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EFFICIENCY OF AUTOMATA IN SEMI-COMMUTATIONVERIFICATION TECHNIQUESGérard Céé1, Pierre-Cyrille Héam1 and Yann Mainier1Abstrat. Computing the image of a regular language by the transi-tive losure of a relation is a entral question in Regular Model Chek-ing. In a reent paper Bouajjani, Musholl and Touili [7℄ provedthat the lass of regular languages L � alled APC � of the form

∪jL0,jL1,jL2,j . . . Lkj ,j , where the union is �nite and eah Li,j is eithera single symbol or a language of the form B
∗ with B a subset of thealphabet, is losed under all semi-ommutation relations R. Moreovera reursive algorithm on the regular expressions was given to ompute

R
∗(L). This paper provides a new approah, based on automata, forthe same problem. Our approah produes a simpler and more e�-ient algorithm whih furthermore works for a larger lass of regularlanguages losed under union, intersetion, semi-ommutation relationsand onjugay. The existene of this new lass, PolC, answers the openquestion proposed in the paper of Bouajjani and al.1991 Mathematis Subjet Classi�ation. 68N30.1. IntrodutionA semi-ommutation relation R allows to express rewriting of words suh as

xaby → xbay, provided (a, b) ∈ R. Semi-ommutations are used in several do-mains, for instane as a model of parallelism in Mazurkiewiz trae theory [11℄,in partial order redution tehniques [14℄, or to express exhange of a piee ofinformation between neighbouring proesses in linear or ring networks. In regularmodel heking [3, 5, 6℄, a key point is the omputation of the image of a regularlanguage by the transitive losure of a relation. However, suh omputation, inKeywords and phrases: regular model heking, veri�ation, parametri systems, semi-om-mutations
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the ase of semi-ommutation relations, may lead to non regular languages. Thelassial example is the following one: let L = (ab)∗ and R = {(a, b)}. Then,
R∗(L)∩ b∗a∗ = {bnan | n ∈ N}. Therefore R∗(L) is not regular. In [7℄, Bouajjani,Musholl and Touili searhed for a lass of regular languages losed under all semi-ommutation relations. They de�ned the lass APC (�nite union of produts oflanguages of the form a0 or {a1, a2, . . . , an}∗ with ai's single symbols) and gave analgorithm to ompute R∗(L) for any APC L and any semi-ommutation relation
R. Unfortunately, their algorithm is based on a series of mutually reursive trans-formations on the regular expressions de�ning the APC. During the omputation,at eah intermediate stage, the size of the APC is multiplied, whih indues a�nal result of exponential size. Moreover, as they have proved that the inlusionproblem for APC is PSPACE omplete, there is no pratial way of simplifyingthe intermediate APC during omputation.In this paper, we use a ompletely di�erent approah. Instead of working onregular expressions, we use automata. This results in a simpler and, as on�rmedby some experiments, muh more e�ient tehnique. In addition to leading to amore ompat representation, using automata also makes the use of other teh-niques of regular model heking easier as these tehniques are mainly based onautomata.As advoated by [7℄, APC is an interesting sublass of regular languages; severalveri�ation problems (sliding window protools, parameterized mutual exlusionprotools, et.) an be modeled with them. An open question was the existene ofa larger lass than APC, satisfying the same good losure properties. By investigat-ing polynomial losure of varieties of regular languages, we give a positive answerto this question with the lass PolC (polynomial losure of ommutative regularlanguages) omposed of �nite unions of languages of the form L0a0L1a1 . . . akLkwhere the ai's are single symbols and the Li's are ommutative regular languages,that is languages that satisfy: ∀a, b ∈ A∀x, y ∈ A∗(xaby ∈ Li =⇒ xbay ∈ Li),with A an alphabet. This lass allows to desribe languages suh as: L1dL2,with L1 = {u ∈ {a, b}∗ | |u|b is even and |u|a is even} and L2 = {u ∈ {a, d}∗ |
|u| is odd}.Related WorkRegular model heking [3, 5, 6℄ is an approah to verify in�nite state systems.One represents, symbolially, sets of states by regular languages and one developsmeta-transitions whih an ompute, in one step, in�nite sets of suessors. Thisamounts to ompute R∗(L) for a given regular language L and a given relation Rrepresenting a subset of the transition relation T of the system. The transitionrelation T an be deomposed into several sub relations Ri (of semi-ommutationor something else), eah of them implying their ad-ho tehniques of omputation.As most of the developed tehniques are based on automata, it is more e�ientand onsistent to use automata during the whole omputation. This last remarkis another plus for our tehnique ompared to that of [7℄.Polynomial losure of varieties of regular languages is an operation widely stud-ied in the literature (see for example [8, 9, 24, 28℄). In this paper we onsider the2



languages of level 3/2 in the Straubing-Thérien hierarhy [26,29℄ whih representsthe urrent border for deidability problems and whose struture makes them suit-able for veri�ation of ertain systems [1, 2, 7, 30℄. Deomposable languages is alass of regular languages used for the simulation of proess algebra [21℄. It wasonjetured in [25℄ that this lass was exatly PolC. However this onjeture hasjust been invalidated in [15℄. Finally, looking for the maximal (positive) varietylosed under an operator is widely studied in the literature. One an ite the resultfor the shu�e operator for varieties [13, 22℄ and for positive varieties [16℄.Layout of the PaperIn Set. 2 we reall the basi notions and notations. Then in Set. 3 wegive the main result of the paper: the key onstrution whih allows the use ofautomata in omputation of the transitive losure of ad ho regular languages bya semi-ommutation relation. In Set. 4, we ompare, in theory and in pratie,the two approahes, the one manipulating regular expressions [7℄ and ours usingautomata. Then we extend, in Set. 5 the lass of regular languages for whihthis omputation is feasible. Finally, we onlude in Set. 6.2. Bakground and NotationsWe assume that the reader has a basi bakground in �nite automata theory.For more information on automata the reader is referred to [4, 18℄.Reall that a �nite automaton is a 5-tuple A = (Q, A, E, I, F ) where Q is a�nite set of states, A is the alphabet, E ⊆ Q × A × Q is the set of transitions,
I ⊆ Q is the set of initial states and F ⊆ Q is the set of �nal states. If A isa �nite automaton, L(A) denotes the language aepted by A. If C ⊆ Q and
D ⊆ Q, AC,D denotes the automaton (Q, A, E, C, D). Moreover, for all p ∈ Q,
p · a = {q ∈ Q | (p, a, q) ∈ E}. If p · a = {q} is a singleton, we also write p · a = q.In this paper, minimal automata are deterministi but not neessary omplete.If u ∈ A∗, Conj(u) = {vw | wv = u} denotes the set of its onjugated words.This notion is extended to languages as follows

Conj(L) =
⋃

u∈L

Conj(u).If u is a �nite word, α(u) denotes the set of letters ourring in u. This notionis extended to languages: α(L) =
⋃

u∈L α(u).A semi-ommutation R is a relation on A whih does not ontain the identity.Given a �nite word u on A, we denote by R(u) the language {xbay | x, y ∈
A∗, (a, b) ∈ R and xaby = u} and by R∗(u) the language {u}∪ ∪k≥1R

k(u). Thesenotions are extended to languages by
R(L) =

⋃

u∈L

R(u) and R∗(L) =
⋃

u∈L

R∗(u).3



Given two words u and v in A∗, the shu�e of u and v, denoted u v, is theset of words of the form u1v1 . . . unvn suh that u = u1 . . . un and v = v1 . . . vn.The R-shu�e of u and v, denoted u R v is similar but with the added ondition:
α(ui) × α(vj) ⊆ R for all j < i. The intuition is as follows. To onstrut the set
u R v, one �rst starts from uv, then one adds all the words obtained by theommutation of two suessive letters ab in an already added word and suh that
a belongs to u, b belongs to v and (a, b) belongs to R.The R-shu�e operation is extended to languages L and K of A∗ by

L R K =
⋃

u∈L,v∈K

u R v.As stated in the following proposition [12℄, it is important to be able to omputethe R-shu�e of two languages sine this is the key whih allows the omputationof the transitive losure of a produt of R-losed languages.Proposition 2.1 ( [12℄). Let L1, . . . , Ln be n R-losed sets, i.e. suh that forevery i, 1 ≤ i ≤ n, Li = R∗(Li), then we have:
R∗(L1L2 . . . Ln) = L1 R (L2 R (· · · (Ln−1 R Ln) · · · ))Now, let us reall the formal de�nition of the lass APC given in [7℄.De�nition 2.2 ( [7℄). Let A be a �nite alphabet. An atomi expression over A iseither a letter a of A or a star expression {a1, . . . , an}∗, where {a1, . . . , an} ⊆ A.A produt p over A∗ is a onatenation e1 . . . en of atomi expressions e1, . . . , enover A. An Alphabeti Pattern Constraint (APC) over A∗ is an expression of theform ∪i≤npi, where pi are produts over A∗.Sine an APC language L is a �nite union of produts of trivially R-losedlanguages (single symbols or star expressions of subsets of the alphabet), omput-ing R∗(L) is redued to the omputation of the R-shu�e of languages. Sine [7℄provides an algorithm to ompute the R-shu�e of two APC's, whih is also anAPC, R∗(L) is omputable. In the next setion we give an automata approah foromputing the R-shu�e of two regular languages.3. R-shuffle Produt and Finite AutomataWe present our �rst main result: how to ompute the R-shu�e automaton oftwo regular languages given by �nite automata. The method used is based on thelassial one for omputing the shu�e of two regular languages. That is to say,onstrut a new automaton whose transitions are either from the �rst or from theseond automaton. This implies that a state of that new automaton is a ouple ofstates of the two given automata. Now we have to guarantee that the ondition

α(ui)× α(vj) ⊆ R for all j < i is also ful�lled. To do this, it su�es to memorizethe set of letters read by the seond automaton (reognizing v) and to guarantee4



that we only read letters in the �rst automaton (reognizing u) whih ommutewith all the memorized letters.Proposition 3.1. Let A1 = (Q1, A, E1, I1, F1) and A2 = (Q2, A, E2, I2, F2) be two�nite automata and R a semi-ommutation relation over A. If B ⊆ α(L(A2)), wedenote by ←−B the set {a ∈ α(L(A1)) | {a} × B ⊆ R} and by ←→B the set {b ∈
α(L(A2)) |

←−
B × {b} ⊆ R}.The �nite automaton A = (Q, A, E, I, F ) de�ned by:- Q = Q1 ×Q2 × P(A),- I = {(p1, p2,

←→
∅ ) | p1 ∈ I1, p2 ∈ I2},- F = {(p1, p2, B) | p1 ∈ F1, p2 ∈ F2, B ⊆ A},- E = G1 ∪G2, with

G1 = {((p1, p2, B), a, (q1, p2, B)) | p1 ∈ Q1, p2 ∈ Q2, q1 ∈ p1 · a, B ⊆

A and a ∈
←−
B} and

G2 = {((p1, p2, B), b, (p1, q2,
←−−−→
B ∪ {b})) | p1 ∈ Q1, p2 ∈ Q2, q2 ∈ p2 ·

b, B ⊆ A}.is denoted A1 R A2 and aepts L(A1) R L(A2).Example 3.2. Consider the following �nite automata A1 and A2:1 2 3 4b

b

d

c da a

and the semi-ommutation relation R = {(b, c), (b, d), (a, c)}. One has:
B

←−
B

←→
B

∅ {a, b} {c}
{c} {a, b} {c}
{d} {b} {c, d}
{c, d} {b} {c, d}5



Then, A1 R A2 is the following automaton (we only represent aessible states):
1, 3, {c}

1,4,{,d}
2, 3, {c}

2, 4, {c, d}

b

b

b

b

d d

a, c

d d

a, c

Let us remark that if in Proposition 3.1 we replae G2 by the set of transitions
G′2 = {((p1, p2, B), b, (p1, q2, B ∪ {b})) | p1 ∈ Q1, p2 ∈ Q2, q2 ∈ p2 · b, B ⊆ A}and I by I ′ = {(p1, p2, ∅) | p1 ∈ I1, p2 ∈ I2}, we also obtain a �nite automatonreognizing L(A1) R L(A2) and easier to onstrut but with a larger number ofstates. To get the intuition, let us reall that the role of B is to memorise the unionof the α(vj) appearing in the de�nition of the R-shu�e. But indeed, its e�et is toonstraint the transitions of A1 to onsider at a given step (see de�nition of G1).So the real information is ←−B . And as we will see, ←−B =

←−←→
B and B ⊆

←→
B . Thus itis an optimization to use ←→B instead of B.Now we prove Proposition 3.1.Proof. First we prove some tehnial properties of the funtions ←−· and ←→· .(i) For all B ⊆ α(L(A2)), B ⊆

←→
B : let b ∈ B. By de�nition of ←−B , for eah

a ∈
←−
B , (a, b) ∈ R. Thus b ∈

←→
B .(ii) For all B ⊆ α(L(A2)),←−←→B =
←−
B and←→←→B =

←→
B : by (i),←−←→B ⊆ ←−B . Conversely,by de�nition of ←→B , ←−B ×←→B ⊆ R. Consequently, ←−B ⊆ ←−←→B . It follows that

←−←→
B =

←−
B and thus ←→←→B =

←→
B .(iii) For all b ∈ α(L(A2)), ←−−−−→←→

B ∪ {b} =
←−−−→
B ∪ {b}: by de�nition, a letter a belongsto←−−−−−B ∪ {b} if and only if a ∈

←−
B and (a, b) ∈ R. By (ii), ←−←→B =

←−
B . It followsthat a ∈

←−−−−−
B ∪ {b} if and only if a ∈

←−←→
B and (a, b) ∈ R. Consequently,

←−−−−−←→
B ∪ {b} =

←−−−−−
B ∪ {b}, and thus ←−−−−→←→

B ∪ {b} =
←−−−→
B ∪ {b}.(iv) For all B ⊆ C, ←→B ⊆

←→
C . Diret onsequene of the de�nitions: B ⊆ Cimplies ←−C ⊆ ←−B , whih implies ←→B ⊆ ←→C .Now we prove that L(A) ⊆ L(A1) R L(A2). Let w ∈ L(A). By de�ni-tion, there exists an aepting path m in A labelled by w. This path m an bedeomposed into: 6



m = m1m2m3 . . .mksuh that k is an even integer, some mi may be empty, m2i+1 (0 ≤ i ≤ (k−1)/2)only uses transitions of G1 and m2i (1 ≤ i ≤ k/2) only uses transitions of G2. Now,let us denote by ui+1 the label of m2i+1 and vi the label of m2i. By onstrution,
w = u1v1u2 . . . urvr with r = k/2, u1 . . . ur ∈ L(A1) and v1 . . . vr ∈ L(A2). Welaim that for all 1 ≤ j < i ≤ r, α(ui) × α(vj) ⊆ R. Indeed, let 1 ≤ j < i ≤ r.Assume that ui or vj is empty. Then α(ui) × α(vj) = ∅ ⊆ R. Assume now that
ui and vj are both non-empty. Let (s1, s2, B) be the �rst state of m2j . Sine
m2j only uses transitions of G2 and by (iii), the last state of m2j is of the form
(s1, q2,

←−−−−−→
B ∪ α(vj)). Let (p1, p2, C) be the �rst state of m2i+1. Sine m2i+1 onlyuses transitions of G1, its last state is of the form (r1, p2, C).

(s1, s2, B) (s1, q2,
←−−−−−−→
B ∪ α(vj))

(p1, p2, C) (r1, p2, C)

uj+1...vi−1

vj

uiBy onstrution and by (iii), C =
←−−−−−−−−−−−−−−→
B ∪ α(vjvj+1 . . . vi−1). By (iv), it follows that

←−−−−−→
B ∪ α(vj) ⊆ C. Moreover, sine the path m2i+1 only uses transitions of G1, eahletter a ∈ α(ui) has to satisfy {a} × C ⊆ R. It follows that α(ui) × α(vj) ⊆ R,proving the laim. Consequently, w ∈ L(A1) R L(A2).Finally we prove that L(A1) R L(A2) ⊆ L(A). Let z be in L(A1) R

L(A2). By de�nition there exist x1, y1, . . . , xn, yn, suh that x1x2 . . . xn ∈ L(A1),
y1y2 . . . yn ∈ L(A2) for all 1 ≤ i ≤ n and for all 1 ≤ j < i ≤ n, α(xi)× α(yj) ⊆ R.Sine x1x2 . . . xn ∈ L(A1), there exist p0, p1, . . . , pn ∈ Q1 suh that- p0 ∈ I1,- pn ∈ F1,- for all i ∈ {1, . . . , n}, there exists a path in A1 from pi−1 to pi labelled by

xi.Sine y1y2 . . . yn ∈ L(A2), there exist q0, q1, . . . , qn ∈ Q2 suh that- q0 ∈ I2,- qn ∈ F2,- for all i ∈ {1, . . . , n}, there exists a path in A2 from qi−1 to qi labelled by
yi. 7



For all i ∈ {1, . . . , n}, let us denote by ti the word y1 . . . yi. Moreover, let t0 = ε.We laim that for all i ∈ {1, . . . , n}, there exists a path in A1 R A2 labelled by
xi from (pi−1, qi−1,

←−−−→
α(ti−1)) to (pi, qi−1,

←−−→
α(ti−1)) and a path in A1 R A2 labelledby yi from (pi, qi−1,

←−−−→
α(ti−1)) to (pi, qi,

←−→
α(ti)).

(pi−1, qi−1,
←−−−→
α(ti−1)) (pi, qi−1,

←−−−→
α(ti−1) (pi, qi,

←−→
α(ti))

xi yiLet i be in {1, . . . , n}. Sine for all j suh that 1 ≤ j < i, α(xi) × α(yj) ⊆

R, one has α(xi) ×
←−−−→
α(ti−1) ⊆ R. Thus, by de�nition of pi−1, pi, qi−1 and byonstrution of A1 R A2, there exists a path in A1 R A2 labelled by xi from

(pi−1, qi−1,
←−−−→
α(ti−1)) to (pi, qi−1,

←−−−→
α(ti−1)). Furthermore, by de�nition of qi−1, pi, qiand by onstrution of A1 R A2, there exists a path in A1 R A2 labelled by

yi from (pi, qi−1,
←−−−→
α(ti−1)) to (pi, qi,

←−→
α(ti)), proving the laim.Consequently, there exists a path in A1 R A2 from (p0, q0,

←→
∅ ) (an initial state)to (pn, qn,

←−−−−−−→
α(y1 . . . yn)) (a �nal state) and labelled by z. It follows that L(A1) R

L(A2) ⊆ L(A). �Remark that the automaton A1 R A2 may be non-deterministi, even when
A1 and A2 are both deterministi.4. Appliation to APCLet us �rst start by an example. Let C = {a, b, c}, D = {d, e, f} and R =
{(a, d), (c, f), (b, d), (b, e)}. Using Proposition 3.1, one has

B
←−
B

←→
B

∅ {a, b, c} ∅
{d} {a, b} {d}
{e} {b} {d, e}
{f} {c} {f}
{d, e} {b} {d, e}
{e, f} ∅ {d, e, f}
{d, f} ∅ {d, e, f}
{d, e, f} ∅ {d, e, f}Thus, the language C∗ R D∗, whih is indeed R∗(C∗D∗) (f. end of Set. 2)is given by the following automaton: 8



∅

{d}

{f}

{d, e} {d, e, f}

e

e

d

f

d, e

f

f

a, b, c

a, b, d

b, d, e d, e, f

c, f

Using [7, Example 2℄, one obtains that R∗(C∗D∗) = {a, b, c}∗{c, f}∗ {d, e, f}∗∪
{a, b, c}∗{a, b, d}∗{b, d, e}∗{d, e, f}∗ whih is preisely the language of the automa-ton given above. The ompatness of automata is already revealed in this exampleby its sharing of the states representing respetively the expressions {a, b, c}∗ and
{d, e, f}∗. Indeed, as shown next, our automaton is the minimal one.Theorem 4.1. Let A be an alphabet, R a semi-ommutation relation on A, and
C and D subsets of A suh that C ∩D = ∅. Let A1 and A2 be the trivial minimalautomata reognizing C∗ and D∗, respetively. Then A1 R A2 is the minimalautomaton reognizing L(A1 R A2).Proof. A1 and A2 are respetively made of a single state whih is both initialand �nal, with loops on that state labelled by their respetive letters. Therefore,in what follows, we identify states of A1 R A2 with their third omponent.By the de�nitions of G1 and G2 in Proposition 3.1, A1 R A2 is deterministisine C ∩ D = ∅. Now, onsider two di�erent states ←→B1 and ←→B2 of A1 R A2(reall that we identify states with their third omponent). Then, ←−←→B1 6=

←−←→
B2 (byontradition and with the help of (ii) in the proof of Proposition 3.1). Thisimplies the existene of a ∈

←−←→
B1 suh that a 6∈

←−←→
B2 (or onversely). By de�nition,this implies that (

←→
B1, a,

←→
B1) is a transition of A1 R A2 and this also implies theinexistene in A1 R A2 of a transition from ←→B2 and labelled by a. Sine therespetive single state of A1 and A2 is �nal, all reahable states of A1 R A2are �nal. All of this implies that ←→B1 and ←→B2 are distinguishable states and thus

A1 R A2 is minimal [18℄. �In what follows, we ompare our approah using automata with that of [7℄ usingregular expressions. 9



De�nition 4.2 ( [27℄). A �nite automaton A = (Q, A, E, I, F ) is alled par-tially ordered if there exists a partial order ≤ on Q suh that for every transition
(p, a, q) ∈ E, p ≤ q.It is well known � and obvious � that partially ordered �nite automata (POFautomata for short) have the same expressivity than APC expressions. One aneasily hek that if A1 and A2 are POF automata, then A1 R A2 is a POFautomaton too. Consequently, omputing the semi-ommutation losure of a lan-guage given by a POF automaton with our algorithm returns a partially ordered�nite automaton. Therefore, with a simple reurrene using Proposition 2.1 weobtain a new proof of the stability of APC under semi-ommutation losures.One an wonder whether our algorithm redues to enoding an APC expressioninto a �nite partially ordered automaton and to apply the algorithm of [7℄ on itwhile merging equivalent states. The answer is no sine it was proved in [7℄ thatmerging equivalent states in a partially ordered automaton is PSPACE-omplete.So this method would be totally ine�ient.Using a regular expression, in our ase an APC, may be useful for speifyinga property that one loses by a semi-ommutation relation. However, even inthis ase, deiding usual questions like inlusion and membership are more easilyomputed with automata. Furthermore, a POF-automaton equivalent to an APCexpression an be easily omputed in linear time and spae [19℄).4.1. Theoretial omplexityFollowing [7℄, let us all an atomi expression a single symbol or a language ofthe form B∗, with B a subset of the alphabet, and a produt a �nite onatenationof atomi expressions. The length of a produt is the number of atomi expres-sion omposing that produt. The size of an APC is the total number of atomiexpressions in the produts omposing that APC.Let R be a semi-ommutation relation over an alphabet A and p be a produtover A. Then, from [7℄, R∗(p) is an APC of size at most 2O(|A|(δR+1)n) with

δR = max
a∈A
{|Y | ⊆ A | {a} × Y ⊆ R}Given two automata A1 = (Q1, A, E1, I1, F1) and A2 = (Q2, A, E2, I2, F2), thenumber of states of A1 R A2 is O(2|A||Q1||Q2|) and, hene, its size, i.e. thenumber of its states and the number of its transitions, is O((2|A||Q1||Q2|)2). Alanguage that ontains only a single letter is trivially represented by an automatonof size 2 and a language of the form B∗, with B a subset of the alphabet, is alsotrivially represented by an automaton of size 1. Therefore, by Proposition 2.1,the numbre of states of the automaton we ompute to represents R∗(p) is atmost O(2((|A|+1)n). Then, its size is at most O(2((|A|+1)2n) whih is better than

2O(|A|(δR+1)n)Beside these theoretial onsiderations we give in what follows a pragmatiomparison of the two approahes. 10



4.2. Experimental TestsIn order to ompare both tehniques, the one of [7℄ and ours, we did severaltests on randomly hosen produts and relations. As riterion of omparison, wehose the size of the results: number of atomi expressions (a letter or B∗ with
B a subset of the alphabet) for APC's and number of states and transitions forautomata. Development was ahieved using the funtional language ObjetiveCaml [20℄.As their e�et on the algorithms are very di�erent, we used as inputs, two kindsof produts:type 1:: B∗0a1B

∗
2 . . . an−1B

∗
ntype 2:: B∗0B∗1 . . . B∗nOur proedure of omparison was as follows. For eah test, we set a kind ofprodut, a size n of the produt, a size |A| of the alphabet, and a size |R| of thesemi-ommutation relation. With these given limits, we randomly generated aprodut and a semi-ommutation relation. After that, we exeuted the algorithmof [7℄, then our algorithm on the equivalent automaton of the same produt. Wethen measured the size of the two results. Tables 1 and 2 give a summary of thetests, eah result is in fat an average of 15 tests.Table 1. Comparison of tehniques with respet to n with |A| =

10 and |R| = 5Produt size 2 3 5 7APC type 1 10 418 48361 897004automata type 1 28 82 333 836APC type 2 - 15 252 6402automata type 2 - 50 206 591Table 2. Comparison of tehniques with respet to |R| with
|A| = 10 and n = 7Relation size 3 5 7 9APC type 1 785597 1162952 286499 4213859automata type 1 578 828 1031 1522APC type 2 7540 15153 16965 29730automata type 2 502 622 830 936All of these tests were ahieved in less than one or two minutes on an 1.3GHzAthlon with 1GB of memory. Proesses implementing our tehnique used lessthan 4MB of memory while the amount of memory of those orresponding to [7℄inreased more rapidly aording to the size of the inputs (more than 800MB forsome tests in the right-hand olumns of Tables 1 and 2)11



We also applied our tehnique to a language of type 1 with n = 40, |A| = 10 and
|R| = 10. The size of the generated automaton was about 450000 and omputationtakes 42 hours and 128MB were used by the proess. This last kind of test wasnot feasible with the tehnique of [7℄.5. Permutation Rewriting and Polynomial Closure ofCommutative Regular LanguagesIn this setion we present our seond main result: the extension of [7℄ to a largerlass of regular languages. For a general referene on varieties of formal languagessee [23℄.A lass of languages V is an appliation whih assoiates to eah �nite alphabet
A a set of regular languages of A∗ denoted by A∗V . A lass of languages V issaid to be losed under semi-ommutation if for any �nite alphabet A, any semi-ommutation relation over A and any language in L ∈ A∗V , R∗(L) ∈ A∗V .A positive variety of languages V is a lass of languages suh that:(1) A∗V is losed under �nite union and �nite intersetion.(2) If ϕ is a monoid morphism from A∗ into B∗, and if L ∈ B∗V , then

ϕ−1(L) ∈ A∗V .(3) If L ∈ A∗V and if a ∈ A, then a−1L and La−1 are in A∗V .A variety of languages is a positive variety of languages V suh that for eah �nitealphabet A, A∗V is losed under omplement. Given a variety of languages V , thepolynomial losure of V , denoted PolV , is the lass of regular languages suh that
L ∈ A∗PolV if and only if L is a �nite union of languages of the form

L0a1L1 · · ·akLkwith Li ∈ A∗V and ai ∈ A.The following result is proved in [24, Theorem 5.9℄:Theorem 5.1. Let V be a variety of languages. Then PolV is a positive varietyof languages.A regular language L of A∗ is said ommutative if for every a, b ∈ A, xaby ∈ Limplies xbay ∈ L. An automaton is said ommutative if q · ab = q · ba for everyouple of letters a and b and every state q.The following equivalenes are well known and are just realled.Proposition 5.2. Let L be a regular language on A∗. We have the followingequivalenes :(1) L is ommutative.(2) The syntati monoide of L is ommutative.(3) The minimal automaton of L is ommutative.Note that a language reognized by an automaton (not neessarily the minimalone) whih is ommutative is ommutative. As an immediate onsequene, wehave : 12



Lemma 5.3. If A = (Q, A, E, i, F ) is the minimal automaton of a ommutativelanguage, then for all p, q ∈ Q, L(Ap,q) is a ommutative language.Proof. Commutativity of automata does not depend on their initial and �nalstates. �The lass of ommutative regular languages is known to be a variety of languagesand is denoted by C. Therefore, some diret onsequenes are the following.Lemma 5.4. Let A be an alphabet:(1) A∗PolC is losed under onatenation.(2) A regular language belongs to A∗PolC if and only if it is a �nite union ofonatenations of regular ommutative languages.(3) An APC language over A∗ belongs to A∗PolC.Proof. (1) Let us take L = L0a1L1 · · ·anLn and K = K0b1K1 · · · bmKm with
Li, Kj ∈ A∗C and ai, bj ∈ A. If ε ∈ Ln then

LK = K ∪
⋃

x∈A

L0a1L1 · · · anLnx−1xK0b1K1 · · · bmKmIf ε /∈ L, then
LK =

⋃

x∈A

L0a1L1 · · ·anLnx−1xK0b1K1 · · · bmKmSine A is �nite, the unions are �nite. Moreover, the lass of ommutativelanguages is a variety of languages, thus Lnx−1 is a ommutative languageand LK is in A∗PolC.(2) From the de�nition of PolC, (1) and the fat that a single symbol is aregular ommutative language.(3) From what preedes and the fat that B∗, with B ⊆ A, is a ommutativelanguage.
�Now, we prove that PolC is losed under semi-ommutation. Sine any om-mutative language is trivially R-losed for all semi-ommutation relation R, fromLemma 5.4 and Proposition 2.1 it is su�ient to prove that Ln R Ln−1 R

· · · R L1 belongs to A∗PolC for every integer n ≥ 2 and language Li ∈ A∗C. Letus begin with n = 2.Lemma 5.5. Let A be an alphabet, L1 and L2 be two regular ommutative lan-guages on A, and R be a semi-ommutation relation over A. Then L1 R L2belongs to A∗PolC.Before the proof, let us onsider the following example.Example 5.6. Consider the two following �nite automata A1 and A2. Theyare ommutative and their languages are as follows : L(A1) = {u ∈ {a, b}∗ |
|u|b is even} and L(A2) = {u ∈ {a, d}∗ | |u| is even}.13
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Let us take R = {(a, d), (b, a)}. Using the onstrutive proofs of the abovelemmas, A1 R A2 is given by the following �nite automaton (transitions whihhange the third part of states are represented by dashed arrows; and only reah-able states whih lead to a �nal state have been represented):
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Sine the parts between the dashed arrows are ommutative and sine no dashedarrow belongs to a loop, L(A1 R A2) an be easily desribed as a �nite unionof onatenations of ommutative languages (reall that a single symbol is a om-mutative language). Therefore, L(A1 R A2) belongs to A∗PolC.Proof. Let A1 = (Q1, A, E1, I1, F1) and A2 = (Q2, A, E2, I2, F2) be the two min-imal automata reognizing L1 and L2, respetively. Let A = (Q, A, E, I, F ) bethe trim automaton obtained from A1 R A2. For all subsets B of α(L(A2)), wedenote by Q←→
B

the subset {(q1, q2,
←→
B ) | q1 ∈ Q1, q2 ∈ Q2} of Q and by E←→

B
thesubset E ∩Q←→

B
×A×Q←→

B
of E.Let t = ((p, q,

←→
C ), a, (p′, q′,

←→
D )) ∈ E \ ∪B⊆AE←→

B
. We laim that there is noloop in A1 R A2 using t: sine ←→C 6=←→D and by (i) � proof of Proposition 3.1 �all states aessible from (p′, q′,

←→
D ) are of the form (r, s,

←→
B ), with ←→D ⊆ ←→B .Eah aepting path m in A1 R A2 an be deomposed into:

m = m0t1m1t2 . . . tnmnwith ti ∈ E \ ∪B⊆AE←→
B

and mi only using transitions of E←→
Bi
. Using the abovelaim, we have n ≤ |E \ ∪B⊆AE←→

B
|. Consequently, L(A1 R A2) is a �nite unionof languages of the form:

L0a1L1a2 . . . anLn,where the ai's are letters and the Li's are aepted by �nite automata whosegraphs of transitions are (Q←→
Bi

, E←→
Bi

).By de�nition of PolC, it remains to prove that the Li's are ommutative lan-guages. Let B ⊆ A, we prove that (Q←→
B

, E←→
B

) is ommutative. Let r = (p, q,
←→
B ),

ra = (pa, qa,
←→
B ) and rab = (pab, qab,

←→
B ) three states of Q←→

B
suh that there existtransitions ta = (r, a, ra) and tab = (ra, b, rab) in E←→

B
.

(p, q,
←→
B ) (pa, qa,

←→
B ) (pab, qab,

←→
B )

a bWith the notation of Proposition 3.1, the following ases our:
• ta, tab ∈ G1. Sine A1 is minimal and sine L(A1) is ommutative, it isommutative. Thus there exists pb in Q1 suh that p·b = pb and pb·a = pab.Moreover, sine ta and tab belong to G1, {a}×←→B ⊆ R and {b}×←→B ⊆ R.Consequently, (r, b, (pb, q,

←→
B )) and ((pb, q,

←→
B ), a, rab) are in G1 ∩ E←→

B
. Itfollows that rab ∈ r · ba.

• ta, tab ∈ G2. By a similar argument on A2, one has rab ∈ r · ba.
• ta ∈ G1, tab ∈ G2. Thus qa = q and pab = pa. Consequently, (r, b, (p, qab,
←→
B )) ∈ G2 ∩ E←→

B
and ((p, qab,

←→
B ), a, rab) ∈ G1 ∩ E←→

B
. It follows that

rab ∈ r · ba. 15



• ta ∈ G2, tab ∈ G1. By a similar argument on A2, one has rab ∈ r · ba.Consequently r · ab ⊆ r · ba. Sine the roles of a and b are symmetri, then
r · ba ⊆ r · ab and thus r · ab = r · ba. Therefore, (Q←→

B
, E←→

B
) is ommutative, whihonludes the proof. �To do the reurrene step that will lead to the stability of PolC under semi-ommutation, let L′ and Li, with 1 ≤ i ≤ n + 1, be n + 2 ommutative regularlanguages. Suppose we have proved that L = L′ R Ln+1Ln · · ·L1 an be deom-posed into a �nite union of languages of the form (L′′ R L′n+1)(L

′′′
R Ln · · ·L1with L′′, L′n+1 and L′′′ some ommutative regular languages. Then, by the indu-tive hypothesis, the right part belongs to A∗PolC. By the preeding lemma, the leftpart also belongs to A∗PolC. And by the stability of A∗PolC under onatenation,we onlude that L belongs to A∗PolC.Lemma 5.7. Let A = (Q, A, E, I, F ) be a �nite automaton, L1, L2 be two lan-guages on A and R be a semi-ommutation relation over A. The following equalityholds:

L(A) R L1L2 =
⋃

q∈Q,
C×B⊆R

(L(AI,q) R (L1 ∩B∗))(L(Aq,F ) ∩C∗) R L2)Proof. Let q ∈ Q, C×B ⊆ R and u ∈ (L(AI,q) R (L1∩B∗))(L(Aq,F )∩C∗) R

L2). Then u an be deomposed into:
u = x1y1 . . . xnynz1t1 . . . zktksuh that(1) x1 . . . xn ∈ L(AI,q), y1 . . . yn ∈ L1 ∩B∗,(2) for all 1 ≤ j < i ≤ n, α(xi)× α(yj) ⊆ R,(3) z1 . . . zk ∈ L(Aq,F ) ∩ C∗, t1 . . . tk ∈ L2,(4) for all 1 ≤ j < i ≤ k, α(zi)× α(tj) ⊆ R,Sine C × B ⊆ R and by (1) and (3), for all 1 ≤ i ≤ n and for all 1 ≤ j ≤ k,

α(zj)× α(yi) ⊆ R. Consequently and by (2) and (4), u ∈ L(A) R L1L2.Conversely, let u ∈ L(A) R L1L2. By de�nition of the R-shu�e, there exist
x1, . . . , xn, y1 . . . , yn ∈ A∗ suh that(5) u = x1y1 . . . xnyn(6) for all 1 ≤ j < i ≤ n, α(xi)× α(yj) ⊆ R,(7) x1 . . . xn ∈ L(A),(8) y1 . . . yn ∈ L1L2.Statement (8) implies that there is 1 ≤ k ≤ n suh that yk may be deomposed into
yk = st, with s, t ∈ A∗ and y1 . . . yk−1s ∈ L1 and tyk+1 . . . yn ∈ L2. Statement (7)implies that there exists a state q suh that x1 . . . xk ∈ L(AI,q) and xk+1 . . . xn ∈
L(Aq,F ). Now, by (5) and (6), x1y1 . . . xks ∈ L(AI,q) R (L1∩α(y1 . . . yk−1s)) and
txk+1yk+1 . . . xnyn ∈ (L(Aq,F ) ∩ α(xk+1 . . . xn)) R L2. By (6), α(xk+1 . . . xn) ×
α(y1 . . . yk−1s) ⊆ R, whih onludes the proof. �16



We an now prove the main result.Theorem 5.8. The lass PolC is losed under onjugay and semi-ommutation.Proof. Let L0, L1, . . . , Lk be ommutative languages on A, a1, . . . , ak be letters of
A and L = L0a1L1a2 · · ·akLk. Let Ai be the minimal automaton of Li. One has

Conj(L) =
⋃

0≤i≤k

L(Aiqi,Fi
)ai+1L(Ai+1) . . . akL(Ak)L(A1)a1 . . . aiL(Aipi,qi

)where pi is the initial state of Ai, Fi is the set of �nal states of Ai and qi is astate of Ai. Thus using Lemmas 5.4 and 5.3, Conj(L) ∈ A∗PolC. Furthermore, if
K1 and K2 are languages of A∗, then Conj(K1 ∪K2) = Conj(K1) ∪ Conj(K2). Itfollows that PolC is losed under onjugay.By a diret indution using Proposition 2.1, Lemma 5.5 and Lemma 5.7, PolCis also losed under semi-ommutation. �Let us notie that the proof is onstrutive. By Theorem 5.1 and 5.8, thepositive variety PolC is losed under union, intersetion, left and right quotients,onjugay and semi-ommutations.6. ConlusionIn this paper we proved that omputing the semi-ommutation losure of anAPC language is in pratie more e�ient using �nite automata representationsthan using regular expressions.Moreover, in [7℄ the question of �nding other sublasses of regular languageswhih are losed under union, intersetion, produt, semi-ommutation rewrit-ing and onjugay was opened. We showed that PolC, the positive variety of �-nite unions of �nite produts of ommutative languages, ontains APC languagesand has these losure properties. Furthermore, using �nite automata the semi-ommutation losure of a language of this kind is e�etively omputable. Howeverwe do not know whether this lass is maximal. A solution may be found in [16℄where the maximal positive variety losed under the shu�e operation is exhibited.We do not know neither whether PolC is deidable.In pratie, we may want to ompute the transitive losure, by a semi-ommutationrelation, of a regular language whih does not neessarily belong to a lass stableby all semi-ommutation relations. We investigated this problem, in a separatework [10℄. We mainly used the fat that our tehnique of omputing the R-shu�eworks on any two regular languages. This allowed us to ompute the reahabilityset of a lift-ontroller whose transition relation is not only omposed by semi-ommutations and whose reahability set does not belong to a lass stable by allsemi-ommutation relations.AknowledgementWe would like to thank Giovanna Guaiana for the referenes she gave us about her17
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