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EFFICIENCY OF AUTOMATA IN SEMI-COMMUTATIONVERIFICATION TECHNIQUESGérard Cé
é1, Pierre-Cyrille Héam1 and Yann Mainier1Abstra
t. Computing the image of a regular language by the transi-tive 
losure of a relation is a 
entral question in Regular Model Che
k-ing. In a re
ent paper Bouajjani, Mus
holl and Touili [7℄ provedthat the 
lass of regular languages L � 
alled APC � of the form

∪jL0,jL1,jL2,j . . . Lkj ,j , where the union is �nite and ea
h Li,j is eithera single symbol or a language of the form B
∗ with B a subset of thealphabet, is 
losed under all semi-
ommutation relations R. Moreovera re
ursive algorithm on the regular expressions was given to 
ompute

R
∗(L). This paper provides a new approa
h, based on automata, forthe same problem. Our approa
h produ
es a simpler and more e�-
ient algorithm whi
h furthermore works for a larger 
lass of regularlanguages 
losed under union, interse
tion, semi-
ommutation relationsand 
onjuga
y. The existen
e of this new 
lass, PolC, answers the openquestion proposed in the paper of Bouajjani and al.1991 Mathemati
s Subje
t Classi�
ation. 68N30.1. Introdu
tionA semi-
ommutation relation R allows to express rewriting of words su
h as

xaby → xbay, provided (a, b) ∈ R. Semi-
ommutations are used in several do-mains, for instan
e as a model of parallelism in Mazurkiewi
z tra
e theory [11℄,in partial order redu
tion te
hniques [14℄, or to express ex
hange of a pie
e ofinformation between neighbouring pro
esses in linear or ring networks. In regularmodel 
he
king [3, 5, 6℄, a key point is the 
omputation of the image of a regularlanguage by the transitive 
losure of a relation. However, su
h 
omputation, inKeywords and phrases: regular model 
he
king, veri�
ation, parametri
 systems, semi-
om-mutations
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the 
ase of semi-
ommutation relations, may lead to non regular languages. The
lassi
al example is the following one: let L = (ab)∗ and R = {(a, b)}. Then,
R∗(L)∩ b∗a∗ = {bnan | n ∈ N}. Therefore R∗(L) is not regular. In [7℄, Bouajjani,Mus
holl and Touili sear
hed for a 
lass of regular languages 
losed under all semi-
ommutation relations. They de�ned the 
lass APC (�nite union of produ
ts oflanguages of the form a0 or {a1, a2, . . . , an}∗ with ai's single symbols) and gave analgorithm to 
ompute R∗(L) for any APC L and any semi-
ommutation relation
R. Unfortunately, their algorithm is based on a series of mutually re
ursive trans-formations on the regular expressions de�ning the APC. During the 
omputation,at ea
h intermediate stage, the size of the APC is multiplied, whi
h indu
es a�nal result of exponential size. Moreover, as they have proved that the in
lusionproblem for APC is PSPACE 
omplete, there is no pra
ti
al way of simplifyingthe intermediate APC during 
omputation.In this paper, we use a 
ompletely di�erent approa
h. Instead of working onregular expressions, we use automata. This results in a simpler and, as 
on�rmedby some experiments, mu
h more e�
ient te
hnique. In addition to leading to amore 
ompa
t representation, using automata also makes the use of other te
h-niques of regular model 
he
king easier as these te
hniques are mainly based onautomata.As advo
ated by [7℄, APC is an interesting sub
lass of regular languages; severalveri�
ation problems (sliding window proto
ols, parameterized mutual ex
lusionproto
ols, et
.) 
an be modeled with them. An open question was the existen
e ofa larger 
lass than APC, satisfying the same good 
losure properties. By investigat-ing polynomial 
losure of varieties of regular languages, we give a positive answerto this question with the 
lass PolC (polynomial 
losure of 
ommutative regularlanguages) 
omposed of �nite unions of languages of the form L0a0L1a1 . . . akLkwhere the ai's are single symbols and the Li's are 
ommutative regular languages,that is languages that satisfy: ∀a, b ∈ A∀x, y ∈ A∗(xaby ∈ Li =⇒ xbay ∈ Li),with A an alphabet. This 
lass allows to des
ribe languages su
h as: L1dL2,with L1 = {u ∈ {a, b}∗ | |u|b is even and |u|a is even} and L2 = {u ∈ {a, d}∗ |
|u| is odd}.Related WorkRegular model 
he
king [3, 5, 6℄ is an approa
h to verify in�nite state systems.One represents, symboli
ally, sets of states by regular languages and one developsmeta-transitions whi
h 
an 
ompute, in one step, in�nite sets of su

essors. Thisamounts to 
ompute R∗(L) for a given regular language L and a given relation Rrepresenting a subset of the transition relation T of the system. The transitionrelation T 
an be de
omposed into several sub relations Ri (of semi-
ommutationor something else), ea
h of them implying their ad-ho
 te
hniques of 
omputation.As most of the developed te
hniques are based on automata, it is more e�
ientand 
onsistent to use automata during the whole 
omputation. This last remarkis another plus for our te
hnique 
ompared to that of [7℄.Polynomial 
losure of varieties of regular languages is an operation widely stud-ied in the literature (see for example [8, 9, 24, 28℄). In this paper we 
onsider the2



languages of level 3/2 in the Straubing-Thérien hierar
hy [26,29℄ whi
h representsthe 
urrent border for de
idability problems and whose stru
ture makes them suit-able for veri�
ation of 
ertain systems [1, 2, 7, 30℄. De
omposable languages is a
lass of regular languages used for the simulation of pro
ess algebra [21℄. It was
onje
tured in [25℄ that this 
lass was exa
tly PolC. However this 
onje
ture hasjust been invalidated in [15℄. Finally, looking for the maximal (positive) variety
losed under an operator is widely studied in the literature. One 
an 
ite the resultfor the shu�e operator for varieties [13, 22℄ and for positive varieties [16℄.Layout of the PaperIn Se
t. 2 we re
all the basi
 notions and notations. Then in Se
t. 3 wegive the main result of the paper: the key 
onstru
tion whi
h allows the use ofautomata in 
omputation of the transitive 
losure of ad ho
 regular languages bya semi-
ommutation relation. In Se
t. 4, we 
ompare, in theory and in pra
ti
e,the two approa
hes, the one manipulating regular expressions [7℄ and ours usingautomata. Then we extend, in Se
t. 5 the 
lass of regular languages for whi
hthis 
omputation is feasible. Finally, we 
on
lude in Se
t. 6.2. Ba
kground and NotationsWe assume that the reader has a basi
 ba
kground in �nite automata theory.For more information on automata the reader is referred to [4, 18℄.Re
all that a �nite automaton is a 5-tuple A = (Q, A, E, I, F ) where Q is a�nite set of states, A is the alphabet, E ⊆ Q × A × Q is the set of transitions,
I ⊆ Q is the set of initial states and F ⊆ Q is the set of �nal states. If A isa �nite automaton, L(A) denotes the language a

epted by A. If C ⊆ Q and
D ⊆ Q, AC,D denotes the automaton (Q, A, E, C, D). Moreover, for all p ∈ Q,
p · a = {q ∈ Q | (p, a, q) ∈ E}. If p · a = {q} is a singleton, we also write p · a = q.In this paper, minimal automata are deterministi
 but not ne
essary 
omplete.If u ∈ A∗, Conj(u) = {vw | wv = u} denotes the set of its 
onjugated words.This notion is extended to languages as follows

Conj(L) =
⋃

u∈L

Conj(u).If u is a �nite word, α(u) denotes the set of letters o

urring in u. This notionis extended to languages: α(L) =
⋃

u∈L α(u).A semi-
ommutation R is a relation on A whi
h does not 
ontain the identity.Given a �nite word u on A, we denote by R(u) the language {xbay | x, y ∈
A∗, (a, b) ∈ R and xaby = u} and by R∗(u) the language {u}∪ ∪k≥1R

k(u). Thesenotions are extended to languages by
R(L) =

⋃

u∈L

R(u) and R∗(L) =
⋃

u∈L

R∗(u).3



Given two words u and v in A∗, the shu�e of u and v, denoted u v, is theset of words of the form u1v1 . . . unvn su
h that u = u1 . . . un and v = v1 . . . vn.The R-shu�e of u and v, denoted u R v is similar but with the added 
ondition:
α(ui) × α(vj) ⊆ R for all j < i. The intuition is as follows. To 
onstru
t the set
u R v, one �rst starts from uv, then one adds all the words obtained by the
ommutation of two su

essive letters ab in an already added word and su
h that
a belongs to u, b belongs to v and (a, b) belongs to R.The R-shu�e operation is extended to languages L and K of A∗ by

L R K =
⋃

u∈L,v∈K

u R v.As stated in the following proposition [12℄, it is important to be able to 
omputethe R-shu�e of two languages sin
e this is the key whi
h allows the 
omputationof the transitive 
losure of a produ
t of R-
losed languages.Proposition 2.1 ( [12℄). Let L1, . . . , Ln be n R-
losed sets, i.e. su
h that forevery i, 1 ≤ i ≤ n, Li = R∗(Li), then we have:
R∗(L1L2 . . . Ln) = L1 R (L2 R (· · · (Ln−1 R Ln) · · · ))Now, let us re
all the formal de�nition of the 
lass APC given in [7℄.De�nition 2.2 ( [7℄). Let A be a �nite alphabet. An atomi
 expression over A iseither a letter a of A or a star expression {a1, . . . , an}∗, where {a1, . . . , an} ⊆ A.A produ
t p over A∗ is a 
on
atenation e1 . . . en of atomi
 expressions e1, . . . , enover A. An Alphabeti
 Pattern Constraint (APC) over A∗ is an expression of theform ∪i≤npi, where pi are produ
ts over A∗.Sin
e an APC language L is a �nite union of produ
ts of trivially R-
losedlanguages (single symbols or star expressions of subsets of the alphabet), 
omput-ing R∗(L) is redu
ed to the 
omputation of the R-shu�e of languages. Sin
e [7℄provides an algorithm to 
ompute the R-shu�e of two APC's, whi
h is also anAPC, R∗(L) is 
omputable. In the next se
tion we give an automata approa
h for
omputing the R-shu�e of two regular languages.3. R-shuffle Produ
t and Finite AutomataWe present our �rst main result: how to 
ompute the R-shu�e automaton oftwo regular languages given by �nite automata. The method used is based on the
lassi
al one for 
omputing the shu�e of two regular languages. That is to say,
onstru
t a new automaton whose transitions are either from the �rst or from these
ond automaton. This implies that a state of that new automaton is a 
ouple ofstates of the two given automata. Now we have to guarantee that the 
ondition

α(ui)× α(vj) ⊆ R for all j < i is also ful�lled. To do this, it su�
es to memorizethe set of letters read by the se
ond automaton (re
ognizing v) and to guarantee4



that we only read letters in the �rst automaton (re
ognizing u) whi
h 
ommutewith all the memorized letters.Proposition 3.1. Let A1 = (Q1, A, E1, I1, F1) and A2 = (Q2, A, E2, I2, F2) be two�nite automata and R a semi-
ommutation relation over A. If B ⊆ α(L(A2)), wedenote by ←−B the set {a ∈ α(L(A1)) | {a} × B ⊆ R} and by ←→B the set {b ∈
α(L(A2)) |

←−
B × {b} ⊆ R}.The �nite automaton A = (Q, A, E, I, F ) de�ned by:- Q = Q1 ×Q2 × P(A),- I = {(p1, p2,

←→
∅ ) | p1 ∈ I1, p2 ∈ I2},- F = {(p1, p2, B) | p1 ∈ F1, p2 ∈ F2, B ⊆ A},- E = G1 ∪G2, with

G1 = {((p1, p2, B), a, (q1, p2, B)) | p1 ∈ Q1, p2 ∈ Q2, q1 ∈ p1 · a, B ⊆

A and a ∈
←−
B} and

G2 = {((p1, p2, B), b, (p1, q2,
←−−−→
B ∪ {b})) | p1 ∈ Q1, p2 ∈ Q2, q2 ∈ p2 ·

b, B ⊆ A}.is denoted A1 R A2 and a

epts L(A1) R L(A2).Example 3.2. Consider the following �nite automata A1 and A2:1 2 3 4b

b

d

c da a

and the semi-
ommutation relation R = {(b, c), (b, d), (a, c)}. One has:
B

←−
B

←→
B

∅ {a, b} {c}
{c} {a, b} {c}
{d} {b} {c, d}
{c, d} {b} {c, d}5



Then, A1 R A2 is the following automaton (we only represent a

essible states):
1, 3, {c}

1,4,{
,d}
2, 3, {c}

2, 4, {c, d}

b

b

b

b

d d

a, c

d d

a, c

Let us remark that if in Proposition 3.1 we repla
e G2 by the set of transitions
G′2 = {((p1, p2, B), b, (p1, q2, B ∪ {b})) | p1 ∈ Q1, p2 ∈ Q2, q2 ∈ p2 · b, B ⊆ A}and I by I ′ = {(p1, p2, ∅) | p1 ∈ I1, p2 ∈ I2}, we also obtain a �nite automatonre
ognizing L(A1) R L(A2) and easier to 
onstru
t but with a larger number ofstates. To get the intuition, let us re
all that the role of B is to memorise the unionof the α(vj) appearing in the de�nition of the R-shu�e. But indeed, its e�e
t is to
onstraint the transitions of A1 to 
onsider at a given step (see de�nition of G1).So the real information is ←−B . And as we will see, ←−B =

←−←→
B and B ⊆

←→
B . Thus itis an optimization to use ←→B instead of B.Now we prove Proposition 3.1.Proof. First we prove some te
hni
al properties of the fun
tions ←−· and ←→· .(i) For all B ⊆ α(L(A2)), B ⊆

←→
B : let b ∈ B. By de�nition of ←−B , for ea
h

a ∈
←−
B , (a, b) ∈ R. Thus b ∈

←→
B .(ii) For all B ⊆ α(L(A2)),←−←→B =
←−
B and←→←→B =

←→
B : by (i),←−←→B ⊆ ←−B . Conversely,by de�nition of ←→B , ←−B ×←→B ⊆ R. Consequently, ←−B ⊆ ←−←→B . It follows that

←−←→
B =

←−
B and thus ←→←→B =

←→
B .(iii) For all b ∈ α(L(A2)), ←−−−−→←→

B ∪ {b} =
←−−−→
B ∪ {b}: by de�nition, a letter a belongsto←−−−−−B ∪ {b} if and only if a ∈

←−
B and (a, b) ∈ R. By (ii), ←−←→B =

←−
B . It followsthat a ∈

←−−−−−
B ∪ {b} if and only if a ∈

←−←→
B and (a, b) ∈ R. Consequently,

←−−−−−←→
B ∪ {b} =

←−−−−−
B ∪ {b}, and thus ←−−−−→←→

B ∪ {b} =
←−−−→
B ∪ {b}.(iv) For all B ⊆ C, ←→B ⊆

←→
C . Dire
t 
onsequen
e of the de�nitions: B ⊆ Cimplies ←−C ⊆ ←−B , whi
h implies ←→B ⊆ ←→C .Now we prove that L(A) ⊆ L(A1) R L(A2). Let w ∈ L(A). By de�ni-tion, there exists an a

epting path m in A labelled by w. This path m 
an bede
omposed into: 6



m = m1m2m3 . . .mksu
h that k is an even integer, some mi may be empty, m2i+1 (0 ≤ i ≤ (k−1)/2)only uses transitions of G1 and m2i (1 ≤ i ≤ k/2) only uses transitions of G2. Now,let us denote by ui+1 the label of m2i+1 and vi the label of m2i. By 
onstru
tion,
w = u1v1u2 . . . urvr with r = k/2, u1 . . . ur ∈ L(A1) and v1 . . . vr ∈ L(A2). We
laim that for all 1 ≤ j < i ≤ r, α(ui) × α(vj) ⊆ R. Indeed, let 1 ≤ j < i ≤ r.Assume that ui or vj is empty. Then α(ui) × α(vj) = ∅ ⊆ R. Assume now that
ui and vj are both non-empty. Let (s1, s2, B) be the �rst state of m2j . Sin
e
m2j only uses transitions of G2 and by (iii), the last state of m2j is of the form
(s1, q2,

←−−−−−→
B ∪ α(vj)). Let (p1, p2, C) be the �rst state of m2i+1. Sin
e m2i+1 onlyuses transitions of G1, its last state is of the form (r1, p2, C).

(s1, s2, B) (s1, q2,
←−−−−−−→
B ∪ α(vj))

(p1, p2, C) (r1, p2, C)

uj+1...vi−1

vj

uiBy 
onstru
tion and by (iii), C =
←−−−−−−−−−−−−−−→
B ∪ α(vjvj+1 . . . vi−1). By (iv), it follows that

←−−−−−→
B ∪ α(vj) ⊆ C. Moreover, sin
e the path m2i+1 only uses transitions of G1, ea
hletter a ∈ α(ui) has to satisfy {a} × C ⊆ R. It follows that α(ui) × α(vj) ⊆ R,proving the 
laim. Consequently, w ∈ L(A1) R L(A2).Finally we prove that L(A1) R L(A2) ⊆ L(A). Let z be in L(A1) R

L(A2). By de�nition there exist x1, y1, . . . , xn, yn, su
h that x1x2 . . . xn ∈ L(A1),
y1y2 . . . yn ∈ L(A2) for all 1 ≤ i ≤ n and for all 1 ≤ j < i ≤ n, α(xi)× α(yj) ⊆ R.Sin
e x1x2 . . . xn ∈ L(A1), there exist p0, p1, . . . , pn ∈ Q1 su
h that- p0 ∈ I1,- pn ∈ F1,- for all i ∈ {1, . . . , n}, there exists a path in A1 from pi−1 to pi labelled by

xi.Sin
e y1y2 . . . yn ∈ L(A2), there exist q0, q1, . . . , qn ∈ Q2 su
h that- q0 ∈ I2,- qn ∈ F2,- for all i ∈ {1, . . . , n}, there exists a path in A2 from qi−1 to qi labelled by
yi. 7



For all i ∈ {1, . . . , n}, let us denote by ti the word y1 . . . yi. Moreover, let t0 = ε.We 
laim that for all i ∈ {1, . . . , n}, there exists a path in A1 R A2 labelled by
xi from (pi−1, qi−1,

←−−−→
α(ti−1)) to (pi, qi−1,

←−−→
α(ti−1)) and a path in A1 R A2 labelledby yi from (pi, qi−1,

←−−−→
α(ti−1)) to (pi, qi,

←−→
α(ti)).

(pi−1, qi−1,
←−−−→
α(ti−1)) (pi, qi−1,

←−−−→
α(ti−1) (pi, qi,

←−→
α(ti))

xi yiLet i be in {1, . . . , n}. Sin
e for all j su
h that 1 ≤ j < i, α(xi) × α(yj) ⊆

R, one has α(xi) ×
←−−−→
α(ti−1) ⊆ R. Thus, by de�nition of pi−1, pi, qi−1 and by
onstru
tion of A1 R A2, there exists a path in A1 R A2 labelled by xi from

(pi−1, qi−1,
←−−−→
α(ti−1)) to (pi, qi−1,

←−−−→
α(ti−1)). Furthermore, by de�nition of qi−1, pi, qiand by 
onstru
tion of A1 R A2, there exists a path in A1 R A2 labelled by

yi from (pi, qi−1,
←−−−→
α(ti−1)) to (pi, qi,

←−→
α(ti)), proving the 
laim.Consequently, there exists a path in A1 R A2 from (p0, q0,

←→
∅ ) (an initial state)to (pn, qn,

←−−−−−−→
α(y1 . . . yn)) (a �nal state) and labelled by z. It follows that L(A1) R

L(A2) ⊆ L(A). �Remark that the automaton A1 R A2 may be non-deterministi
, even when
A1 and A2 are both deterministi
.4. Appli
ation to APCLet us �rst start by an example. Let C = {a, b, c}, D = {d, e, f} and R =
{(a, d), (c, f), (b, d), (b, e)}. Using Proposition 3.1, one has

B
←−
B

←→
B

∅ {a, b, c} ∅
{d} {a, b} {d}
{e} {b} {d, e}
{f} {c} {f}
{d, e} {b} {d, e}
{e, f} ∅ {d, e, f}
{d, f} ∅ {d, e, f}
{d, e, f} ∅ {d, e, f}Thus, the language C∗ R D∗, whi
h is indeed R∗(C∗D∗) (
f. end of Se
t. 2)is given by the following automaton: 8



∅

{d}

{f}

{d, e} {d, e, f}

e

e

d

f

d, e

f

f

a, b, c

a, b, d

b, d, e d, e, f

c, f

Using [7, Example 2℄, one obtains that R∗(C∗D∗) = {a, b, c}∗{c, f}∗ {d, e, f}∗∪
{a, b, c}∗{a, b, d}∗{b, d, e}∗{d, e, f}∗ whi
h is pre
isely the language of the automa-ton given above. The 
ompa
tness of automata is already revealed in this exampleby its sharing of the states representing respe
tively the expressions {a, b, c}∗ and
{d, e, f}∗. Indeed, as shown next, our automaton is the minimal one.Theorem 4.1. Let A be an alphabet, R a semi-
ommutation relation on A, and
C and D subsets of A su
h that C ∩D = ∅. Let A1 and A2 be the trivial minimalautomata re
ognizing C∗ and D∗, respe
tively. Then A1 R A2 is the minimalautomaton re
ognizing L(A1 R A2).Proof. A1 and A2 are respe
tively made of a single state whi
h is both initialand �nal, with loops on that state labelled by their respe
tive letters. Therefore,in what follows, we identify states of A1 R A2 with their third 
omponent.By the de�nitions of G1 and G2 in Proposition 3.1, A1 R A2 is deterministi
sin
e C ∩ D = ∅. Now, 
onsider two di�erent states ←→B1 and ←→B2 of A1 R A2(re
all that we identify states with their third 
omponent). Then, ←−←→B1 6=

←−←→
B2 (by
ontradi
tion and with the help of (ii) in the proof of Proposition 3.1). Thisimplies the existen
e of a ∈

←−←→
B1 su
h that a 6∈

←−←→
B2 (or 
onversely). By de�nition,this implies that (

←→
B1, a,

←→
B1) is a transition of A1 R A2 and this also implies theinexisten
e in A1 R A2 of a transition from ←→B2 and labelled by a. Sin
e therespe
tive single state of A1 and A2 is �nal, all rea
hable states of A1 R A2are �nal. All of this implies that ←→B1 and ←→B2 are distinguishable states and thus

A1 R A2 is minimal [18℄. �In what follows, we 
ompare our approa
h using automata with that of [7℄ usingregular expressions. 9



De�nition 4.2 ( [27℄). A �nite automaton A = (Q, A, E, I, F ) is 
alled par-tially ordered if there exists a partial order ≤ on Q su
h that for every transition
(p, a, q) ∈ E, p ≤ q.It is well known � and obvious � that partially ordered �nite automata (POFautomata for short) have the same expressivity than APC expressions. One 
aneasily 
he
k that if A1 and A2 are POF automata, then A1 R A2 is a POFautomaton too. Consequently, 
omputing the semi-
ommutation 
losure of a lan-guage given by a POF automaton with our algorithm returns a partially ordered�nite automaton. Therefore, with a simple re
urren
e using Proposition 2.1 weobtain a new proof of the stability of APC under semi-
ommutation 
losures.One 
an wonder whether our algorithm redu
es to en
oding an APC expressioninto a �nite partially ordered automaton and to apply the algorithm of [7℄ on itwhile merging equivalent states. The answer is no sin
e it was proved in [7℄ thatmerging equivalent states in a partially ordered automaton is PSPACE-
omplete.So this method would be totally ine�
ient.Using a regular expression, in our 
ase an APC, may be useful for spe
ifyinga property that one 
loses by a semi-
ommutation relation. However, even inthis 
ase, de
iding usual questions like in
lusion and membership are more easily
omputed with automata. Furthermore, a POF-automaton equivalent to an APCexpression 
an be easily 
omputed in linear time and spa
e [19℄).4.1. Theoreti
al 
omplexityFollowing [7℄, let us 
all an atomi
 expression a single symbol or a language ofthe form B∗, with B a subset of the alphabet, and a produ
t a �nite 
on
atenationof atomi
 expressions. The length of a produ
t is the number of atomi
 expres-sion 
omposing that produ
t. The size of an APC is the total number of atomi
expressions in the produ
ts 
omposing that APC.Let R be a semi-
ommutation relation over an alphabet A and p be a produ
tover A. Then, from [7℄, R∗(p) is an APC of size at most 2O(|A|(δR+1)n) with

δR = max
a∈A
{|Y | ⊆ A | {a} × Y ⊆ R}Given two automata A1 = (Q1, A, E1, I1, F1) and A2 = (Q2, A, E2, I2, F2), thenumber of states of A1 R A2 is O(2|A||Q1||Q2|) and, hen
e, its size, i.e. thenumber of its states and the number of its transitions, is O((2|A||Q1||Q2|)2). Alanguage that 
ontains only a single letter is trivially represented by an automatonof size 2 and a language of the form B∗, with B a subset of the alphabet, is alsotrivially represented by an automaton of size 1. Therefore, by Proposition 2.1,the numbre of states of the automaton we 
ompute to represents R∗(p) is atmost O(2((|A|+1)n). Then, its size is at most O(2((|A|+1)2n) whi
h is better than

2O(|A|(δR+1)n)Beside these theoreti
al 
onsiderations we give in what follows a pragmati

omparison of the two approa
hes. 10



4.2. Experimental TestsIn order to 
ompare both te
hniques, the one of [7℄ and ours, we did severaltests on randomly 
hosen produ
ts and relations. As 
riterion of 
omparison, we
hose the size of the results: number of atomi
 expressions (a letter or B∗ with
B a subset of the alphabet) for APC's and number of states and transitions forautomata. Development was a
hieved using the fun
tional language Obje
tiveCaml [20℄.As their e�e
t on the algorithms are very di�erent, we used as inputs, two kindsof produ
ts:type 1:: B∗0a1B

∗
2 . . . an−1B

∗
ntype 2:: B∗0B∗1 . . . B∗nOur pro
edure of 
omparison was as follows. For ea
h test, we set a kind ofprodu
t, a size n of the produ
t, a size |A| of the alphabet, and a size |R| of thesemi-
ommutation relation. With these given limits, we randomly generated aprodu
t and a semi-
ommutation relation. After that, we exe
uted the algorithmof [7℄, then our algorithm on the equivalent automaton of the same produ
t. Wethen measured the size of the two results. Tables 1 and 2 give a summary of thetests, ea
h result is in fa
t an average of 15 tests.Table 1. Comparison of te
hniques with respe
t to n with |A| =

10 and |R| = 5Produ
t size 2 3 5 7APC type 1 10 418 48361 897004automata type 1 28 82 333 836APC type 2 - 15 252 6402automata type 2 - 50 206 591Table 2. Comparison of te
hniques with respe
t to |R| with
|A| = 10 and n = 7Relation size 3 5 7 9APC type 1 785597 1162952 286499 4213859automata type 1 578 828 1031 1522APC type 2 7540 15153 16965 29730automata type 2 502 622 830 936All of these tests were a
hieved in less than one or two minutes on an 1.3GHzAthlon with 1GB of memory. Pro
esses implementing our te
hnique used lessthan 4MB of memory while the amount of memory of those 
orresponding to [7℄in
reased more rapidly a

ording to the size of the inputs (more than 800MB forsome tests in the right-hand 
olumns of Tables 1 and 2)11



We also applied our te
hnique to a language of type 1 with n = 40, |A| = 10 and
|R| = 10. The size of the generated automaton was about 450000 and 
omputationtakes 42 hours and 128MB were used by the pro
ess. This last kind of test wasnot feasible with the te
hnique of [7℄.5. Permutation Rewriting and Polynomial Closure ofCommutative Regular LanguagesIn this se
tion we present our se
ond main result: the extension of [7℄ to a larger
lass of regular languages. For a general referen
e on varieties of formal languagessee [23℄.A 
lass of languages V is an appli
ation whi
h asso
iates to ea
h �nite alphabet
A a set of regular languages of A∗ denoted by A∗V . A 
lass of languages V issaid to be 
losed under semi-
ommutation if for any �nite alphabet A, any semi-
ommutation relation over A and any language in L ∈ A∗V , R∗(L) ∈ A∗V .A positive variety of languages V is a 
lass of languages su
h that:(1) A∗V is 
losed under �nite union and �nite interse
tion.(2) If ϕ is a monoid morphism from A∗ into B∗, and if L ∈ B∗V , then

ϕ−1(L) ∈ A∗V .(3) If L ∈ A∗V and if a ∈ A, then a−1L and La−1 are in A∗V .A variety of languages is a positive variety of languages V su
h that for ea
h �nitealphabet A, A∗V is 
losed under 
omplement. Given a variety of languages V , thepolynomial 
losure of V , denoted PolV , is the 
lass of regular languages su
h that
L ∈ A∗PolV if and only if L is a �nite union of languages of the form

L0a1L1 · · ·akLkwith Li ∈ A∗V and ai ∈ A.The following result is proved in [24, Theorem 5.9℄:Theorem 5.1. Let V be a variety of languages. Then PolV is a positive varietyof languages.A regular language L of A∗ is said 
ommutative if for every a, b ∈ A, xaby ∈ Limplies xbay ∈ L. An automaton is said 
ommutative if q · ab = q · ba for every
ouple of letters a and b and every state q.The following equivalen
es are well known and are just re
alled.Proposition 5.2. Let L be a regular language on A∗. We have the followingequivalen
es :(1) L is 
ommutative.(2) The synta
ti
 monoide of L is 
ommutative.(3) The minimal automaton of L is 
ommutative.Note that a language re
ognized by an automaton (not ne
essarily the minimalone) whi
h is 
ommutative is 
ommutative. As an immediate 
onsequen
e, wehave : 12



Lemma 5.3. If A = (Q, A, E, i, F ) is the minimal automaton of a 
ommutativelanguage, then for all p, q ∈ Q, L(Ap,q) is a 
ommutative language.Proof. Commutativity of automata does not depend on their initial and �nalstates. �The 
lass of 
ommutative regular languages is known to be a variety of languagesand is denoted by C. Therefore, some dire
t 
onsequen
es are the following.Lemma 5.4. Let A be an alphabet:(1) A∗PolC is 
losed under 
on
atenation.(2) A regular language belongs to A∗PolC if and only if it is a �nite union of
on
atenations of regular 
ommutative languages.(3) An APC language over A∗ belongs to A∗PolC.Proof. (1) Let us take L = L0a1L1 · · ·anLn and K = K0b1K1 · · · bmKm with
Li, Kj ∈ A∗C and ai, bj ∈ A. If ε ∈ Ln then

LK = K ∪
⋃

x∈A

L0a1L1 · · · anLnx−1xK0b1K1 · · · bmKmIf ε /∈ L, then
LK =

⋃

x∈A

L0a1L1 · · ·anLnx−1xK0b1K1 · · · bmKmSin
e A is �nite, the unions are �nite. Moreover, the 
lass of 
ommutativelanguages is a variety of languages, thus Lnx−1 is a 
ommutative languageand LK is in A∗PolC.(2) From the de�nition of PolC, (1) and the fa
t that a single symbol is aregular 
ommutative language.(3) From what pre
edes and the fa
t that B∗, with B ⊆ A, is a 
ommutativelanguage.
�Now, we prove that PolC is 
losed under semi-
ommutation. Sin
e any 
om-mutative language is trivially R-
losed for all semi-
ommutation relation R, fromLemma 5.4 and Proposition 2.1 it is su�
ient to prove that Ln R Ln−1 R

· · · R L1 belongs to A∗PolC for every integer n ≥ 2 and language Li ∈ A∗C. Letus begin with n = 2.Lemma 5.5. Let A be an alphabet, L1 and L2 be two regular 
ommutative lan-guages on A, and R be a semi-
ommutation relation over A. Then L1 R L2belongs to A∗PolC.Before the proof, let us 
onsider the following example.Example 5.6. Consider the two following �nite automata A1 and A2. Theyare 
ommutative and their languages are as follows : L(A1) = {u ∈ {a, b}∗ |
|u|b is even} and L(A2) = {u ∈ {a, d}∗ | |u| is even}.13
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onstru
tive proofs of the abovelemmas, A1 R A2 is given by the following �nite automaton (transitions whi
h
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Sin
e the parts between the dashed arrows are 
ommutative and sin
e no dashedarrow belongs to a loop, L(A1 R A2) 
an be easily des
ribed as a �nite unionof 
on
atenations of 
ommutative languages (re
all that a single symbol is a 
om-mutative language). Therefore, L(A1 R A2) belongs to A∗PolC.Proof. Let A1 = (Q1, A, E1, I1, F1) and A2 = (Q2, A, E2, I2, F2) be the two min-imal automata re
ognizing L1 and L2, respe
tively. Let A = (Q, A, E, I, F ) bethe trim automaton obtained from A1 R A2. For all subsets B of α(L(A2)), wedenote by Q←→
B

the subset {(q1, q2,
←→
B ) | q1 ∈ Q1, q2 ∈ Q2} of Q and by E←→

B
thesubset E ∩Q←→

B
×A×Q←→

B
of E.Let t = ((p, q,

←→
C ), a, (p′, q′,

←→
D )) ∈ E \ ∪B⊆AE←→

B
. We 
laim that there is noloop in A1 R A2 using t: sin
e ←→C 6=←→D and by (i) � proof of Proposition 3.1 �all states a

essible from (p′, q′,

←→
D ) are of the form (r, s,

←→
B ), with ←→D ⊆ ←→B .Ea
h a

epting path m in A1 R A2 
an be de
omposed into:

m = m0t1m1t2 . . . tnmnwith ti ∈ E \ ∪B⊆AE←→
B

and mi only using transitions of E←→
Bi
. Using the above
laim, we have n ≤ |E \ ∪B⊆AE←→

B
|. Consequently, L(A1 R A2) is a �nite unionof languages of the form:

L0a1L1a2 . . . anLn,where the ai's are letters and the Li's are a

epted by �nite automata whosegraphs of transitions are (Q←→
Bi

, E←→
Bi

).By de�nition of PolC, it remains to prove that the Li's are 
ommutative lan-guages. Let B ⊆ A, we prove that (Q←→
B

, E←→
B

) is 
ommutative. Let r = (p, q,
←→
B ),

ra = (pa, qa,
←→
B ) and rab = (pab, qab,

←→
B ) three states of Q←→

B
su
h that there existtransitions ta = (r, a, ra) and tab = (ra, b, rab) in E←→

B
.

(p, q,
←→
B ) (pa, qa,

←→
B ) (pab, qab,

←→
B )

a bWith the notation of Proposition 3.1, the following 
ases o

ur:
• ta, tab ∈ G1. Sin
e A1 is minimal and sin
e L(A1) is 
ommutative, it is
ommutative. Thus there exists pb in Q1 su
h that p·b = pb and pb·a = pab.Moreover, sin
e ta and tab belong to G1, {a}×←→B ⊆ R and {b}×←→B ⊆ R.Consequently, (r, b, (pb, q,

←→
B )) and ((pb, q,

←→
B ), a, rab) are in G1 ∩ E←→

B
. Itfollows that rab ∈ r · ba.

• ta, tab ∈ G2. By a similar argument on A2, one has rab ∈ r · ba.
• ta ∈ G1, tab ∈ G2. Thus qa = q and pab = pa. Consequently, (r, b, (p, qab,
←→
B )) ∈ G2 ∩ E←→

B
and ((p, qab,

←→
B ), a, rab) ∈ G1 ∩ E←→

B
. It follows that

rab ∈ r · ba. 15



• ta ∈ G2, tab ∈ G1. By a similar argument on A2, one has rab ∈ r · ba.Consequently r · ab ⊆ r · ba. Sin
e the roles of a and b are symmetri
, then
r · ba ⊆ r · ab and thus r · ab = r · ba. Therefore, (Q←→

B
, E←→

B
) is 
ommutative, whi
h
on
ludes the proof. �To do the re
urren
e step that will lead to the stability of PolC under semi-
ommutation, let L′ and Li, with 1 ≤ i ≤ n + 1, be n + 2 
ommutative regularlanguages. Suppose we have proved that L = L′ R Ln+1Ln · · ·L1 
an be de
om-posed into a �nite union of languages of the form (L′′ R L′n+1)(L

′′′
R Ln · · ·L1with L′′, L′n+1 and L′′′ some 
ommutative regular languages. Then, by the indu
-tive hypothesis, the right part belongs to A∗PolC. By the pre
eding lemma, the leftpart also belongs to A∗PolC. And by the stability of A∗PolC under 
on
atenation,we 
on
lude that L belongs to A∗PolC.Lemma 5.7. Let A = (Q, A, E, I, F ) be a �nite automaton, L1, L2 be two lan-guages on A and R be a semi-
ommutation relation over A. The following equalityholds:

L(A) R L1L2 =
⋃

q∈Q,
C×B⊆R

(L(AI,q) R (L1 ∩B∗))(L(Aq,F ) ∩C∗) R L2)Proof. Let q ∈ Q, C×B ⊆ R and u ∈ (L(AI,q) R (L1∩B∗))(L(Aq,F )∩C∗) R

L2). Then u 
an be de
omposed into:
u = x1y1 . . . xnynz1t1 . . . zktksu
h that(1) x1 . . . xn ∈ L(AI,q), y1 . . . yn ∈ L1 ∩B∗,(2) for all 1 ≤ j < i ≤ n, α(xi)× α(yj) ⊆ R,(3) z1 . . . zk ∈ L(Aq,F ) ∩ C∗, t1 . . . tk ∈ L2,(4) for all 1 ≤ j < i ≤ k, α(zi)× α(tj) ⊆ R,Sin
e C × B ⊆ R and by (1) and (3), for all 1 ≤ i ≤ n and for all 1 ≤ j ≤ k,

α(zj)× α(yi) ⊆ R. Consequently and by (2) and (4), u ∈ L(A) R L1L2.Conversely, let u ∈ L(A) R L1L2. By de�nition of the R-shu�e, there exist
x1, . . . , xn, y1 . . . , yn ∈ A∗ su
h that(5) u = x1y1 . . . xnyn(6) for all 1 ≤ j < i ≤ n, α(xi)× α(yj) ⊆ R,(7) x1 . . . xn ∈ L(A),(8) y1 . . . yn ∈ L1L2.Statement (8) implies that there is 1 ≤ k ≤ n su
h that yk may be de
omposed into
yk = st, with s, t ∈ A∗ and y1 . . . yk−1s ∈ L1 and tyk+1 . . . yn ∈ L2. Statement (7)implies that there exists a state q su
h that x1 . . . xk ∈ L(AI,q) and xk+1 . . . xn ∈
L(Aq,F ). Now, by (5) and (6), x1y1 . . . xks ∈ L(AI,q) R (L1∩α(y1 . . . yk−1s)) and
txk+1yk+1 . . . xnyn ∈ (L(Aq,F ) ∩ α(xk+1 . . . xn)) R L2. By (6), α(xk+1 . . . xn) ×
α(y1 . . . yk−1s) ⊆ R, whi
h 
on
ludes the proof. �16



We 
an now prove the main result.Theorem 5.8. The 
lass PolC is 
losed under 
onjuga
y and semi-
ommutation.Proof. Let L0, L1, . . . , Lk be 
ommutative languages on A, a1, . . . , ak be letters of
A and L = L0a1L1a2 · · ·akLk. Let Ai be the minimal automaton of Li. One has

Conj(L) =
⋃

0≤i≤k

L(Aiqi,Fi
)ai+1L(Ai+1) . . . akL(Ak)L(A1)a1 . . . aiL(Aipi,qi

)where pi is the initial state of Ai, Fi is the set of �nal states of Ai and qi is astate of Ai. Thus using Lemmas 5.4 and 5.3, Conj(L) ∈ A∗PolC. Furthermore, if
K1 and K2 are languages of A∗, then Conj(K1 ∪K2) = Conj(K1) ∪ Conj(K2). Itfollows that PolC is 
losed under 
onjuga
y.By a dire
t indu
tion using Proposition 2.1, Lemma 5.5 and Lemma 5.7, PolCis also 
losed under semi-
ommutation. �Let us noti
e that the proof is 
onstru
tive. By Theorem 5.1 and 5.8, thepositive variety PolC is 
losed under union, interse
tion, left and right quotients,
onjuga
y and semi-
ommutations.6. Con
lusionIn this paper we proved that 
omputing the semi-
ommutation 
losure of anAPC language is in pra
ti
e more e�
ient using �nite automata representationsthan using regular expressions.Moreover, in [7℄ the question of �nding other sub
lasses of regular languageswhi
h are 
losed under union, interse
tion, produ
t, semi-
ommutation rewrit-ing and 
onjuga
y was opened. We showed that PolC, the positive variety of �-nite unions of �nite produ
ts of 
ommutative languages, 
ontains APC languagesand has these 
losure properties. Furthermore, using �nite automata the semi-
ommutation 
losure of a language of this kind is e�e
tively 
omputable. Howeverwe do not know whether this 
lass is maximal. A solution may be found in [16℄where the maximal positive variety 
losed under the shu�e operation is exhibited.We do not know neither whether PolC is de
idable.In pra
ti
e, we may want to 
ompute the transitive 
losure, by a semi-
ommutationrelation, of a regular language whi
h does not ne
essarily belong to a 
lass stableby all semi-
ommutation relations. We investigated this problem, in a separatework [10℄. We mainly used the fa
t that our te
hnique of 
omputing the R-shu�eworks on any two regular languages. This allowed us to 
ompute the rea
habilityset of a lift-
ontroller whose transition relation is not only 
omposed by semi-
ommutations and whose rea
hability set does not belong to a 
lass stable by allsemi-
ommutation relations.A
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