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Abstract. The main objective of this work is to design a kinetic energy harvester for TPMS applications. The 
energy harvester presented in this work is a multi-pendulum fixed to a rolling wheel, which exploits nonlinear 
effects rendered by such a design.

1 Introduction  

In many cases, it is not possible to supply a sensor 
network by means of batteries because their life is too 
short compared to the life of the sensor, and their 
replacement may be not advisable, dangerous, too 
expensive or impossible. In these situations, one possible 
solution is the use of an energy harvester, a device 
designed to collect energy from a source available in the 
environment. Indeed, it is possible to collect energy from 
multiple sources such as radiation, temperature gradient, 
movement and vibrations. 
One of the promising applications of sensor networks are 
TPMS (or Tire Pressure Monitoring System) where 
energy harvester are used to extract energy from rotating 
wheels. 
In the literature, the fact that these systems are installed 
in the wheels, led researchers to use different sources 
such as tire deformation, variation of the radial 
acceleration due to wheel contact with the ground, 
vibration, pressure variation, rotation. 
 
From the literature, we note that the key factor in the 
choice of designs is the way in which the collectors are 
fixed: on the tire or the rim. 
For the first type Lee et al. [1] studied a patch of 
piezofibers with interdigitated electrodes and used the tire 
deformation during the rotation to harvest energy. Singh 
et al. [2] designed a piezoelectric cantilever beam with a 
mass placed on the free and Tornincasa et al. [3] used the 
high amplitude accelerations during the rotation of the 
tire and a permanent magnet sliding into coils as a 
transducer. 
For the second type Gu et al. [4] designed an energy 
harvester made of two beams; a piezoelectric generating 
beam and a flexible driving beam with a mass mounted at 
the free end. 

Wang et al. [5] proposed an energy harvester using a 
rotating Halbach array magnetic disk to convert the 
kinetic energy of the rim to electrical power. 
In this work, we propose to exploit the kinetic energy 
produced by a rotating wheel and convert it through 
electromagnetic transduction to electrical energy. We 
choose, as a design, a multi-pendulum system fixed to the 
rim. The transducer mechanism is mounted directly at the 
revolute joints. 

2 Different pendulum Designs 

2.1 Double Pendulum with non-parallel axes 

Consider a disk of centre O, radius R,  mass m1, rotating 
about an axis z0 of an inertial frame (O0,x0,y0,z0) and a 
local coordinate (O,x0,y0,z0) in translation relatively to the 
Galilean reference. A rod is attached to the perimeter of 
the disk according to its radial direction along an axis x1. 
Consider a pendulum, consisting of a rigid axis and a 
mass m2, mounted about a revolute joint around an axis, 
itself mounted to the rod about a rigid joint, with an angle 
α (see Figure 1). 
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Fig. 1. Double pendulum system with non-parallel axes. 
Consider m1>>m2 and B the center of mass.  
Define a local coordinate (O,x1,y1,z0), attached to the disk, 
and a local coordinate (A,x2,y2,z2), attached to the 
pendulum. That gives: 

 0 0 0 1 2( )O B t v tx ax ry  
   

  (1) 

where v0 is the linear velocity of the wheel. 
Consider the Lagrangian L=T-V, with T the kinetic 
energy and V the potential energy. The Lagrange 
equations are given by: 
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Adding a damping term to the above equation leads to the 
following equation of motion: 
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  (3) 
The damping coefficient c will model both the structural 
damping and the electromagnetic damping due to the 
electrical impedance of the harvesting circuit. 

  2.2 Triple Pendulum with parallel axes 

In this case of study, we consider a double pendulum, 
consisting of a rigid axes and a mass m2, mounted to the 
wheel, such that all axes of rotation are parallel (see 
Figure 2). 

 

Fig. 2. Triple pendulum system with parallel axes. 
Consider m1>>m2 and A the centre of mass.  
Define a local coordinate (O,x1,y1,z0), attached to the disk, 
a first local coordinate (C,x2,y2,z0), attached to the first 
pendulum, and a second local coordinate (B,x3,y3,z0) 
attached to the second pendulum . That gives: 

 0 0 0 1 2 3( )O A v t x Rx r x x   
    

  (4) 

Note that, in this case, the equation of motion is too 
complicated to be presented here. 

3. Numerical simulation 

In each case of study, consider that: the disk reaches its 
rotation speed θ’ after a period of 10 seconds (Fig. 3), the 
rim diameter is 15 inches (38.1 cm), the tire is type 
195/65/R15 (a thickness equals to 126.75 mm), gives a 
total radius of 317.25mm and a circumference of 1.99 m.  

 

Fig. 3. Variation of the wheel rotation speed from 0 to 50km/h. 
 
To convert the kinetic energy into electrical energy, we 
use an electromagnetic transduction. We need to calculate 
the maximum of angular velocity of the pendulum, i.e. 
the variation of α' & β' in function of θ, to determine the 
power generation. The dynamic behavior of the 
pendulum exhibits nonlinear phenomena and can be 
acquired by solving equations of motion using Runge-
Kutta method in Mathematica. 

3.1 Double Pendulum with non-parallel axes 

Figure 3 shows the variation of angular velocity under 
c=0 and wheel rotation maximum speed equals to 50km/h 
(=3.49 rps i.e. 21.94 rd/s).   
Figure 4 shows the variation of angular velocity under 
different values of damping coefficient and wheel 
rotation maximum speed equals to 50km/h. 

 

Fig. 4. Numerical simulation of the angular velocity for c=0. 
 

 

Fig. 5. Numerical simulation of the angular velocity for 
different values of c (blue curve for c=0.1 N s/kg/m, red curve 

for c=1 N s/kg/m & black curve for c=2 N s/kg/m). 
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3.2 Triple Pendulum with parallel axes 

For this type of pendulum, we have different 
probabilities, depending on how we place the 
transduction mechanism. Consider c1 is the damping 
coefficient related to C (angular velocity α') and c2 the 
damping coefficient related to B (angular velocity β'). 
That gives three cases under study:  
Case 1: c1=0 and c2=1 (Figure 6). 
Case2: c1=1 and c2=0 (Figure 7). 
Case3: c1=1 and c2=1 (Figure 8). 
 

 
(a) 

 

 
(b) 

Fig. 6. Numerical simulation of the angular velocities for c1=0 
and c2=1. (a) angular velocity in C, (b) angular velocity in B . 

 

 
(a) 

 

 
(b) 

Fig. 7. Numerical simulation of the angular velocities for c1=1 
and c2=0. (a) angular velocity in C, (b) angular velocity in B . 

 
(a) 

 

 
(b) 

Fig. 8. Numerical simulation of the angular velocities for c1=1 
and c2=1. (a) angular velocity in C, (b) angular velocity in B . 

To compare the performances of different designs, we 
can estimate the power generated P in each case by 
taking    

 2
es emP R C dt     (5) 

with esR the resistance of the electromagnetic transducer 

and emC the electromagnetic damping coefficient. 

Noting that P is proportional to the RMS value of the 
velocity, we calculate this later for each design, taking 
into consideration the sensitivity to the initial condition. 
For this we start by choosing different wheel angular 
positions θ and calculate the corresponding pendulum's 
positions, as initial condition. Then we calculate the RMS 
value of the velocity for each starting position when c=1 
(Figure 8). 
Finally, we take the maximum RMS value of each design 
(Table 1 & Table2). 
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(a) 
 

 

(b) 
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 Fig. 8. Numerical simulation of the velocity RMS value for 
different wheel angular positions: (a) double pendulum with 

non-coplanar axes, (b) Triple pendulum with parallel axes, (c) 
double pendulum with parallel axes. 

 Table 1. Maximum RMS values for different designs of a 
triple pendulum with parallel axes. 

 

 Table 2. Velocity RMS values for different pendulums. 
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