
Verifying Modal Workflow Specifications
using Constraint Solving

Hadrien Bride1,2, Olga Kouchnarenko1,2, and Fabien Peureux1

1 Institut FEMTO-ST – UMR CNRS 6174, University of Franche-Comté
16, route de Gray, 25030 Besançon, France
{hbride,okouchna,fpeureux}@femto-st.fr
2 Inria Nancy Grand Est – CASSIS Project

Campus Scientifique, BP 239, 54506 Vandœuvre-lès-Nancy cedex
{hadrien.bride,olga.kouchnarenko}@inria.fr

Abstract. Nowadays workflows are extensively used by companies to
improve organizational efficiency and productivity. This paper focuses on
the verification of modal workflow specifications using constraint solving
as a computational tool. Its main contribution consists in developing
an innovative formal framework based on constraint systems to model
executions of workflow Petri nets and their structural properties, as well
as to verify their modal specifications. Finally, an implementation and
promising experimental results constitute a practical contribution.

Keywords: Modal specifications, Workflow Petri nets, Verification of Business
Processes, Constraint Logic Programming.

1 Introduction

Nowadays workflows are extensively used by companies in order to improve
organizational efficiency and productivity by managing the tasks and steps of
business processes. Intuitively, a workflow system describes the set of possible
runs of a particular system/process. Among modelling languages for workflow
systems [1, 2], workflow Petri nets (WF-nets for short) are well suited for mod-
elling and analysing discrete event systems exhibiting behaviours such as concur-
rency, conflict, and causal dependency between events as shown in [3, 4]. They
represent finite or infinite-state processes in a readable graphical and/or a for-
mal manner, and several important verification problems, like reachability or
soundness, are known to be decidable. With the increasing use of workflows for
modelling crucial business processes, the verification of specifications, i.e. of de-
sired properties of WF-nets, becomes mandatory. To accompany engineers in
their specification and validation activities, modal specifications [5] have been
designed to allow, e.g., loose specifications with restrictions on transitions. Those
specifications are notably used within refinement approaches for software devel-
opment. Modal specifications impose restrictions on the possible refinements by
indicating whether activities (transitions in the case of WF-nets) are necessary
or admissible. Modalities provide a flexible tool for workflow development as de-
cisions can be delayed to later steps (refinements) of the development life cycle.

This paper focuses on the verification of modal WF-net specifications us-
ing constraint solving as a computational tool. More precisely, given a modal
WF-net, a constraint system modelling its correct executions is built and then
computed to verify modal properties of interest over this workflow specification.
After introducing a motivating example in Sect. 2 and defining preliminaries on
WF-nets with their modal specifications in Sect. 3, the paper describes its main
contribution in Sect. 4. It consists in developing a formal framework based on
constraint systems to model executions of WF-nets and their structural proper-
ties, as well as to verify their modal specifications. An implementation supporting
the proposed approach and promising experimental results constitute a practical
contribution in Sect. 5. Finally, a discussion on related work is provided before
concluding.

2 Motivating Example

Our approach for verifying modal specifications is motivated by the increasing
criticity of business processes, which define the core of many industrial compa-
nies and require therefore to be carefully designed. In this context, we choose
a real-life example of an industrial business workflow, which is directly driven
by the need to verify some behavioural properties possibly at the early stage of
development life cycle, before going to implementation. This example concerns
a proprietary issue tracking system used to manage bugs and issues requested
by the customers of a tool provider company3. Basically, this system enables the
provider to create, update and drop tickets reporting on customer’s issues, and
thus provides knowledge base containing problem definition, improvements and
solutions to common problems, request status, and other relevant data needed
to efficiently manage all the company projects. It must also be compliant with
respect to several rules ensuring that business processes are suitable as well as
streamlined, and implement best practices to increase management effectiveness.

Figure 1 depicts an excerpt of the corresponding business process—specified
from textual requirements by a business analyst team of the company—modelled
using a Petri net workflow (WF-net). The main process, in the top left model, is
defined by two possible distinct scenarii (SubA and SubB), which are described
by two other workflows. In the figure, big rectangles (as for SubA and SubB) de-
fine other workflows. Some of them are not presented here: this example is indeed
deliberately simplified and abstracted to allow its small and easily understand-
able presentation in this paper; its complete WF-net contains 91 places and 113
transitions. For this business process, the goal is to verify, at the specification or
design stage of the development, some required behavioural properties (denoted
pi for later references) derived from textual requirements and business analyst
expertise such as: during a session, either the scenario SubA or the scenario
SubB (and not both of them) must be executed (p1); when the scenario SubB
is considered then the user must login (p2); once a critical situation request is

3 For confidentiality reasons, the details about this case-study are not given.

2

pending, it can either be updated, validated and dispatched, or closed (p3); once
a critical situation is created, it can be updated and closed (p4); at any time,
a service request can be upgraded to a critical situation request (p5); a logged
user must logout to exit the current session (p6).

Fig. 1. Excerpt of issue tracking system WF-net

To ensure the specified business process model verifies this kind of business
rules, there is a need to express and assess them using modal specifications.
However, usual modal specifications are relevant to express properties on single
transition by specifying that a transition shall be a (necessary) must-transition
or a (admissible) may-transition, but they do not allow to express requirements
on several transitions. For instance, expressing the property p1 using usual modal
specifications allows to specify that transitions of SubA and SubB shall be may-
transitions. Nevertheless, such formula does not ensure that SubA or SubB has to
occur in a exclusive manner, and specifying some transitions as must-transition
cannot tackle this imprecision. That is why we propose in this paper to extend
the expressiveness of usual modal specifications by using modalities over a set
of transitions, and to define dedicated algorithms to automate their verification.

3 Preliminaries

This section reminds background definitions and the notations used throughout
this article. It briefly describes workflow Petri nets as well as some of their
behavioural properties. Modal specifications are also introduced.

3

3.1 Workflow Petri Nets

Fig. 2. Basic example of a WF-net (ex1)

As mentioned above, workflows can be
modelled using a class of Petri nets,
called the workflow nets (WF-nets).
Figure 2 provides an example of a
Petri net where the places are rep-
resented by circles, the transitions by
rectangles, and the arcs by arrows.

Definition 1 (Petri net). A Petri net is a tuple (P, T, F) where P is a finite
set of places, T is a finite set of transitions (P∩T = ∅), and F ⊆ (P×T)∪(T×P)
is a set of arcs.

Let g ∈ P ∪T and G ⊆ P ∪T . We use the following notations: g• = {g′|(g, g′) ∈
F}, •g = {g′|(g′, g) ∈ F}, G• = ∪g∈G g•, and •G = ∪g∈G •g.
A marking of Petri net is a function M : P → N. The marking represents the
number of token(s) on each place. The marking of a Petri net evolves during
its execution. Transitions change the marking of a Petri net according to the
following firing rules. A transition t is enabled if and only if ∀p ∈ •t,M(p) ≥ 1.
When an enabled transition t is fired, it consumes one token from each place of
•t and produces one token for each place of t•. With respect to these rules, a
transition t is dead at marking M if it is not enabled in any marking M ′ reachable
from M . A transition t is live if it is not dead in any marking reachable from
the initial marking. A Petri net system is live if each transition is live.

Definition 2 (WF-net). A Petri net PN = (P, T, F) is a WF-net (Workflow
net) if and only if PN have two special places i and o, where •i = ∅ and o• = ∅,
and for each node n ∈ (P ∪ T) there exists a path from i to o passing through n.

For example, the Petri net in Fig. 2 is a WF-net. Let us notice that in the context
of workflow, specifiers are used to consider ordinary Petri nets [6], i.e. Petri nets
with arcs of weight 1. In the rest of the paper, the following notations are used:

– M∅: the marking defined by ∀p ∈ P,M(p) = 0,

– Ma
t−→Mb: the transition t is enabled in marking Ma, and firing it results in

the marking Mb,

– Ma →Mb: there exists t such that Ma
t−→Mb,

– M1
σ−→ Mn: the sequence of transitions σ = t1, t2, ..., tn−1 leads from the

marking M1 to the marking Mn (i.e. M1
t1−→M2

t2−→ ...
tn−1−−−→Mn),

– Ma
∗−→ Mb: the marking Mb is reachable from marking Ma (i.e. there exists

σ such that Ma
σ−→Mb).

We denote Mi(k) the initial marking (i.e. Mi(n) = k if n = i, and 0 otherwise)
and Mo(k) the final marking (i.e. Mo(n) = k if n = o, and 0 otherwise). When
k is not specified, it equals 1. A sequence σ of transitions of a Petri net is an
execution if there are Ma,Mb such that Ma

σ−→ Mb. A correct execution of a

4

WF-net is an execution σ such that Mi
σ−→ Mo. For example, Mi

σ−→ Mo where
σ = T6,T5 is a correct execution of the WF-net in Fig. 2. The behaviour of a
WF-net is defined as the set Σ of all its correct executions. For the transition t
and the execution σ, the function Ot(σ) is the number of occurrences of t in σ.

Definition 3 (Siphon/Trap). Let N ⊆ P such that N 6= ∅:

– N is a trap if and only if N• ⊆ •N .
– N is a siphon if and only if •N ⊆ N•.

Figure 3(a) displays an example of a Petri net with a siphon. Let N = {P4},
since •N = {T1, T8} ⊆ N• = {T1, T8}, the set of places N = {P4} is a siphon.

Theorem 1 (from [7]). An ordinary Petri net without siphons is live.

3.2 WF-nets with Modalities

Modal specifications have been designed to allow loose specifications to be ex-
pressed by imposing restrictions on transitions [5]. They allow specifiers to in-
dicate that a transition is necessary or just admissible. In the framework of
WF-nets, this concept provides two kinds of transitions: the must-transitions
and the may-transitions. A may-transition (resp. must-transition) is a transi-
tion fired by at least one execution (resp. all the executions) of the procedure
modelled by a WF-net.

While basic modal specifications are useful, they usually lack expressiveness
for real-life applications, as only individual transitions are concerned with. We
propose to extend modal specifications to express requirements on several tran-
sitions and on their causalities. To this end, the language S of well-formed modal
specification formulae is inductively defined by : ∀t ∈ T, t is a well-formed modal
formula, and given A1, A2 ∈ S, A1 ∧ A2, A1 ∨ A2, and ¬A1 are well-formed
modal formulae. These formulae allow specifiers to express modal properties
about WF-nets’ correct executions. Any modal specification formula m ∈ S can
be interpreted as a may-formula or a must-formula. A may-formula describes a
behaviour that has to be ensured by at least one correct execution of the WF-net.
The set of may-formulae forms a subset of CTL formulae where only the possibly
operator (i.e. along at least one path) is used. On the other hand, a must-formula
describes a behaviour that has to be ensured by all the correct executions of the
WF-net. The set of must-formulae forms a subset of CTL formulae where only
the inevitably operator (i.e. along all paths) is used. For example, for the WF-
net ex2 of 3(b), the may-formula T9 means that there exists a correct execution
firing transition T9 at least once (i.e. T9 is a may-transition). More complex be-
haviours can be expressed. For example, the must-formula (T8∧T9)∧(¬T6∨T5)
means that T8 and T9 must be fired by every correct execution, and if an exe-
cution fires T6 then T5 is also fired at least once. Formally, given t ∈ T :

– PN |=may t if and only if ∃ σ ∈ Σ. Ot(σ) > 0, and
– PN |=must t if and only if ∀ σ ∈ Σ. Ot(σ) > 0.

5

Further, given a well-formed may-formula (resp. must-formula) m ∈ S, a
WF-net PN satisfies m, written PN |=may m (resp. PN |=must m), when at
least one (resp. all) correct execution(s) of PN satisfies (resp. satisfy) m. The
semantics of ¬,∨ and ∧ is standard.

Definition 4 (Modal Petri net). A modal Petri net MPN = (P, T, F,m,M)
is a Petri net PN = (P, T, F) together with a modal specification (m,M) where:

– m ∈ S is a well-formed modal must-formula4, and
– M ⊂ S is a set of well-formed modal may-formulae.

We say that a WF-net PN satisfies a modal specification (m,M) if and only if
PN |=must m and ∀m′ ∈M,PN |=may m

′.

3.3 Hierarchical Petri Nets

Modelling large and intricate WF-nets can be a difficult task. Fortunately, simi-
larly to modular programming, WF-nets can be designed using other WF-nets
as building blocks. One of the simple methods used to construct composed WF-
nets is by transitions substitution. A composed WF-net built using this method
has special transitions that represent several whole (composed or not) WF-nets.
The composed WF-nets can then be viewed as WF-nets with multiple layers of
details; they are called hierarchical WF-nets. While this does not add any expres-
siveness to WF-nets, it greatly simplifies the modelling work, allowing to model
small parts of the whole process that are combined into a composed WF-net.

3.4 Constraint System

A constraint system is defined by a set of constraints (properties), which must
be satisfied by the solution of the problem it models. Such a system can be repre-
sented as a Constraint Satisfaction Problem (CSP) [8]. It is such that each vari-
able appearing in a constraint should take its value from its domain. Formally, a
CSP is a tuple Ω =< X,D,C > where X is a set of variables {x1, . . . , xn}, D is
a set of domains {d1, . . . , dn}, where di is the domain associated with the vari-
able xi, and C is a set of constraints {c1(X1), . . . , cm(Xm)}, where a constraint
cj involves a subset Xj of the variables of X. A CSP thus models NP-complete
problems as search problems where the corresponding search space is the Carte-
sian product space d1 × . . . × dn. The solution of a CSP Ω is computed by a
labelling function L, which provides a set v (called valuation function) of tu-
ples assigning each variable xi of X to one value from its domain di such that
all the constraints C are satisfied. More formally, v is consistent—or satisfies a
constraint c(X) of C—if the projection of v on X is in c(X). If v satisfies all
the constraints of C, then Ω is a consistent or satisfiable CSP. In the rest of
the paper, the predicate SAT (C, v) is true if the corresponding CSP Ω is made
satisfiable by v, and the predicate UNSAT (C) is true if there exists no such v.

4 We only need a single must-formula because PN |=must m1 ∧ PN |=must m2 if and
only if PN |=must (m1 ∧m2), for any two must-formulae m1 and m2.

6

Using Logic Programming for solving a CSP has been investigated for many
years, especially using Constraint Logic Programming over Finite Domains, writ-
ten CLP(FD) [9]. This approach basically consists in embedding consistency te-
chniques into Logic Programming by extending the concept of logical variables
to the one of the domain-variables taking their value in a finite discrete set
of integers. In this paper, we propose to use CLP(FD) to solve the CSP that
represent the modal specifications to be verified.

4 Verification of Modal Specifications

To verify a modal specification of a WF-net, we model the executions of a WF-
net by a constraint system, which is then solved to validate or invalidate the
modal specifications of interest.

4.1 Modelling Executions of WF-nets

Considering a WF-net PN = (P, T, F), we start by modelling all the executions

leading from a marking Ma to a marking Mb, i.e. all σ such that Ma
σ−→Mb.

Definition 5 (Minimum places potential constraint system). Let PN =
(P, T, F) be a WF-net and Ma, Mb two markings of PN , the minimum places
potential constraint system ϕ(PN,Ma,Mb) associated with it is:

∀p ∈ P.ν(p) =
∑
t∈p•

ν(t) +Mb(p) =
∑
t∈•p

ν(t) +Ma(p) (1)

where ν : P × T → N is a valuation function.

Equation (1) expresses the fact that for each place, the number of token(s)
entering it plus the number of token(s) in Ma is equal to the number of tokens
leaving it plus the number of token(s) in Mb. This constraint system is equiva-
lent with respect to solution space to the state equation, aka the fundamental
equation, of Petri nets, the only difference is that (1) explicitly gives information
about the places involved in the modelled execution.

Theorem 2. If Ma
∗−→Mb then a valuation satisfying ϕ(PN,Ma,Mb) exists.

Proof. Let σ = t1, t2, ..., tn and Ma
t1−→M1

t2−→M2...Mn−1
tn−→Mb. We define:

– ∀t ∈ T.ν(t) = Ot(σ)
– ∀p ∈ P.ν(p) =

∑
j∈{1,2,...,n−1}∪{a,b}Mj(p)

Then ∀p ∈ P :

–
∑
j∈{1,2,...,n−1}∪{a,b}Mj(p) =

∑
t∈p• Ot(σ)+Mb(p) =

∑
t∈•pOt(σ)+Ma(p).

Indeed, as the WF-net is an ordinary Petri net, the sum of tokens in all
markings of a place is equal to the sum of the occurrences of transitions
producing (resp. consuming) a token at this place plus the number of token(s)
in marking Mb (resp. Ma).

7

– ν(p) =
∑
t∈p• ν(t) +Mb(p) =

∑
t∈•p ν(t) +Ma(p).

Consequently, ν is a valuation satisfying ϕ(PN,Ma,Mb).

For example, Mi
σ−→Mo where σ = T6, T5 is a correct execution of the WF-

net in Fig. 2, therefore we can find a valuation ν(n) = 1 if n ∈ {T6, T5, i, o}, and
ν(n) = 0 otherwise. By Th. 2, this valuation ν satisfies the constraints system
ϕ(ex1,Mi,Mo).

Theorem 2 allows to conclude that a WF-net PN does not have any cor-
rect executions if ϕ(PN,Mi,Mo) does not have a valuation satisfying it. How-
ever, even if there is a valuation satisfying ϕ(PN,Mi,Mo), it does not neces-
sary correspond to a correct execution. For example, the valuation ν(n) = 1 if
n ∈ {T1, T2, T8, T4, i, P2, P3, P5, P6, o}, ν(n) = 2 if n ∈ {P4}, and ν(n) = 0
otherwise, satisfies ϕ(ex1,Mi,Mo) but it does not correspond to any correct
execution. This is due to the fact that transitions T2 and T8 cannot fire si-
multaneously using as an input token an output token of each other. Conse-
quently, the set of solutions of ϕ(PN,Mi,Mo) constitutes an over-approximation
of the set of correct executions of PN . In the rest of the paper, the solutions of
ϕ(PN,Mi,Mo) that do not correspond to correct executions of PN are called
spurious solutions. Hence our goal is to refine this over-approximation in order to
be able to conclude on properties relative to all correct executions of a WF-net.

4.2 Verifying Structural Properties over Executions

While considering the modelling of WF-net executions, siphons and traps have
interesting structural features. Indeed, an unmarked siphon will always be un-
marked, and a marked trap will always be marked. Therefore a WF-net can only
have siphons composed of at least the place i and traps composed of at least
place o. Theorem 3 allows to conclude on the existence of a siphon in a WF-net.

Theorem 3. Let θ(PN) be the following constraint system associated with a
WF-net PN = (P, T, F):

– ∀p ∈ P,∀t ∈• p.
∑
p′∈•t ξ(p

′) ≥ ξ(p)
–

∑
p∈P ξ(p) > 0

where ξ : P → {0, 1} is a valuation function. PN contains a siphon if and only
if there is a valuation satisfying θ(PN).

Proof. (⇐) Let ξ be a valuation satisfying θ(PN), and N ⊆ P such that ξ(p) =
1 ⇔ p ∈ N . Then ∀p ∈ N, ∀t ∈ •p.

∑
p′∈•t ξ(p

′) ≥ 1, which implies •N ⊆ N•.
Consequently, N is a siphon.
(⇒) Suppose that N is a siphon then obviously the valuation ξ(p) defined as:
ξ(p) = 1 if p ∈ N , and 0 otherwise, satisfies θ(PN).

For example, for the WF-net of Fig. 2 where the set of places N = {P4} is
a siphon, ξ(p) = 1 if p ∈ N, else 0 is a valuation satisfying θ(ex1).

8

The places (excluding places i and o) and transitions composing a correct
execution of a WF-net cannot form a trap or a siphon. Using this propriety we
refine the over-approximation made using ϕ(PN,Mi,Mo). Theorem 4 states that
for any solution of ϕ(PN,Ma,Mb), the subnet, composed of places (excluding
place i and o) and of the transitions of the modelled execution, contains a trap
if and only if it has also a siphon. Therefore we only need to check the presence
of a siphon (or, respectively, of a trap).

Theorem 4. Let PN = (P, T, F) a WF-net, Ma, Mb two markings of PN , and
ν : P × T → N a valuation satisfying ϕ(PN,Ma,Mb). We define the subnet
sPN(ν) = (sP, sT, sF) where:

– sP = {p ∈ P \ {i, o} | ν(p) > 0}
– sT = {t ∈ T | ν(t) > 0}
– sF = {(a, b) ∈ F | a ∈ (sP ∪ sT) ∧ b ∈ (sP ∪ sT)}

If sPN(ν) contains a trap (resp. siphon) N then N is also a siphon (resp. trap).

Proof. (⇒) Let N ⊆ sP such that N 6= ∅, so
∑
p∈N ν(p) =

∑
p∈N

∑
t∈p• ν(t)

=
∑
p∈N

∑
t∈•p ν(t). It implies

∑
p∈N

∑
t∈p•∩N• ν(t)+

∑
p∈N

∑
t∈p•∩sT�N• ν(t)

=
∑
p∈N

∑
t∈•p∩N• ν(t) +

∑
p∈N

∑
t∈•p∩sT�N• ν(t) that can be simplified as∑

p∈N
∑
t∈p• ν(t) =

∑
p∈N

∑
t∈•p∩N• ν(t) +

∑
p∈N

∑
t∈•p∩sT�N• ν(t) because

∀p ∈ N.p• ∩ sT�N• = ∅ . Let N be a trap (N• ⊆ •N) such that N is not
a siphon (•N * N•). Thus, one has

∑
p∈N

∑
t∈p• ν(t) =

∑
p∈N

∑
t∈•p∩N• ν(t)

implying
∑
p∈N

∑
t∈p• ν(t) =

∑
p∈N

∑
t∈p• ν(t) +

∑
p∈N

∑
t∈•p∩sT�N• ν(t). We

finally have ∀p ∈ N.•p ∩ sT�N• = ∅ because ∀t ∈ sT.ν(t) > 0. This implies
•N ⊆ N•, a contradiction.
(⇐) The proof that if N is a siphon then N is a trap, is similar.

Theorem 5. The Petri net sPN(ν) contains no siphon and no trap if and only
if θ(sPN(ν)) does not have a valuation satisfying it.

Proof. Follows from Th. 3 and 4.

Using Th. 5 allows defining the constraint system in Th. 6, which refines ϕ(PN,
Ma,Mb). Thanks to this new system, the spurious solutions of ϕ(PN,Ma,Mb)
corresponding to an execution with siphon/trap are no more considered.

Theorem 6. Let PN = (P, T, F) be a WF-net and Ma, Mb two marking of
PN . There exists ν : P ×T → N a valuation satisfying ϕ(PN,Ma,Mb) such that
θ(sPN(ν)) does not have a satisfying valuation if and only if there exist σ and
k ∈ N such that ∀p ∈ P \{i}. Ma′(p) = Ma(p),Ma′(i) = k, ∀p ∈ P \{o}.Mb′(p) =

Mb(p),Mb′(o) = k,Ma′
σ−→Mb′ and ∀t ∈ T. Ot(σ) ≥ ν(t).

Proof. (⇒) Suppose ν : P × T → N is a valuation satisfying ϕ(PN,Ma,Mb)
such that θ(sPN(ν)) does not have a satisfying valuation. By Th. 5, sPN(ν)
contains no siphon and therefore is live (cf. Th. 1). It implies that there is σ

such that Ma
σ−→ Mb in sPN(ν) where ∀t ∈ sT. Ot(σ) ≥ ν(t). Using the fact

that a transition of σ is in i•, and a transition of σ is in •o, we can conclude
that Ma′

σ−→Mb′ such that ∀t ∈ T. Ot(σ) ≥ ν(t).

9

(⇐) Suppose σ such that Ma
σ−→Mb and ∀t ∈ T. Ot(σ) = ν(t). By Th. 2 we can

complete the definition of ν to make ν a satisfying valuation of ϕ(PN,Ma,Mb).
In addition, sPN(ν) contains no siphon and no trap because it would contradict

Ma
σ−→Mb. By Th. 5, θ(sPN(ν)) does not have a satisfying valuation.

For example, let us consider the WF-net of Fig. 2, the valuation ν(n) = 1
if n ∈ {T1, T2, T8, T4, i, P2, P3, P5, P6, o}, ν(n) = 2 if n ∈ {P4}, otherwise
ν(n) = 0, is a satisfying valuation of ϕ(ex1,Mi,Mo). The set of places N = {P4}
is a trap/siphon. Figure 3(a) displays sPN(ν). Therefore by Th. 3 there is a
valuation satisfying θ(sPN(ν)). By Th. 6, ν does not correspond to a correct
execution of the WF-net of Fig. 2.

(a) sPN(ν) (b) Example (ex2)

Fig. 3. WF-net examples used to illustrate over-approximation

The constraint system of Th. 6 can be used to over-approximate the correct
executions of a WF-net. Indeed, for the WF-net in Fig. 3(b), the valuation ν(n) =
1 if n ∈ {T1, T8, T6, T2, T7, T8, T5, T9, T4, i, P2, P3, P5, P6, o}, ν(n) = 2 if
n ∈ {P1, P7}, and ν(n) = 3 if n ∈ {P4}, is a valuation satisfying ϕ(ex3,Mi,Mo)
such that θ(sPN(ν)) does not have a satisfying valuation.

By Th. 6 there exist σ and k such that Mi(k)
σ−→Mo(k) and ∀t ∈ T. Ot(σ) ≥ ν(t).

In this case there is no σ such that k = 1. Indeed, P4 cannot be empty when
either T2 or T8 is fired, and therefore a marking with at least one token in P4
and one in either P2 or P3 must be reachable. As there is no execution possible
with only one token that leads to such marking, we have k > 1.

While defining an over-approximation might be useful for the verification of
safety property, in our case, we want to be able to verify a modal specification.
As the approximation is difficult to handle, we need to be able to model an
execution that violates the modal specification if it exists.

Theorem 7. Let PN = (P, T, F) be a WF-net, and Ma, Mb its two markings. If
there is ν : P×T → N such that SAT (ϕ(PN,Ma,Mb), ν)∧UNSAT (θ(sPN(ν)))

∧∀n ∈ P × T. ν(n) ≤ 1 then Ma
σ−→Mb and ∀t ∈ T. Ot(σ) = ν(t).

Proof. Any place is involved with at most one transition consuming one token,
and at most one transition producing one token. By Th. 6 one has Ma′

σ−→Mb′ .
Since at most one transition can consume a token in i (resp. produce a token
in o), we have Ma′ = Ma (resp. Mb′ = Mb).

10

In the rest of the paper, a segment of an execution is defined as an execution
modelled by the constraint system in Th. 7. In this way, we now propose to de-
compose an execution modelled by the constraint system of Th. 6 into segment(s)
modelled by Th. 7. If such a decomposition exists then the execution is a correct
execution. Otherwise, we can conclude that the found solution is a spurious one.
Indeed, spurious solutions can appear because the order of transition firing is
not taken into account in the modelled execution. Therefore, decomposing the
execution into segments forces the ordering of transitions where order matters.

Theorem 8. Let PN = (P, T, F) be a WF-net, and Ma, Mb its two markings.

Ma
σ−→ Mb if and only if there exists k ∈ N such that M1

σ1−→ M2 · · ·Mk

σ(k)−−→
Mk+1, where M1 = Ma, Mk+1 = Mb and for every i, 0 < i ≤ k, there is νi s.t.
SAT (ϕ(PN,Mi,Mi+1, νi)) ∧ UNSAT (θ(sPN(νi))) ∧ ∀n ∈ P × T. νi(n) ≤ 1.

Proof. (⇒) Suppose Ma
σ−→ Mb where σ = t1, . . . , tk then by definition there

exist M1
t1−→ M2 · · ·Mk

t(k)−−→ Mk+1, where M1 = Ma, Mk+1 = Mb. More-
over, for every i, 0 < i ≤ k, there is νi such that SAT (ϕ(PN,Mi,Mi+1, νi)) ∧
UNSAT (θ(sPN(νi))) ∧ ∀n ∈ P × T. νi(n) ≤ 1, as νi is a valuation modelling
the execution of a single transition.
(⇐) Follows from Th. 7.

In the rest of the paper, we denote φ(PN,Ma,Mb, k) the constraint system
of Th. 8, where k is the number of segments composing the execution. As
φ(PN,Mi,Mo, k) can be used to model any execution of PN composed of k
or less segments, we propose to use it to determine the validity of a WF-net
with regards to a given modal specification.

4.3 Verifying Modal formulae

When determining whether or not a WF-net satisfies the modal properties of in-
terest, we distinguish two decision problems. The first one, called the K-bounded
validity of a modal formula, only considers executions formed by K segments,
at most. The second one, called the unbounded validity of a modal formula,
deals with executions formed by an arbitrary number of segments; it general-
izes the first problem. To verify modalities over a single transition, constraint
systems come very naturally into the play. Intuitively, for a may-transition t,
determining one correct execution firing t at least once is enough to validate its
may-specification. On the other hand, for a must-transition t, the lack of correct
executions without firing it validates its must-specification.

In our approach, verifying modal specifications from Def. 4 relies on their
expression by constraints. To build these constraints, for every transition t ∈ T ,
the corresponding terminal symbol of the formulae is replaced by ν(t) > 0, where
ν is the valuation of the constraint system. For example, for the modal formula
(T0 ∧ T5) ∧ (¬T7 ∨ T6), the corresponding constraint is (ν(T0) > 0 ∧ ν(T5) >
0)∧(¬ν(T7) > 0∨ν(T6) > 0). Given a modal formula f ∈ S, C(f, ν) denotes the
constraint built from f , where ν is a the valuation of the constraint system. The
following theorem extends the constraint systems to verify modal specifications.

11

Theorem 9. Let MPN = (P, T, F,m,M) a modal WF-net. The WF-net PN =
(P, T, F) satisfies the modal specification (m,M) if and only if:

– there is no ν, k ∈ N such that SAT (φ(PN,Mi,Mo, k) ∧ ¬C(m, ν), ν), and
– for every f ∈ M , there exist ν, k ∈ N such that SAT (φ(PN,Mi,Mo, k) ∧
C(f, ν), ν).

Proof. By Th. 8, there exist ν, k ∈ N such that SAT (φ(PN,Mi,Mo, k)∧¬C(m,
ν), ν) if and only if PN 2must m. In addition, there are ν, k ∈ N such that
SAT (φ(PN,Mi,Mo, k) ∧ C(f, ν), ν) if and only if PN |=may f .

Theorem 9 can be adapted to the case of hierarchical WF-nets. In this case,
the modal formula has to be verified for the main WF-net, i.e. the highest level
net, and also for the WF-nets substituting transitions at lower levels.

Theorem 10. Let PN = (P, T, F) be a WF-net, R̄must the set of all well-
formed must-formulae not satisfied by PN , and Rmay the set of all well-formed
may-formulae satisfied by PN . There exists Kmax such that:

– ∀f ∈ R̄must,∃ ν, k ≤ Kmax. SAT (φ(PN,Mi,Mo, k) ∧ ¬C(f, ν), ν),
– ∀f ∈ Rmay,∃ ν, k ≤ Kmax. SAT (φ(PN,Mi,Mo, k) ∧ C(f, ν), ν).

Proof. Sketch. The set of correct executions of a WF-net is possibly infinite.
This is due to the fact that T-invariants (i.e. sequence of transitions σ such that

M
σ−→M) could be fired indefinitely. However, when considering the verification

of modal formulae, we are only interested in the presence or absence of transitions
in correct executions (i.e. the number of their firings does not matter). Therefore
considering the set of correct executions where T-invariants are allowed to fire
at most once is enough to check the validity of modal formulae. This restricted
set of correct executions is finite. As a consequence, there exists Kmax such that
any execution of this set can be modelled by Kmax segments, at most.

Theorem 10 implies that for any WF-net PN = (P, T, F), there exists Kmax

such that any modal may-formula (resp. must-formula) f can be verified re-
garding the consistency of the constraint system φ(PN,Mi,Mo,Kmax)∧C(f, ν)
(resp. φ(PN,Mi,Mo,Kmax) ∧ ¬C(f, ν)). In other words, to verify any may-
formula (resp. must-formula), it is not necessary to look for the existence (resp.
non-existence) of correct execution respecting (resp. not respecting) the be-
haviour expressed by the may-formula (resp. must-formula) of this WF-net com-
posed of more than Kmax segments. However determining the Kmax value of a
WF-net from its structure is still an open problem. However, we can infer an

upper-bound of
∑|T |
j=1 j!.

5 Implementation and Experiments

The proposed approach has been fully automated, allowing practitioners, at any
stage of the workflow design, to verify modal formulae using an integrated tool
chain. This section describes this tool chain developed to experimentally validate
the proposed approach, and illustrates its use and obtained results on the case
study introduced in Sect. 2.

12

5.1 Implementation Architecture

As a proof of concept, an implementation supporting the approach we propose
has been developed to provide an integrated tool chain to design WF-nets and
verify modal specifications. The architecture is shown in Fig. 4.

Fig. 4. Tool chain description

The tool chain takes as inputs a WF-net model (1) and the modal specifica-
tions (2) to be verified. WF-net model is exported from a third party software
(e.g., Yasper [10], PIPE [11]) as an XML file, as well as the modal specifications
that are expressed in a dedicated and proprietary XML format. From these in-
puts, the developed tool first checks the structure of the WF-net model (3) to
exclude Petri nets that do not correspond to WF-nets definition (cf. Def. 2). It
then checks the modal specifications regarding the syntax proposed in Sect. 4
(4). Once validated, these inputs are translated into a constraint system (5) that
is handled using the CLP(FD) library of Sicstus Prolog [12] (6). Finally, a report
about the validity of modal specifications of the WF-net is generated (7).

To verify a may-formula (resp. a must-formula) m (resp. M), the tool first
checks if there exists a solution of the over-approximation, given by Th. 6, such
that the modelled execution satisfies (resp. does not satisfy) m (resp. M). If such
an execution exists, it then tries to find an execution of the under-approximation,
given by Th. 8, which satisfies (resp. does not satisfy) m. As an illustration,
Figure 5 gives the algorithm of the function checking the validity of a must-
formula. It returns the K-bounded validity of a given modal formula m. To cope
with the complexity raised by Kmax, K can be fixed to a manageable value.
Nevertheless, when fixing K to Kmax (or greater than Kmax), the algorithm
enables to decide the unbounded validity of the must-formula m. The results in
Sect. 4.1 ensure its soundness and completeness. Finally, solving a CSP over a
finite domain being an NP-complete problem with respect to the domain size,
this algorithm inherits this complexity.

5.2 Experimental Results

The approach and the corresponding implementation have been firstly validated
on a set of models collected from the literature, especially from [4, 13, 14], and
afterwards experimented in the field of issue tracking systems using the industrial
example described in Sect. 2. Table 1 shows an extract of the experimental results
obtained on this industrial example, focusing on the six properties (p1 to p6) and
the WF-net model introduced in Sect. 2.

13

Inputs: PN - a WF-net, m - a must-formula, K a positive integer.
Results: TRUE - PN |=must m, FALSE - PN 2must m.
function IsMustValid(PN ,m,K)

if SAT (ϕ(PN,Mi,Mo) ∧ ¬C(m, ν), ν) ∧ UNSAT (θ(sPN(ν))) then
k = max({v(n)|n ∈ T})
if k == 1 then return FALSE
else

while k ≤ K do
if SAT (φ(PN,Mi,Mo, k) ∧ ¬C(m, v), ν) then return FALSE
else k = k + 1
end if

end while
return TRUE

end if
else return TRUE
end if

end function

Fig. 5. Algorithm checking the validity of a must-formula

The properties p1 to p6 are representative of the kind of properties that have
to be verified by engineers when they design the business process to be imple-
mented. Moreover, These properties are sufficiently clear without a complete
description of the workflow and enable to show all possible outcomes of our ap-
proach. The modal formula associated with each property is specified, and the
result of the computation is given by its final result as well as the internal evalu-
ation of ϕ. The input K and the corresponding computed value of φ(K) are also
precised when it makes sense, i.e. when the algorithm cannot conclude without
this bound.
When verifying must-formulae that are satisfied by the WF-net (see p1, p2 and
p3), or may-formulae that are not satisfied by the WF-net (see p4), the over-
approximation proposed in Th. 6 is usually enough to conclude. On the other
hand, when verifying may-formulae that are satisfied by the WF-net (see p5), or
must-formulae that are not satisfied by the WF-net (see p6), the decomposition
into K segments is needed. We empirically demonstrate that this decomposition
is very effective since values of Kmax are usually moderate (Kmax = 6 in the case
of p5, less than 10 with all the experimentations on this case-study). We can also
notice the definitive invalidity of p6 (a user can exit the current session without
logout), which enabled to highlight an ambiguity in the textual requirements.

Thanks to the experiments, we can conclude that the proposed method is
feasible and efficient. Moreover, the developed tool is able to conclude about the
(in)validity of the studied properties in a very short time (less than a second).

Formula ϕ K φ(K) Result

p1 PN |=must (SubA ∧ ¬SubA) ∨ (SubB ∧ ¬SubA) TRUE - - TRUE
p2 PN |=must SubB ⇒ Login TRUE - - TRUE
p3 PN |=must SR CreateCRITSIT ⇒ (V andD ∨ Update ∨ Closure) TRUE - - TRUE
p4 PN |=may SR CreateCRITSIT ⇒ (Update ∧ Closure) FALSE - - FALSE

p5 PN |=may SR UpgradeToCRITSIT TRUE
1 FALSE FALSE
6 TRUE TRUE

p6 PN |=must Login⇒ Logout FALSE 1 FALSE FALSE

Table 1. Experimentation results

14

6 Conclusion and Related Work

Modal specifications introduced in [15] allow loose or partial specifications in
a process algebraic framework. Since, modal specifications have been ported to
Petri nets, as in [16]. In this work, a relation between generated modal languages
is used for deciding specifications’ refinement and asynchronous composition.
Instead of comparing modal languages, our approach deals with the correct exe-
cutions of WF-nets modelled by constraint systems. A lot of work has been
done [17–19] in order to model and to analyse the behaviour of Petri nets by us-
ing equational approaches. Among popular resolution techniques, the constraint
programming framework has been successfully used to analyse properties of Petri
net [20, 21]. But, like in [21], the state equation together with a trap equation are
used in order to verify properties such as deadlock-freedom. Our approach also
takes advantage of trap and siphon properties in pursuance of modelling correct
executions. Constraint programming has also been used to tackle the reacha-
bility problem—one of central verification problems. Let us quote [22] where a
decomposition into step sequences was modelled by a constraint system. Our
approach is similar, the main difference is that the constraints we propose on
step sequences, i.e. segments, are stronger. This is due to the fact that we are
not only interested in the reachability of a marking, but also in the transitions
involved in the sequences of transitions that reach it.

This paper hence presents an original and innovative formal framework based
on constraint systems to model executions of WF-nets and their structural prop-
erties, as well as to verify their modal specifications. It also reports on encoura-
ging experimental results obtained using a proof-of-concept tool chain. In par-
ticular, a business process example from the IT domain enables to successfully
assess the reliability of our contributions. As a future work, we plan extensive
experimentation to determine and improve the scalability of our verification ap-
proach based on constraint systems. We also need to improve its readiness level
in order to foster its use by business analysts. For instance, we could propose a
user-friendly patterns to express the modal properties. Finally, generalizing our
approach by handling coloured Petri nets is another research direction.

Acknowledgment

This project is performed in cooperation with the Labex ACTION program
(contract ANR-11-LABX-0001-01) – see http://www.labex-action.fr/en.

References

1. van der Aalst, W.M.P., ter Hofstede, A.H.M.: YAWL: Yet Another Workflow
Language. Journal of Information Systems 30(4) (June 2005) 245–275

2. Dumas, M., Hofstede, A.H.M.t.: UML Activity Diagrams As a Workflow Specifica-
tion Language. In: Proc. of the 4th Int. Conf. on The Unified Modeling Language
(UML’01), Toronto, Canada, Springer-Verlag (October 2001) 76–90

15

3. van der Aalst, W.M.P.: The Application of Petri Nets to Workflow Management.
Journal of Circuits, Systems, and Computers 8(1) (February 1998) 21–66

4. van der Aalst, W.M.P.: Three Good reasons for Using a Petri-net-based Workflow
Management System. Journal of Information and Process Integration in Enter-
prises 428 (December 1997) 161–182

5. Larsen, K.G.: Modal Specifications. In: Proc. of the Int. Workshop on Automatic
Verification Methods for Finite State Systems. Volume 407 of LNCS., Grenoble,
France, Springer-Verlag (June 1989) 232–246

6. van der Aalst, W.M.P.: Verification of Workflow Nets. In: Proc. of the 18th Int.
Conf. on Application and Theory of Petri Nets (ICATPN’97). Volume 1248 of
LNCS., Toulouse, France, Springer (June 1997) 407–426

7. Heiner, M., Gilbert, D., Donaldson, R.: Petri Nets for Systems and Synthetic
Biology. In: Proc. of the 8th Int. School on Formal Methods for Computational
Systems Biology (SFM’08). Volume 5016 of LNCS., Springer (June 2008) 215–264

8. Macworth, A.K.: Consistency in networks of relations. Journal of Artificial Intel-
ligence 8(1) (1977) 99–118

9. Tsang, E.: Foundation of constraint satisfaction. Academic Press (1993)
10. van Hee, K., et al.: Yasper: a tool for workflow modeling and analysis. In: Proc.

of the 6th Int. Conf. on Application of Concurrency to System Design (ACSD’06),
Turku, Finland, IEEE CS (June 2006) 279–282

11. Bonet, P., Lladó, C.M., Puijaner, R., Knottenbelt, W.J.: PIPE v2.5: A Petri net
tool for performance modelling. In: Proc. of the 23rd Latin American Conference
on Informatics (CLEI’07), San Jose, Costa Rica (October 2007)

12. Carlsson, M., et al.: SICStus Prolog user’s manual (Release 4.2.3), Swedish Insti-
tute of Computer Science, Kista, Sweden. (October 2012)

13. Kouchnarenko, O., Sidorova, N., Trcka, N.: Petri Nets with May/Must Seman-
tics. In: Proc. of the Workshop on Concurrency, Specification, and Programming
(CS&P’09), Kraków-Przegorzaly, Poland (September 2009) 291–302

14. van der Aalst, W.M.P.: Business Process Management Demystified: A Tutorial
on Models, Systems and Standards for Workflow Managemen. In: Lectures on
Concurrency and Petri Nets. Volume 3098 of LNCS., Springer (2004) 1–65

15. Larsen, K.G., Thomsen, B.: A modal process logic. In: Proc. of the 3rd Annual
Symp. on Logic in Computer Science (LICS’88), IEEE (July 1988) 203–210

16. Elhog-Benzina, D., Haddad, S., Hennicker, R.: Refinement and asynchronous com-
position of modal petri nets. In: Transactions on Petri Nets and Other Models of
Concurrency V. Volume 6900 of LNCS. Springer (2012) 96–120

17. Desel, J.: Basic linear algebraic techniques for place/transition nets. In: Lectures
on Petri Nets I: Basic Models. Volume 1491 of LNCS. Springer (1998) 257–308

18. Wimmel, H., Wolf, K.: Applying CEGAR to the Petri Net State Equation. In:
Proc. of the 17th Int. Conf. on Tools and Alg. for the Construction and Analysis
of Systems (TACAS’11). Volume 6605 of LNCS., Springer (March 2011) 224–238

19. Schmidt, K.: Narrowing Petri Net State Spaces Using the State Equation. Funda-
menta Informaticae 47(3-4) (October 2001) 325–335

20. Soliman, S.: Finding minimal P/T-invariants as a CSP. In: Proc. of the 4th

Workshop on Constraint Based Methods for Bioinformatics (WCB’08). (May 2008)
21. Melzer, S., Esparza, J.: Checking system properties via integer programming. In:

Proc. of the 6th Eur. Symp. on Programming Languages and Systems (ESOP’96).
Volume 1058 of LNCS., Linköping, Sweden, Springer (April 1996) 250–264

22. Bourdeaud’huy, T., Hanafi, S., Yim, P.: Incremental Integer Linear Programming
Models for Petri Nets Reachability Problems. Petri Net: Theory and Applications
(February 2008) 401–434

16

