from these results, it can be observed that the materials computed with the
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cylinder mode 2     799 Hz cylinder mode 3     2126 Hz  

   
   
   

   
cylinder mode 4     3748 Hz  cylinder mode 5     5330 Hz cylinder mode 0     6287 Hz

“breathing mode”

Figure 6: Correlation of FE and experimental modal bases - mode shape pairs (exper-
imental frequencies for stator “M1”) - blue lines: simulation, red dots: measurement

method “O1” are in good accordance with the measured natural frequencies, and are
able to simulate the stators’ first cylinder modes, which are most critical for acoustic
considerations [23]. Model M1’s deformed shapes correspond to the experimental
ones fairly well, and the fact that model M2’s MAC values are lower than M1’s can
be explained by poorer quality in the corresponding experimental data, although the
cylinder modes were easily spotted amongst all deformed shapes. Also, no model
updating procedures on models M1 and M2 were able to increase their respective
MAC values.

The results of Table 2 are compared with the case “NZ” (no zoning: the same
“prox” material applied to the whole structure), as shown in Table 3.

It can be seen that the equivalent materials generated by method “O1” enable sim-
ulating the dynamic behaviours of entire structures accurately. In the cases of the real
stators, the necessity of zoning the models and adapting the shear coefficients accord-
ing to the elements’ distances to the weld beads is shown as well. In comparison to
the delicate measurements and time-consuming model-updating processes which are
nowadays essential for simulating the dynamic behaviour of an electric machine’s sta-
tor [21], using this simple and accurate way of computing equivalent materials for a
representative equivalent FE model presents a new opportunity in the prediction and
the design of such structures.
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M1 - 1 827.43 798.67 3.60 64.4 cylinder mode, order 2
M1 - 2 2148.9 2125.5 1.10 62 cylinder mode, order 3
M1 - 3 3814.5 3747.7 1.78 90.2 cylinder mode, order 4
M1 - 4 5397.2 5330.1 1.26 83.8 cylinder mode, order 5
M1 - 5 6199.6 6286.5 -1.38 77 cylinder mode, order 0

M1: Averages |∆f | and MAC 1.82 75.4

M2 - 1 1085.7 1060.1 2.41 69.7 cylinder mode, order 2
M2 - 2 2796.0 2782.6 0.48 45.4 cylinder mode, order 3
M2 - 3 4720.6 4713.5 0.15 21.4 cylinder mode, order 4
M2 - 4 5708.3 6050.5 -5.66 26.5 cylinder mode, order 0

M2: Averages |∆f | and MAC 2.17 40.8

Table 2: Correlations of FE and experimental modal basis - stators “M1” and “M2”

4 Conclusion

In this paper, a novel method for identifying equivalent materials to laminated or-
thotropic structures was proposed. Used in two experimental-numerical applications
on stators of real electric motors, the method was proven able to simulate the first
cylinder modes, which are of particular acoustic interest. In addition to this, the new
methods can be applied to superelements too, unlike other existing homogenization
techniques. Eventually, it is hoped that such methods will help improving the current
knowledge about the behaviour of laminated structures, and in particular of stators
of electric machines. Substituting time-consuming model updating procedures by a
simple, direct method could even replace the manufacture of costly prototypes and the
associated measurements.
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