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Abstract. The collective nonlinear dynamics of a coupled array of nanocantilevers is investigated while tak-
ing into account the main sources of nonlinearities. The amplitude and phase equations of this device, subject
to parametric and internal resonances, are analytically derived by means of a multi-modal Galerkin discretiza-
tion coupled with a multiscale analysis. Based on the steady-state solutions of these equations, the frequency
responses are numerically computed for a two-beam array. The effects of different parameters are investigated
and several dynamical aspects are confirmed by numerical simulations. Particularly, we have demonstrated that
the bifurcation topology transfer is imposed by the first nanocantilever and it can be general to the collective
nonlinear dynamics of the NEMS array.

1 Introduction

Extensive researches have been conducted, for several years,
in order to investigate the microelectromechanical systems
(MEMS). Indeed, they are widely used in different appli-
cations such as biotechnology, automotive, aerospace and
biomedicine. Following the trend of very large scale in-
tegration (VLSI), new devices called nanoelectromechani-
cal systems (NEMS) come as a result of the size reduction
of MEMS from micro down to nanometers. A NEMS is a
nano-scale device composed by an electronic circuitry and
a mechanical moving part allowing to detect a particular
physical quantity and to convert it into a measurable elec-
trical signal.

The principal developed nanoelectromechanical systems
include nanowires, carbon nanotubes, silicon nano-beams
and nanocantilevers [1]. The latter can be integrated into
smart systems for control and monitoring like ultrasen-
sitive mass detectors [2]. A NEMS oscillator has a mul-
titude of nonlinear properties such as periodic attractors
[3], bistability [4], complex dynamics [5] and bifurcation
topology [6]. It has attracted considerable interest in re-
cent years [7,8]. Consequently, arrays of coupled NEMS
are modeled in order to investigate these fundamental as-
pects of complex nonlinear phenomena [9–11].

In addition, this type of systems is able to display in-
ternal resonances (IRs) [12] which occur between each ad-
jacent oscillators. One of the first researchers who investi-
gated IRs was Sethna [13]. Currently, more and more de-
signers studied IRs in their models due to their important
properties of suppressing oscillations in cantilever [12] or
enhancing the coupling effect in dynamical systems [14].
In particular, several researchers have modeled arrays sub-
ject to parametric excitation. For example, Buks and Roukes
[15] studied the mechanical properties of an electrically ac-
tuated array of doubly-clamped beams parametrically ex-
cited at primary resonance, Lifshitz and Cross [16] derived
the equations of motion of an array composed by nonlinear
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oscillators under parametric resonance and Gutschmidt et
al. [17] have studied the collective dynamics of small and
large arrays of NEMS subject to both parametric and inter-
nal resonances.

In this paper, the nonlinear dynamics of an array of
coupled NEMS subject to parametric and internal reso-
nances is investigated. The developed model is multiphysics
and includes the main sources of nonlinearities with an
expansion of the electrostatic force in Taylor series up to
the fifth-order to allow the capture of the mixed behavior
[1]. A perturbation technique (multiple scales method) and
the Galerkin discretization method are used to transform
the continuum model into a system having finite degrees
of freedom. 1:1 internal resonance is considered to derive
general equations of phase and amplitude modulations for
each cantilever. These equations are solved numerically in
order to investigate the effects of several design parame-
ters on the collective dynamics of the considered device in
terms of energy and bifurcation topology transfers.

2 Design and Model

The considered device is particularly composed by N cou-
pled NEMS. The first beam has a length l1 and the N − 1
last beams have the same length different from the first one.
The first nanocantilever is subject to electrostatic forces
provided by electrode E as shown in Figure 1. In practice,
the electrode E has the same length as the first nanocan-
tilever (l1), in order to actuate only the first beam, and it is
subject to the electric load v(t̃) = Vdc + Vac cos(Ω̃t̃), where
Vdc is the dc polarization voltage, Vac is the amplitude of
the applied ac voltage, t̃ is the time and Ω̃ is the excitation
frequency. The overhang is polarized by the dc voltage al-
lowing a linear coupling between the nanocantilevers.

3 Analytical solving

By means of the extension of the nonlinear equations of
motion describing the flexural vibrations of a single nanocan-
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Fig. 1. An array of N NEMS linearly coupled via the overhang.
Only the first nanocantilever is actuated in-plane by the electrode
E and ln = Rn ∗ l1 where n ∈ {2, 4, ...,N}.

tilever electrostatically actuated and based on the extended
Hamilton principle [18], the mathematical model of the de-
sign of Figure 1 is derived (Equation (1)), by taking into ac-
count the linear coupling between each adjacent nanocan-
tilevers.
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where ∂s and ∂t̃ denote respectively the partial differentia-
tion with respect to the arclength s and to the time t̃, n ∈
{1, ...,N}, w̃n(s, t̃), ln, b and h are respectively the in-plane
bending deflection, the length, the width and the thick-
ness in the direction of vibration of a nanocantilever, w̃0 =
w̃N+1 = 0, E is the Young’s modulus and I is the geometri-
cal moment of inertia of the cross section, g is the capacitor
gap, ρ is the material density, ε is the dielectric constant
of the gap medium, d̃ is the linear term of coupling be-
tween each adjacent NEMS. ∆1n is the Kronecker symbol
(∆1n = 1 if n = 1 and otherwise ∆1n = 0) which indicates
that only the first NEMS is subject to the electrostatic force
and to the Van Der Pol damping via the parameter η̃n. The
boundary conditions are:

w̃n(0, t̃) = ∂sw̃n(0, t̃) = ∂s,sw̃n(ln, t̃) = ∂s,s,sw̃n(ln, t̃) = 0 (2)
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The expressions of the nondimensional parameters cn, δ1,
δ2, δ3, Rn, Ω, d and ηn introduced in Equation (3) are
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The ultimate goal is to derive the amplitude and phase
equations of this array of NEMS. The first step is to in-
vestigate the 1:1 internal resonance in this system. The ex-
pressions of the natural frequencies ωk of the NEMS cor-
responding to the first bending mode are obtained by us-
ing the Galerkin decomposition on Equation (3). Then, the
condition of commensurability between ωk is obtained by∑m

k=1 Ck ωk = 0 where Ck are positive or negative inte-
gers and m > 2 is the number of the used nanocantilevers.
In our case of the 1:1 IR, the integers Ck are equal to 1.
Since only the first NEMS is electrostatically actuated, the
occurence of IR between the two first beams depends on
the dc polarization. Furthermore, for slight linear coupling
(small values of d), the closed-form solution of the driving
voltage Vdc(1:1) which enables the existence of the 1:1 IR is
identified in term of design parameters

Vdc(1:1) = f (g, h, E, l1, ρ, ε,R2) (5)

Then, the modal decomposition coupled with the multiple
scales method are applied on the set of the resulting equa-
tions, by considering that the first NEMS is subject to the
parametric electrostatic actuation while 1:1 IR is taken into
account between each adjacent NEMS. In order to describe
these two conditions, we introduce the detuning parameter
σ as following

Ω = ω1 + ξ2 σ
ωn+1 = ωn + ξ2 σ, n ∈ {1, ...,N − 1} (6)

where ξ is a small expansion parameter and ωn is the nat-
ural frequency of the nth beam at the first bending mode.
Yet, we derive the amplitude and phase equations corre-
sponding to the different nanobeams.

4 Numerical simulations

The amplitude and phase equations are numerically solved
in order to provide the frequency responses of the 1:1 IR
configuration by considering the closed-form solution of
the driving voltage (Equation (5)). For example, we con-
sider the design of Table 1 to investigate the effects of the
parameters Vac, η1, Q1 and d on the response of a two-
beam array. These simulations are represented in Figures
2, 3, 4 and 5 where w1−max and w2−max correspond to the
maximum amplitudes respectively of the first and the sec-
ond nanocantilevers, Bi, i ∈ {1, ..., 5} are the bifurcation
points and the continous and dashed lines are respectively
the stable and unstable branches. We suppose that the two
cantilevers vibrate in phase quadrature and we represent
only the non-zero solutions, since they contain the main
dynamical aspects. For convenience, we introduce the vari-
able σ̂ = σ

σ(B3) which permits to display several curves on
the same graph while varying design parameters, where B3
corresponds to the peak amplitude (as shown in Figures 2,
3, 4 and 5).

4.1 Effects of the amplitude voltage Vac

Firstly, the effects of Vac on the array’s behavior are shown
in Figure 2, by varying the value of the ac voltage (0.6
and 0.9 V). When increasing Vac, the initially mixed re-
sponse of the first nanocantilever of Figures 2 (a) leans to
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Table 1. Design parameters of the investigated resonator.

Design l1 (µm) h (nm) b (nm) g (µm)

1 3 100 200 3.5

V   = 0.9 V ac 

B 1 

B 3 

B 2 

(a) 

(b) 

B 4 

V   = 0.6 V ac 

V   = 0.9 V ac 
V   = 0.6 V ac 

B 1 B 5 

B 2 

B 3 

B 5 

B 4 

B 1 

B 3 

B 2 

B 4 

B 1 B 5 

B 2 

B 3 

B 5 

B 4 

Fig. 2. Analytical forced frequency responses under 1:1 IR of
(a) the first and (b) the second nanocantilevers with l1 = 3 µm,
h = 100 nm, d = 0.001, R2 = 1.1, b = 200 nm, Q1 = 10000,
η1 = 300, g = 3.5 µm and various Vac. The continous and dashed
lines are the stable and unstable branches, respectively.

the left enabling the capture of a more pronounced mixed
behavior. It is due to the fact that the equation of motion
of the first beam contains the nonlinear electrostatic terms
derived from the Taylor series expansion of the actuation
force up to the fifth-order. Interestingly, Figure 2 (b) shows
that the second nanocantilever exhibits a mixed behavior,
despite the fact that its equation of motion does not contain
the nonlinear electrostatic terms since it is not directly ex-
cited by the electrostatic force. This illustrates the property
of the bifurcation topology transfer between the NEMS im-
posed by the first nanocantilever.

4.2 Effects of the Van Der Pol parameter η1

The effects of the nonlinear parameter η1 are illustrated in
Figure 3. This parameter acts on the VDP damping and af-
fects both the energy of the first beam and the energy trans-
ferred to the second NEMS. While taking into account the
highest values of damping in our configurations (Figure
3, η1 = 700), the energy dissipation is considerable. So,
the transferred energy is reduced producing small oscilla-
tion amplitudes. However, for the lowest values of damp-
ing (η1 = 300), the first oscillator provides higher energy

h   = 300 1 
h   = 700 1 
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B 3 

B 2 

B 2 

B 4 

(a) 

(b) 

B 1 

B 4 

B 5 

h   = 300 1 
h   = 700 1 B 3 

B 2 

B 2 

B 4 

B 1 
B 4 B 1 

B 5 

B 3 

B 3 

Fig. 3. Analytical forced frequency responses under 1:1 IR of
(a) the first and (b) the second nanocantilevers with l1 = 3 µm,
h = 100 nm, d = 0.001, R2 = 1.1, b = 200 nm, Q1 = 10000,
Vac = 0.6 V , g = 3.5 µm and various η1.

to actuate the second beam and consequently will amplify
its oscillation amplitude.

4.3 Effects of the quality factor Q1

The frequency responses for various values of the quality
factor Q1, are represented in Figure 4. The quality factor
parameter affects the linear dissipation mechanism via the
damping parameter of the first NEMS c1. Hence, it acts
also on the Van Der Pol damping proportional to η1 c1. If
Q1 increases, the damping parameter c1 is reduced yield-
ing to the decrease of the energy losses. Figures 4 (a) and
(b) show a mixed-type behavior for both beams. For each
nanocantilever, the modal amplitudes corresponding to Q1 =
12000 are higher than those obtained for Q1 = 10000.

4.4 Effects of the linear coupling d

Finally, we vary the value of the linear coupling d while
keeping the other design parameters constant. Figure 5 shows
that when increasing d (d = 0.001), the transverse dis-
placement amplitudes w1−max and w2−max are amplified. The
variation of d produces also the translation of the frequency
response along the x-axis. This effect is not readable in this
representation because we use σ̂ instead of σ.

5 Conclusion

We have developed an analytical model for the nonlinear
dynamics of an array of N coupled NEMS excited by an
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Fig. 4. Analytical forced frequency responses under 1:1 IR of
(a) the first and (b) the second nanocantilevers with l1 = 3 µm,
h = 100 nm, d = 0.001, R2 = 1.1, b = 200 nm, Vac = 0.6 V ,
g = 3.5 µm , η1 = 300 and various Q1.
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Fig. 5. Analytical forced frequency responses under 1:1 IR of
(a) the first and (b) the second nanocantilevers with l1 = 3 µm,
h = 100 nm, Q1 = 10000, R2 = 1.1, b = 200 nm, Vac = 0.6 V ,
g = 3.5 µm , η1 = 300 and various d.

electrostatic force under parametric actuation and 1:1 in-
ternal resonance. This model includes electrostatic, iner-
tial and geometric nonlinearities. In addition, the nanocan-
tilevers are linearly coupled via the overhang.

After the investigation of internal resonance occurrence
between each adjacent NEMS, the amplitude and phase
equations are derived using the multiple time scales and the
Galerkin discretization methods. Then, we have computed
parametrically the periodic solutions of these two equa-
tions subject to 1:1 IR, with respect to the phase. Based
on numerical simulations of the frequency responses, we
have demonstrated the effects of several design parameters
on the nonlinear behavior of a two-beam array for several
configurations. Especially, we have demonstrated that the
bifurcation topology is imposed by the first nanocantilever,
electrostatically actuated.
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