Theoretical Informatics and Applications Will be set by the publisher
Informatique Théorique et Applications

EFFICIENCY OF AUTOMATA IN SEMI-COMMUTATION
VERIFICATION TECHNIQUES

GERARD CECE!, PIERRE-CYRILLE HEAM! AND YANN MAINIER!

Abstract. Computing the image of a regular language by the transi-
tive closure of a relation is a central question in Regular Model Check-
ing. In a recent paper Bouajjani, Muscholl and Touili [7] proved
that the class of regular languages L — called APC - of the form
U]‘LO,J’LLJ’LQ,J’ e ij o where the union is finite and each Li,j is either
a single symbol or a language of the form B* with B a subset of the
alphabet, is closed under all semi-commutation relations R. Moreover
a recursive algorithm on the regular expressions was given to compute
R*(L). This paper provides a new approach, based on automata, for
the same problem. Our approach produces a simpler and more effi-
cient algorithm which furthermore works for a larger class of regular
languages closed under union, intersection, semi-commutation relations
and conjugacy. The existence of this new class, PolC, answers the open
question proposed in the paper of Bouajjani and al.

1991 Mathematics Subject Classification. 68N30.

1. INTRODUCTION

A semi-commutation relation R allows to express rewriting of words such as
xaby — xzbay, provided (a,b) € R. Semi-commutations are used in several do-
mains, for instance as a model of parallelism in Mazurkiewicz trace theory [11],
in partial order reduction techniques [14], or to express exchange of a piece of
information between neighbouring processes in linear or ring networks. In regular
model checking [3,5,6], a key point is the computation of the image of a regular
language by the transitive closure of a relation. However, such computation, in

Keywords and phrases: regular model checking, verification, parametric systems, semi-com-
mutations

L LIFC ; CNRS FRE 2661 — Projet INRTA-CASSIS ; Université de Franche-Comté ; 16 route
de Gray ; 25030 Besancon Cedex-FRANCE. e-mail: {Gerard.Cece, Pierre-Cyrille.Heam,

Yann.Mainier}Quniv-fcomte.fr
© EDP Sciences 1999

the case of semi-commutation relations, may lead to non regular languages. The
classical example is the following one: let L = (ab)* and R = {(a,b)}. Then,
R*(L)Nb*a* = {b"a™ | n € N}. Therefore R*(L) is not regular. In [7], Bouajjani,
Muscholl and Touili searched for a class of regular languages closed under all semi-
commutation relations. They defined the class APC (finite union of products of
languages of the form ag or {a1,as,...,a,}* with a;’s single symbols) and gave an
algorithm to compute R*(L) for any APC L and any semi-commutation relation
R. Unfortunately, their algorithm is based on a series of mutually recursive trans-
formations on the regular expressions defining the APC. During the computation,
at each intermediate stage, the size of the APC is multiplied, which induces a
final result of exponential size. Moreover, as they have proved that the inclusion
problem for APC is PSPACE complete, there is no practical way of simplifying
the intermediate APC during computation.

In this paper, we use a completely different approach. Instead of working on
regular expressions, we use automata. This results in a simpler and, as confirmed
by some experiments, much more efficient technique. In addition to leading to a
more compact representation, using automata also makes the use of other tech-
niques of regular model checking easier as these techniques are mainly based on
automata.

As advocated by [7], APC is an interesting subclass of regular languages; several
verification problems (sliding window protocols, parameterized mutual exclusion
protocols, etc.) can be modeled with them. An open question was the existence of
alarger class than APC, satisfying the same good closure properties. By investigat-
ing polynomial closure of varieties of regular languages, we give a positive answer
to this question with the class PolC (polynomial closure of commutative regular
languages) composed of finite unions of languages of the form LoagLia; ...axLg
where the a;’s are single symbols and the L;’s are commutative regular languages,
that is languages that satisfy: Va,b € AVa,y € A*(xaby € L; = zbay € L,),
with A an alphabet. This class allows to describe languages such as: LijdLs,
with Ly = {u € {a,b}* | |u|p is even and |u|, is even} and Lo = {u € {a,d}* |
|u| is odd}.

Related Work

Regular model checking [3,5,6] is an approach to verify infinite state systems.
One represents, symbolically, sets of states by regular languages and one develops
meta-transitions which can compute, in one step, infinite sets of successors. This
amounts to compute R*(L) for a given regular language L and a given relation R
representing a subset of the transition relation T' of the system. The transition
relation T' can be decomposed into several sub relations R; (of semi-commutation
or something else), each of them implying their ad-hoc techniques of computation.
As most of the developed techniques are based on automata, it is more efficient
and consistent to use automata during the whole computation. This last remark
is another plus for our technique compared to that of [7].

Polynomial closure of varieties of regular languages is an operation widely stud-
ied in the literature (see for example [8,9,24,28]). In this paper we consider the

2

languages of level 3/2 in the Straubing-Thérien hierarchy [26,29] which represents
the current border for decidability problems and whose structure makes them suit-
able for verification of certain systems [1,2,7,30]. Decomposable languages is a
class of regular languages used for the simulation of process algebra [21]. Tt was
conjectured in [25] that this class was exactly PolC. However this conjecture has
just been invalidated in [15]. Finally, looking for the maximal (positive) variety
closed under an operator is widely studied in the literature. One can cite the result
for the shuffle operator for varieties [13,22] and for positive varieties [16].

Layout of the Paper

In Sect. 2 we recall the basic notions and notations. Then in Sect. 3 we
give the main result of the paper: the key construction which allows the use of
automata in computation of the transitive closure of ad hoc regular languages by
a semi-commutation relation. In Sect. 4, we compare, in theory and in practice,
the two approaches, the one manipulating regular expressions [7] and ours using
automata. Then we extend, in Sect. 5 the class of regular languages for which
this computation is feasible. Finally, we conclude in Sect. 6.

2. BACKGROUND AND NOTATIONS

We assume that the reader has a basic background in finite automata theory.
For more information on automata the reader is referred to [4,18].

Recall that a finite automaton is a 5-tuple A = (Q, A, E, I, F) where Q is a
finite set of states, A is the alphabet, E C @Q x A x @ is the set of transitions,
I C Q is the set of initial states and F C @ is the set of final states. If A is
a finite automaton, L(A) denotes the language accepted by A. If C C @ and
D C @, Ac,p denotes the automaton (Q, A, E,C, D). Moreover, for all p € Q,
p-a={qe Q]| (pa,q) € E}. Iif p-a={q} is a singleton, we also write p-a = q.
In this paper, minimal automata are deterministic but not necessary complete.

If u € A*, Conj(u) = {vw | wv = u} denotes the set of its conjugated words.
This notion is extended to languages as follows

Conj(L) = | J Conj(u).

ueL

If w is a finite word, a(u) denotes the set of letters occurring in u. This notion
is extended to languages: a(L) =, a(u).

A semi-commutation R is a relation on A which does not contain the identity.
Given a finite word u on A, we denote by R(u) the language {zbay | z,y €
A* (a,b) € R and xaby = u} and by R*(u) the language {u} UUg>1 R*(u). These
notions are extended to languages by

R(L)=|J R(u) and R*(L)=|]JR"(u).

u€eL uel
3

Given two words u and v in A*, the shuffle of u and v, denoted u Ly v, is the
set of words of the form vy ...unv, such that v = u;...u, and v = vy ...v,.
The R-shuffle of u and v, denoted w LLk v is similar but with the added condition:
a(u;) x a(v;) C R for all j < i. The intuition is as follows. To construct the set
u LR v, one first starts from wwv, then one adds all the words obtained by the
commutation of two successive letters ab in an already added word and such that
a belongs to u, b belongs to v and (a, b) belongs to R.

The R-shuffle operation is extended to languages L and K of A* by

Lugr K = U U LLIR V.
ueL,veK

As stated in the following proposition [12], it is important to be able to compute
the R-shuffle of two languages since this is the key which allows the computation
of the transitive closure of a product of R-closed languages.

Proposition 2.1 ([12]). Let Li,...,L, be n R-closed sets, i.e. such that for
every i, 1 <i<n, L, = R*(L;), then we have:

R*(Lng .. Ln) =L (LQ LLIR (e (Ln—l LR Ln) T))

Now, let us recall the formal definition of the class APC given in [7].

Definition 2.2 ([7]). Let A be a finite alphabet. An atomic expression over A is
either a letter a of A or a star expression {a1,...,a,}*, where {a1,...,a,} C A.
A product p over A* is a concatenation e ...e, of atomic expressions eq,...,e,
over A. An Alphabetic Pattern Constraint (APC) over A* is an expression of the
form U;<,p;, where p; are products over A*.

Since an APC language L is a finite union of products of trivially R-closed
languages (single symbols or star expressions of subsets of the alphabet), comput-
ing R*(L) is reduced to the computation of the R-shuffle of languages. Since [7]
provides an algorithm to compute the R-shuffle of two APC’s, which is also an
APC, R*(L) is computable. In the next section we give an automata approach for
computing the R-shuffle of two regular languages.

3. R-SHUFFLE PRODUCT AND FINITE AUTOMATA

We present our first main result: how to compute the R-shuffle automaton of
two regular languages given by finite automata. The method used is based on the
classical one for computing the shuffle of two regular languages. That is to say,
construct a new automaton whose transitions are either from the first or from the
second automaton. This implies that a state of that new automaton is a couple of
states of the two given automata. Now we have to guarantee that the condition
a(u;) x a(v;) € R for all j < i is also fulfilled. To do this, it suffices to memorize
the set of letters read by the second automaton (recognizing v) and to guarantee

4

that we only read letters in the first automaton (recognizing u) which commute
with all the memorized letters.

Proposition 3.1. Let Ay = (Q1, A, E1, 11, F1) and As = (Q2, A, Es, I, F5) be two
finite automata and R a semi-commutation relation over A. If B C a(L(Az)), we

denote by B the set {a € a(L(Ay)) | {a} x B C R} and by B the set {b €
—
o(L(A2)) | B x {b} C R},
The finite automaton A = (Q, A, E, I, F) defined by:

-Q=0Q ><Q2<_>><7’(A),

I'={(p1,p2, 0) | p1 € I1,p2 € Iz},

- F={(p1,p2,B) | p1 € F1,p2 € F5,B C A},

- E =G\ UGy, with
G1 = {((p1,p2, B),a,(q1,p2, B)) | p1 € Q1,p2 € Q2,1 € p1-a,B C
A andaG(E} and

—>
Go = {((p1,p2, B), b, (p1,q2, BU{D})) | p1 € Q1,p2 € Q2,92 € p2 -
b, B C A}.

is denoted Ay Lup Ag and accepts L(Ay) Lup L(Asz).

Example 3.2. Consider the following finite automata 4; and As:

a a c d
b e S
()1
b

and the semi-commutation relation R = {(b, ¢), (b,d), (a,c)}. One has:

L5 | B |5 |
0 [{ab}] {c}

{c} || {a,b} | {c}
{a} || {8} |{cd}
{e.d} || {6} [{ed}

Then, A; L As is the following automaton (we only represent accessible states):

b
a,c 1,3,{0} b 2,3,{0} a,c
d d

Let us remark that if in Proposition 3.1 we replace G5 by the set of transitions

5 = {((p1,p2, B), b, (p1,q2, BUA{b})) | p1 € Q1,p2 € Q2,42 € p2-b,B C A}
and I by I' = {(p1,p2,0) | p1 € I1,p2 € I}, we also obtain a finite automaton
recognizing L(A;) wug L(Az) and easier to construct but with a larger number of
states. To get the intuition, let us recall that the role of B is to memorise the union
of the a(v;) appearing in the definition of the R-shuffle. But indeed, its effect is to
constraint the transitions of A; to consider at a given stg (see definition of Gy).

— — — —
So the real information is B. And as we will see, B = B and B C B. Thus it

>
is an optimization to use B instead of B.
Now we prove Proposition 3.1.

Proof. First we prove some technical properties of the functions = and .

(i) For all B C a(L(Asz)), B C B:let b e B. By definition of (E, for each
— —

a€ B, (a,b) e R. Thusbe B.
— 2 < =
(i) For all B C a(L(A2)), B = Band B = B: by (i), B

= = —

by definition of B, B x B C R. Consequently, B C

S < 2 <

B = B and thus B = B.

> >
(iii) For all b € a(L(A2)), B U{b} = BU {b}: by definition, a letter a belongs
—

-— — =
to BU {b} if and only if a € B and (a,b) € R. By (ii), B = B. It follows

I

-
B. Conversely,

. It follows that

w!Tin

that @ € BU{b} if and only if « € B and (a,b) € R. Consequently,
R S R >
B U{b} = BU{b}, and thus B U {b} = BU{b}.
> >
(iv) For all B C C, B C C'. Direct consequence of the definitions: B C C
— T — = =
implies C' C B, which implies B C C'.
Now we prove that L(A) C L(A;) wr L(Az). Let w € L(A). By defini-
tion, there exists an accepting path m in A labelled by w. This path m can be

decomposed into:
6

m =1mimoms...mg

such that k is an even integer, some m; may be empty, mo;+1 (0 <i < (k—1)/2)
only uses transitions of Gy and mg; (1 < ¢ < k/2) only uses transitions of Go. Now,
let us denote by u; 1 the label of mg;4+1 and v; the label of mo;. By construction,
W = ugvils ... upv, with 7 = k/2, uy ... ur € L(A1) and vy ...v,. € L(A3). We
claim that for all 1 < j < i <7, a(u;) X a(v;) € R. Indeed, let 1 < j < i <.
Assume that u; or v; is empty. Then a(u;) X a(v;) = 0 C R. Assume now that
u; and v; are both non-empty. Let (s1,s2,B) be the first state of mg;. Since
mo; only uses transitions of G and by (iii), the last state of mg; is of the form

—> .
(s1,92, BUa(v;)). Let (p1,p2,C) be the first state of mao;11. Since mo;i1 only
uses transitions of Gy, its last state is of the form (ry, p2, C).

Uj

(s1, 82, B) [(sl,qg,m]

(pl,pQ’C) (Tl,pg,C)

Uj

By construction and by (iii), C' = BU a(v;v;+1 ...v;—1). By (iv), it follows that
BUa(vj) C C. Moreover, since the path mg; 1 only uses transitions of G, each

letter a € a(u;) has to satisfy {a} x C C R. It follows that a(u;) X a(v;) C R,
proving the claim. Consequently, w € L(A;) wup L(Az).

Finally we prove that L(A4;) wig L(As) € L(A). Let z be in L(A;) wig
L(Az). By definition there exist x1,y1,...,Tn, yn, such that z129...2, € L(A41),
Y1y2...Yn € L(Az) for all 1 <i<npandforall 1 <j<i<n,alx;)xaly;) CR.
Since z1x2 ..., € L(A1), there exist po,p1,...,pn € Q1 such that

- po € In,

- Pn € Fla

- for all i € {1,...,n}, there exists a path in A; from p;,_; to p; labelled by
ZTj.

Since y1y2 . . . yn € L(Asz), there exist o, q1, - ..,q, € Q2 such that

- qo € Iy,

- qn € F27

- for all ¢ € {1,...,n}, there exists a path in Ay from ¢;_1 to ¢; labelled by
Yi-

For all i € {1,...,n}, let us denote by t; the word y; ...y;. Moreover, let to = ¢.
We claim that for all ¢ € {1,...,n}, there exists a path in 4; LLp Ay labelled by
> >

T; from (pifl, qi—1, Oé(tifl)) to (Ih‘, qi—1, Oé(tifl)) and a path in Al LLIR AQ labelled
- = -
by yi from (pi, gi—1,a(ti-1)) to (pi, gi, a(t:))-

—> T —> Yi —
[(Pi-1,qi—1, (ti-1)) " (i i1, (ti=1) (Pi> @i> (i)

Let ¢ be in {1,...,n}. Since for all j such that 1 < j < 4, a(z;) x a(y;) C
—>

R, one has a(z;) x a(t;—1) € R. Thus, by definition of p;_1,p;,¢i—1 and by

construction of A; L As, there exists a path in A; Lug As labelled by z; from

>
(Pi—1,Gi—1,(ti—1)) to (ps, qi—1,a(t;—1)). Furthermore, by definition of ¢;_1,ps, ¢;
and by construction of A; g As, there exists a path in A; Lig As labelled by
—> > . .
y; from (ps, qi—1,(ti—1)) to (pi, ¢, a(ti)), proving the cla1m.<_>
Consequently, there exists a path in Ay Lug As from (po, o, @) (an initial state)
>

t0 (Pns qn, @(y1 - - -Yn)) (a final state) and labelled by z. It follows that L(A;) g
L(As) C L(A). O

Remark that the automaton 4; Lup As may be non-deterministic, even when
A1 and As are both deterministic.

4. APPLICATION TO APC

Let us first start by an example. Let C = {a,b,c}, D = {d,e, f} and R =
{(a,d), (c, f), (b,d), (b,e)}. Using Proposition 3.1, one has

.. 8 [B | B |
0 {a, b, c} 0
{d} {a, b} {d}
{e} {b} {d, e}
{f} {c} {f}
{d, e} {b} {d, e}
{e, [} 0 {d,e, f}
{d, f} 0 {d,e, f}
{d7 e’ f} 0 {d’e’f}

Thus, the language C* Lup D*, which is indeed R*(C*D*) (cf. end of Sect. 2)
is given by the following automaton:

8

Using [7, Example 2], one obtains that R*(C*D*) = {a,b,c}*{c, f}* {d,e, f}*U
{a,b,c}*{a,b,d}*{b,d,e}*{d, e, f}* which is precisely the language of the automa-
ton given above. The compactness of automata is already revealed in this example
by its sharing of the states representing respectively the expressions {a, b, c}* and
{d,e, f}*. Indeed, as shown next, our automaton is the minimal one.

Theorem 4.1. Let A be an alphabet, R a semi-commutation relation on A, and
C and D subsets of A such that CND = (. Let Ay and Ay be the trivial minimal
automata recognizing C* and D*, respectively. Then Ay, wug As is the minimal
automaton recognizing L(A; Lug Asg).

Proof. A1 and A, are respectively made of a single state which is both initial
and final, with loops on that state labelled by their respective letters. Therefore,
in what follows, we identify states of A; Lirp A with their third component.
By the definitions of G; and G2 in Proposition 3.1, A; U Lk Ag is deterministic
since C N D = (. Now, consider two different states 31 and 32 of A1 Lk Ao

(recall that we identify states with their third component). Then, 31 #+ Bg (by
contradiction and with the help of (ii) in the proof of Proposition 3.1). This

implies the existence of a € B; such that a ¢ By (or conversely). By definition,
this implies that (BHl ,a, B<_)1) is a transition of A; LLg As and this also implies the
inexistence in A; Lur As of a transition from B<_)2 and labelled by a. Since the
respective single state of A4; and As is final, all reachable states of A; Lup Ao
are final. All of this implies that ?1 and <B_2> are distinguishable states and thus
Aj Lug As is minimal [18]. O

In what follows, we compare our approach using automata with that of [7] using
regular expressions.

Definition 4.2 ([27]). A finite automaton A = (Q, A, E,I,F) is called par-
tially ordered if there exists a partial order < on @ such that for every transition

(p.a.q) € E, p<q.

It is well known — and obvious — that partially ordered finite automata (POF
automata for short) have the same expressivity than APC expressions. One can
easily check that if A4; and A, are POF automata, then A; Lup As is a POF
automaton too. Consequently, computing the semi-commutation closure of a lan-
guage given by a POF automaton with our algorithm returns a partially ordered
finite automaton. Therefore, with a simple recurrence using Proposition 2.1 we
obtain a new proof of the stability of APC under semi-commutation closures.

One can wonder whether our algorithm reduces to encoding an APC expression
into a finite partially ordered automaton and to apply the algorithm of [7] on it
while merging equivalent states. The answer is no since it was proved in [7] that
merging equivalent states in a partially ordered automaton is PSPACE-complete.
So this method would be totally inefficient.

Using a regular expression, in our case an APC, may be useful for specifying
a property that one closes by a semi-commutation relation. However, even in
this case, deciding usual questions like inclusion and membership are more easily
computed with automata. Furthermore, a POF-automaton equivalent to an APC
expression can be easily computed in linear time and space [19]).

4.1. THEORETICAL COMPLEXITY

Following [7], let us call an atomic expression a single symbol or a language of
the form B*, with B a subset of the alphabet, and a product a finite concatenation
of atomic expressions. The length of a product is the number of atomic expres-
sion composing that product. The size of an APC is the total number of atomic
expressions in the products composing that APC.

Let R be a semi-commutation relation over an alphabet A and p be a product
over A. Then, from [7], R*(p) is an APC of size at most 20UAI0OrR+1)") with

(5R:maj<{|Y| CA|{a} xY CR}
ac

Given two automata A; = (Q1, 4, E1, 1, F1) and As = (Q2, A, Ea, Is, F), the
number of states of A; L As is O(2141]Q1]|Q2]) and, hence, its size, i.e. the
number of its states and the number of its transitions, is O((2/41|Q1]|Q2])?). A
language that contains only a single letter is trivially represented by an automaton
of size 2 and a language of the form B*, with B a subset of the alphabet, is also
trivially represented by an automaton of size 1. Therefore, by Proposition 2.1,
the numbre of states of the automaton we compute to represents R*(p) is at
most O(2(I4+1)m) " Then, its size is at most O(2((41+1)2) which is better than
20(lAI(6r+1)™)

Beside these theoretical considerations we give in what follows a pragmatic
comparison of the two approaches.

10

4.2. EXPERIMENTAL TESTS

In order to compare both techniques, the one of [7] and ours, we did several
tests on randomly chosen products and relations. As criterion of comparison, we
chose the size of the results: number of atomic expressions (a letter or B* with
B a subset of the alphabet) for APC’s and number of states and transitions for
automata. Development was achieved using the functional language Objective
Caml [20].

As their effect on the algorithms are very different, we used as inputs, two kinds
of products:

type 1:: Bja1B5 ...an-1B}

type 2:: BiBY...B}
Our procedure of comparison was as follows. For each test, we set a kind of
product, a size n of the product, a size |A| of the alphabet, and a size |R| of the
semi-commutation relation. With these given limits, we randomly generated a
product and a semi-commutation relation. After that, we executed the algorithm
of [7], then our algorithm on the equivalent automaton of the same product. We
then measured the size of the two results. Tables 1 and 2 give a summary of the
tests, each result is in fact an average of 15 tests.

TABLE 1. Comparison of techniques with respect to n with |A| =

10 and |R| =5
Product size 2 3 5 7
APC type 1 | 10 | 418 | 48361 | 897004
automata type 1 | 28 | 82 333 836
APC type 2 - 15 252 6402
automata type2 | -1| 50 206 591

TABLE 2. Comparison of techniques with respect to |R| with
|[Al=10 and n=7

Relation size 3 5 7 9
APC type 1 | 785597 | 1162952 | 286499 | 4213859
automata type 1 578 828 1031 1522
APC type 2 7540 15153 | 16965 29730
automata type 2 502 622 830 936

All of these tests were achieved in less than one or two minutes on an 1.3 GHz
Athlon with 1 GB of memory. Processes implementing our technique used less
than 4 MB of memory while the amount of memory of those corresponding to [7]
increased more rapidly according to the size of the inputs (more than 800 MB for
some tests in the right-hand columns of Tables 1 and 2)

11

We also applied our technique to a language of type 1 with n = 40, |A| = 10 and
|R| = 10. The size of the generated automaton was about 450000 and computation
takes 42 hours and 128 MB were used by the process. This last kind of test was
not feasible with the technique of [7].

5. PERMUTATION REWRITING AND POLYNOMIAL CLOSURE OF
COMMUTATIVE REGULAR LANGUAGES

In this section we present our second main result: the extension of [7] to a larger
class of regular languages. For a general reference on varieties of formal languages
see [23].

A class of languages V is an application which associates to each finite alphabet
A a set of regular languages of A* denoted by A*V. A class of languages V is
said to be closed under semi-commutation if for any finite alphabet A, any semi-
commutation relation over A and any language in L € A*V, R*(L) € A*V.

A positive variety of languages V is a class of languages such that:

(1) A*V is closed under finite union and finite intersection.
(2) If ¢ is a monoid morphism from A* into B*, and if L € B*V, then
o Y(L) € A*V.

(3) f L € A*V and if a € A, then 'L and La™! are in A*V.
A wariety of languages is a positive variety of languages V such that for each finite
alphabet A, A*V is closed under complement. Given a variety of languages V), the
polynomial closure of V, denoted PolV, is the class of regular languages such that
L € A*PolV if and only if L is a finite union of languages of the form

LoarLy - --apLy

with L; € A*V and a; € A.
The following result is proved in [24, Theorem 5.9]:

Theorem 5.1. Let V be a variety of languages. Then PolV is a positive variety
of languages.

A regular language L of A* is said commutative if for every a,b € A, xaby € L
implies zbay € L. An automaton is said commutative if q - ab = q - ba for every
couple of letters a and b and every state q.

The following equivalences are well known and are just recalled.

Proposition 5.2. Let L be a reqular language on A*. We have the following
equivalences :

(1) L is commutative.
(2) The syntactic monoide of L is commutative.
(3) The minimal automaton of L is commutative.

Note that a language recognized by an automaton (not necessarily the minimal
one) which is commutative is commutative. As an immediate consequence, we
have :

12

Lemma 5.3. If A= (Q,A,E,i, F) is the minimal automaton of a commutative
language, then for all p,q € Q, L(Ap,q) is a commutative language.

Proof. Commutativity of automata does not depend on their initial and final
states. (|

The class of commutative regular languages is known to be a variety of languages
and is denoted by C. Therefore, some direct consequences are the following,.

Lemma 5.4. Let A be an alphabet:

(1) A*PolC is closed under concatenation.

(2) A regular language belongs to A*PolC if and only if it is a finite union of
concatenations of reqular commutative languages.

(3) An APC language over A* belongs to A*PolC.

Proof. (1) Let us take L = Loai L1 - --apL, and K = Kob1 K1 - - - by K, with
L;,K; € A*C and a;,b; € A. If € € L,, then

LK = KU U LoairL1 -+ apLnz "2 Kob1 K1 -+ by Ko,
€A

If £ ¢ L, then

LK = U LoarLy - apLpx *2Kob1 Ky -+ - by Ko,
€A

Since A is finite, the unions are finite. Moreover, the class of commutative
languages is a variety of languages, thus L,z ! is a commutative language
and LK is in A*PolC.

(2) From the definition of PolC, (1) and the fact that a single symbol is a
regular commutative language.

(3) From what precedes and the fact that B*, with B C A, is a commutative
language.

O

Now, we prove that PolC is closed under semi-commutation. Since any com-
mutative language is trivially R-closed for all semi-commutation relation R, from
Lemma 5.4 and Proposition 2.1 it is sufficient to prove that L, Lig L,_1 Lug
-« g L1 belongs to A*PolC for every integer n > 2 and language L; € A*C. Let
us begin with n = 2.

Lemma 5.5. Let A be an alphabet, L and Lo be two reqular commutative lan-
guages on A, and R be a semi-commutation relation over A. Then L1 wp Lo
belongs to A*PolC.

Before the proof, let us consider the following example.

Example 5.6. Consider the two following finite automata A; and A;. They
are commutative and their languages are as follows : L(A;) = {u € {a,b}* |
|ulp is even} and L(Ag) = {u € {a,d}* | |u] is even}.

13

b a,d

)

Let us take R = {(a,d), (b,a)}. Using the constructive proofs of the above
lemmas, A; LLg As is given by the following finite automaton (transitions which
change the third part of states are represented by dashed arrows; and only reach-
able states which lead to a final state have been represented):

14

Since the parts between the dashed arrows are commutative and since no dashed

arrow belongs to a loop, L(A; Lug As) can be easily described as a finite union
of concatenations of commutative languages (recall that a single symbol is a com-
mutative language). Therefore, L(A; Lur As) belongs to A*PolC.
PT’OOf. Let .Al = (Ql,A,El,Il,Fl) and Ag = (QQ,A,EQ,IQ,FQ) be the two min-
imal automata recognizing L; and Lo, respectively. Let A = (Q, A, E,I,F) be
the trim automaton obtained from Ay g Az. For all subsets B of a(L(Az)), we
denote by Q< the subset {(ql,qQ,?) | @1 € Q1,42 € Q2} of Q and by F+ the
subset EN Qg x A X Qg of E.

Let t = ((p,q, <E>),a, (p’,q’,?)) € E\ UpcaFE+. We claim that there is no

loop in A; Lip As using ¢: since ‘c #+ D and by (i) — proof of Proposition 3.1 —
> > > >
all states accessible from (p’,¢’, D) are of the form (r,s, B), with D C B.
Each accepting path m in A; Lug As can be decomposed into:

m = m0t1m1t2 e tnmn

with ¢; € E'\ UBQAEE» and m; only using transitions of EE" Using the above
claim, we have n < |E\ Upca B |. Consequently, L(A; g Asz) is a finite union
of languages of the form:
L0a1L1a2 N anLn,

where the a;’s are letters and the L;’s are accepted by finite automata whose
graphs of transitions are (ot EE)'

By definition of PolC, it remains to prove that the L;’s are commutative lan-
guages. Let B C A, we prove that (Q<, F<) is commutative. Let 7 = (p, g, ?),

> >
Ta = (Pasqa, B) and rap = (Pab, qab, B) three states of Q< such that there exist
transitions t, = (r,a,7r,) and tap = (74, b, 7ap) in Ee.

— a —> b —

(paQa B) (paaQaa B) (pabaQaba B)

With the notation of Proposition 3.1, the following cases occur:
® to,tqep € G1. Since A; is minimal and since L(A;) is commutative, it is
commutative. Thus there exists py in @1 such that p-b = py and pyp-a = pasp-
Moreover, since t, and ¢4, belong to G1, {a} x B C R and {b} x B C R.

Consequently, (r, b, (pb,q,?)) and ((pb,q,?),a,rab) are in G1 N B . Tt
follows that 74, € 7 - ba.

o ty,tqp € Go. By a similar argument on As, one has rq, € 7 - ba.

o t, € Gi,tay € G2. Thus q, = ¢ and pap = pa. Consequently, (7, b, (p, Gab,
?)) € G2 N B and ((p, qab,ﬁ),a,rab) € G1 N Bw. Tt follows that
Tap € 1 - ba.

15

o t, € Ga,typ € Gy. By a similar argument on As, one has rq, € 7 - ba.

Consequently r - ab C 7 - ba. Since the roles of a and b are symmetric, then
7-ba C r-aband thus r-ab = r-ba. Therefore, (Q4, E<) is commutative, which
concludes the proof. a

To do the recurrence step that will lead to the stability of PolC under semi-
commutation, let L’ and L;, with 1 < ¢ < n + 1, be n + 2 commutative regular
languages. Suppose we have proved that L = L' g Ly, y1Ly, - -+ L1 can be decom-
posed into a finite union of languages of the form (L"” Lug L, 1)(L" tog Ly - -+ Ly
with L”, L;, ., and L" some commutative regular languages. Then, by the induc-
tive hypothesis, the right part belongs to A*PolC. By the preceding lemma, the left
part also belongs to A*PolC. And by the stability of A*PolC under concatenation,

we conclude that L belongs to A*PolC.

Lemma 5.7. Let A = (Q,A,E,I,F) be a finite automaton, L1, Ly be two lan-
guages on A and R be a semi-commutation relation over A. The following equality
holds:

L(A)wr InLy = | (L(Arg) wr (L1 N B*))(L(Agr) N C*) tig L)

q€Q,
CxBCR

Proof. Let ¢ € Q,Cx B C Rand u € (L(Ar,q) wr (L1NB*))(L(Agr)NC*) LLig
Ls). Then u can be decomposed into:

U=2T1Y1 ... TnYn21t1 ... 2LlL

such that

(1) T1...Tp € L(ALq), Yi..-Yn € L1 N B*,

(2) forall 1 <j<i<n,a(z;) xa(y;) CR,

(3) Z1...%2k € L(Aqyp) N C*, tl . .tk € LQ,

(4) forall 1 <j<i<k, afz)xalt;) CR,
Since C' x B C R and by (1) and (3), for all 1 <4 < n and for all 1 < j < k,
a(z;) x a(y;) € R. Consequently and by (2) and (4), u € L(A) g L1 Lo.

Conversely, let v € L(A) wir LiLy. By definition of the R-shuffle, there exist

L1y y TpyYl---,Yn € A" such that

(5) u=z1Y1 .- Tnyn

(6) for all 1 < j <i<n, a(z;) x a(y;) C R,

(7) x1...2, € L(A),

(8) Y1...Yn € LqLo.
Statement (8) implies that thereis 1 < k < n such that y; may be decomposed into
yr = st, with s,t € A* and y1 ...yg—15 € L1 and tyg+1 ... yn € Lo. Statement (7)
implies that there exists a state ¢ such that x1...2zr € L(Arg) and xpq1...2, €
L(Ag r). Now, by (5) and (6), z1y1 ... zxs € L(Arq) Lug (LiNa(ys - .. yr—15)) and
Tkt 1Ykt1 - - - TnYn € (L(Agr) Na(Tky1 ... 2n)) Lur Lo. By (6), a(zpyr ... xn) X
a(yr ... yk—18) C R, which concludes the proof. O

16

We can now prove the main result.
Theorem 5.8. The class PolC is closed under conjugacy and semi-commutation.

Proof. Let Lo, L1, ..., L, be commutative languages on A, ay, ..., ax be letters of
A and L = Loai1Lias -+ - ap L. Let A; be the minimal automaton of L;. One has

COIlj(L) = U L(Aiqi,Fi)ai—i-lL(-Ai-i-l) .. .akL(Ak)L(A1)a1 N aiL(Aipi,qi)

0<i<k

where p; is the initial state of A;, F; is the set of final states of A; and ¢; is a
state of A;. Thus using Lemmas 5.4 and 5.3, Conj(L) € A*PolC. Furthermore, if
K, and K3 are languages of A*, then Conj(K; U K3) = Conj(K7) U Conj(Ks). It
follows that PolC is closed under conjugacy.

By a direct induction using Proposition 2.1, Lemma 5.5 and Lemma 5.7, PolC
is also closed under semi-commutation. O

Let us notice that the proof is constructive. By Theorem 5.1 and 5.8, the
positive variety PolC is closed under union, intersection, left and right quotients,
conjugacy and semi-commutations.

6. CONCLUSION

In this paper we proved that computing the semi-commutation closure of an
APC language is in practice more efficient using finite automata representations
than using regular expressions.

Moreover, in [7] the question of finding other subclasses of regular languages
which are closed under union, intersection, product, semi-commutation rewrit-
ing and conjugacy was opened. We showed that PolC, the positive variety of fi-
nite unions of finite products of commutative languages, contains APC languages
and has these closure properties. Furthermore, using finite automata the semi-
commutation closure of a language of this kind is effectively computable. However
we do not know whether this class is maximal. A solution may be found in [16]
where the maximal positive variety closed under the shuffle operation is exhibited.
We do not know neither whether PolC is decidable.

In practice, we may want to compute the transitive closure, by a semi-commutation
relation, of a regular language which does not necessarily belong to a class stable
by all semi-commutation relations. We investigated this problem, in a separate
work [10]. We mainly used the fact that our technique of computing the R-shuffle
works on any two regular languages. This allowed us to compute the reachability
set of a lift-controller whose transition relation is not only composed by semi-
commutations and whose reachability set does not belong to a class stable by all
semi-commutation relations.

Acknowledgement
We would like to thank Giovanna Guaiana for the references she gave us about her
17

work concerning partial commutations (symetric semi-commutations). Theorem 4.1 is
an adaptation of the proof of Theorem 1 in [17].

(1]

(2]

(3
;
[6]
[7]
(8]
[9]
[10]
[11]
(12]
[13]
[14]
[15]
[16]

[17]

18]
[19]
20]

[21]

REFERENCES

P. Abdulla, A. Annichini, and A. Bouajjani. Algorithmic verification of lossy channel sys-
tems: An appliction to the bounded retransmission protocol. In TACAS’99, volume 1579 of
Lecture Notes in Computer Science, pages 208-222, 1999.
P. A. Abdulla, A. Bouajjani, and B. Jonsson. On-the-fly analysis of systems with unbounded,
lossy FIFO channels. In CAV’98, volume 1427 of Lecture Notes in Computer Science, pages
305-322, 1998.
Parosh Aziz Abdulla, Bengt Jonsson, Marcus Nilsson, and Julien d’Orso. Algorithmic im-
provements in regular model checking. In CAV’03, LNCS, 2003.
Jean Berstel. Transductions and Context-Free Languages. B.G. Teubner, Stuttgart, 1979.
B. Boigelot and P. Godefroid. Symbolic verification of communication protocols with infinite
state spaces using QDDs. In Proc. of 8" CAV (August), USA, volume 1102, pages 1-12.
LNCS, 1996.
Bernard Boigelot and Pierre Wolper. Verifying systems with infinite but regular state spaces.
In CAV’98, volume 1427 of LNCS, pages 88-97, June 1998.
A. Bouajjani, A. Muscholl, and T. Touili. Permutation rewriting and algorithmic verification.
In LICS’01, IEEE Computer Society, pages 399-408, 2001.
J.A. Brzozowski. Hierarchies of aperiodic languages. Informatique théorique et Applica-
tion/Theoretical Informatics and Applications, 10:33—49, 1976.
J.A. Brzozowski and I. Simon. Characterizations of locally testable languages. Discrete
Mathematics, 4:243-271, 1973.
G. Cécé, P.-C. Héam, and Y. Mainier. Cloture transitives de semi-commutations et model-
checking régulier. In AFADL’04, 2004.
V. Diekert and G. Rozenberg, editors. Book of Traces. World Scientific, Singapore, 1995.
Volker Diekert and Yves Métivier. Partial commutation and traces. In G. Rozenberg
and A. Salomaa, editors, Handbook on Formal Languages, volume III. Springer, Berlin-
Heidelberg-New York, 1997.
Z. Esik and I. Simon. Modeling literal morphisms by shuffle. Semigroup Forum, 56:225-227,
1998.
P. Godefroid and P. Wolper. A partial approach to model checking. Information and Com-
putation, 110(2):305-326, 1994.
A. Cano Gomez and J.-E. Pin. On a conjecture of schnoebelen,. In DLT’03, Lecture Notes
in Computer Science, 2003.
A. Cano Gomez and J.-E. Pin. Shuffle on positive varieties of languages. Theoretical Com-
puter Science, 312:433-461, 2004.
Giovanna Guaiana, Antonio Restivo, and Sergio Salemi. On the trace product and some
families of languages closed under partial commutations. Journal of Automata, Languages
and Combinatorics, 9(1):61-79, 2004.
J. Hopcroft and J. Ullman. Introduction to automata theory, languages, and computation.
Addison-Wesley, 1980.
P.-C. Héam. Some complexity results for polynomial rational expressions. T'C'S: Theoretical
Computer Science, 299, 2003.
X. Leroy, D. Doligez, J. Garrigue, D. Rémy, and J. Vouillon. The Objective Caml system,
release 3.06. Inria, 2002.
D. Lugiez and Ph. Schnoebelen. The regular viewpoint on pa-processes. In 9th Int. Conf.
Concurrency Theory (CONCUR’98), volume 1466 of Lecture Notes in Computer Science.
Springer, 1998.

18

[22]

[23]
[24]

25]
[26]
27]
28]
[29]

(30]

J.-F. Perrot. Variété de langages et opérations. Theoretical Computer Science, 7:197-210,
1978.

J.-E. Pin. Varieties of formal languages. Foundations of Computer Science, 1984.
Jean-Eric Pin and Pascal Weil. Polynomial closure and unambiguous product. Theory Com-
put. Systems, 30:1-39, 1997.

Ph. Schnoeboelen. Decomposable regular languages and the shuffle operator. EATCS Bull.,
67:283-289, 1999.

H. Straubing. Finite semigroups varieties of the form VxD. Journal of Pure and Applied
Algebra, 36:53-94, 1985.

P. Tesson and D. Thérien. Diamonds are forever: the variety da. In International Conference
on Semigroups, Algorithms, Automata and Languages, 2002.

W. Thomas. Classifying regular events in symbolic logic. Journal of Computer and System
Science, 25:360-375, 1982.

D. Thérien. Classification of finite monoids: the language approach. Theoretical Computer
Science, 14:195-208, 1981.

T. Touili. Regular model checking using widening techniques. In st Vepas Workshop, vol-
ume 50 of Electronic Notes in TCS, 2001.

Communicated by (The editor will be set by the publisher).

19

