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Abstract

Static checking is key for the security of software components. As a component model, this paper

considers a Java class enriched with annotations from the Java Modeling Language (JML). It de�nes

a formal execution semantics for repetitive method invocations from this annotated class, called the

class in isolation semantics. Afterwards, a pattern of liveness properties is de�ned, together with

its formal semantics, providing a foundation for both static and runtime checking. This pattern is

then inscribed in a complete language of temporal properties, called JTPL (Java Temporal Pattern

Language), extending JML. We particularly address the veri�cation of liveness properties by auto-

matically translating the temporal properties into JML annotations for this class. This automatic

translation is implemented in a tool called JAG (JML Annotation Generator). Correctness of the

generated annotations ensures that the temporal property is established for the executions of the

class in isolation.

1 Introduction

Component-based development provides signi�cant advantages � portability, adaptability, re-usability,

etc. � when developing, e.g., Java Card smart card applications [6] or when composing Web services within

Service Component Architecture (SCA) � a relatively new initiative advocated by users of Java technology.

In this framework, the use of components of distributed applications or component-based applications

∗Research partially funded by the French National Research Agency, ANR-06-SETI-017 TACOS.
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necessitates ensuring not only invariance and safety properties but also partial correctness and liveness

properties of components. We consider a component modeled by a Java class that is annotated in Java

Modeling Language (JML for short).

Currently, more and more tools aiming at the veri�cation of Java programs are adopting JML as

property speci�cation language (see [7] for an overview). JML 1 is a speci�cation language syntactically

and semantically close to Java, thus making speci�cations more accessible to Java programmers. JML

allows adding basic formal annotations - like method pre- and post-conditions or invariants - to the Java

class, thus proposing a way to modularly verify Java applications. However, it is di�cult to directly specify

complex dynamic properties in JML, like temporal properties [17], that are often needed to express the

security policies that the Java implementation has to ensure. Therefore, Huisman and Trentelman [28]

proposed a language of temporal properties � later called JTPL, for Java Temporal Pattern Language [14].

Our main purpose is to verify liveness properties of Java/JML components using a JML extension. The

�rst contribution is a formal execution semantics for repetitive method invocations from this component,

called the class in isolation semantics. To infer class invariants by abstract interpretation, Logozzo [21]

proposed a semantics of partial execution paths of an object-oriented program and of a so-called class

in isolation. Our work follows this approach but, for verifying liveness properties, we de�ne a complete

execution path semantics of a class in isolation. Moreover, since we consider Java/JML components, we

take into account the JML semantics to de�ne the class in isolation semantics. The second contribution is

an extension of the JML type speci�cations with a temporal speci�cation of liveness by introducing a new

speci�cation clause in Java classes - called the liveness clause. A deep integration of this liveness clause in

JML is achieved by using the same semantics of visible states as for JML invariant and constraint clauses.

The third contribution is a veri�cation method for liveness properties by generating JML invariants and

history constraints. The fourth contribution is a systematic translation of temporal properties into JML

annotations. Thanks to the semantics, we establish the correctness of the translation. Notice that the

second and third contributions were presented in [15] without proofs nor explicit examples. To make it

short, the main extensions to [15] are (1) a complete formal semantics for the executions of a Java/JML

component, and (2) the translation of all the liveness formulas of the JTPL temporal logic into standard

JML annotations.

This paper is organised as follows: Section 2 quickly presents JML on an example. Section 3 introduces

the mathematical background used in the next sections. Section 4 presents the semantic framework

of the paper. In particular, it de�nes a semantics for a class in isolation and gives the semantics of

JML main annotations. Moreover, the semantics of visible states is recalled and formalised (upon an

1See http://www.jmlspecs.org.
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ad'hoc semantics of a Java class). Next, Section 5 de�nes the liveness clause and its formal semantics.

Section 5 also presents the veri�cation of liveness properties on a class in isolation through appropriate

annotation generation. Section 6 presents the application of the annotation generation method to the

JTPL temporal liveness properties based on their translation into the liveness clause that we propose

to extend JML. Section 7 presents the JAG tool implementing this automatic generation of annotations.

Section 8 concludes by giving some perspectives and future work.

2 Overview of JML and Example

JML (Java Modeling Language) [18] is a speci�cation language especially tailored for Java applications.

Originally, JML was proposed by G.T. Leavens and his team; the development of JML is now a community

e�ort. JML has been successfully used in several case studies to specify Java applications, and more

especially to specify smart card applications [6, 16]. JML is developed following the Design by Contract

approach [23], where classes are annotated with class invariants and method pre- and post-conditions. The

predicates are side-e�ect free boolean Java expressions, extended with speci�c constructs. Speci�cations

are written as Java comments marked with an @, i.e., annotations follow //@ or are enclosed between /*@

and @*/. Figure 1 presents some JML annotations on the simple example of a bu�er.

The class Buffer works as follows: a method storeData() customises the application by setting the

transaction length. Then, one can initialise a new transaction with the method begin(), creating a new

temporary buffer. Afterwards, a write() method �lls the modi�cations in the temporary buffer that

is validated, i.e., assigned to the attribute status, by an invocation of commit(). It is also possible to

abort the transaction by an invocation of the method abort().

Figure 1 displays a class invariant, i.e. a predicate that has to hold on every so-called JML visible

state. History constraints allow expressing a relation between the pre- and post-state of all methods.

Pre-state values of expressions are denoted by the JML keyword \old. Using the clause for, one may

specify the methods list for which the history constraint must be satis�ed. When this clause is omitted,

the constraint must hold for all the class methods. The clause requires denotes the pre-condition of

the method, i.e., a predicate that must be true when the method is called. A post-condition is expressed

with an ensures clause. A method may exceptionally terminate by throwing an exception and satisfying

the exceptional post-condition (signals clause). The method speci�cation can also contain a diverges

clause (not displayed in this example). If the predicate of a diverges clause of a method m is satis�ed by

the pre-state ofm, then the execution ofmmay not terminate. Otherwise the method must terminate. By

default, the JML diverges clause is set to false. JML also introduces its own variables � declared with
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the keyword ghost. A special set annotation exists to assign their value. For instance, trDepth = true

means that a transaction is in progress. This variable allows expressing that every opened transaction

must eventually be closed. This is an example of liveness property that will be translated into a set of

JML annotations. The correctness of a Java class w.r.t. JML annotations can be established by model-

checking [26] or by a prover (B or Coq) via a proof obligation generator (Jack [8] or Krakatoa [22]).

3 Preliminaries

This section introduces some de�nitions and notations used in the other sections. It recalls the notion of

sequence and some useful results for the existence of �xpoints in lattices.

3.1 Notations

Familiarity with basic set theory is assumed. Given a binary relation R ⊆ S1×S2, dom(R) is its domain,

ran(R) is its range and R−1 is the inverse relation. If dom(R) = S1 then the relation is total. A relation

f ⊆ S1×S2 is a partial function from S1 to S2, denoted S1 7→ S2, if each element of its domain has a single

image. It is a (total) function, denoted S1 → S2, if it is total and a partial function. An endofunction of

S is a function from S to itself. For any function f : S1 → S2, x ∈ S1 and y ∈ S2, the update of f with y

at x, denoted f [x 7→ y] is the unique function such that:

f [x 7→ y](u) =

 f(u) if u 6= x

y if u = x

More generally, we write f [x1 7→ y1, . . . , xn 7→ yn], instead of f [x1 7→ y1] . . . [xn 7→ yn], when the x1 . . . xn

are all di�erent.

3.2 Sequences

Let S be a (nonempty) set. A sequence is a partial function σ from N to S such that the set dom(σ) is

either N or a �nite subset [0, ..., k] for some k in N. The empty sequence, whose domain is the empty set,

is denoted ε. A sequence σ is in�nite if dom(σ) = N, �nite otherwise. The length len(σ) of a sequence σ

is n if it is �nite and if dom(σ) = [0, ..., n − 1], ω otherwise. The last element last(σ) of a sequence σ is

σ(len(σ) − 1) if this sequence is �nite and nonempty, ω otherwise. We use S∗, S+, Sω, S∗ω and S+ω to

respectively denote the sets of �nite, nonempty �nite, in�nite, �nite or in�nite, and nonempty �nite or

in�nite sequences.
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The concatenation α.β of two sequences α, β ∈ S∗ω of length l = len(α) and m = len(β) is a sequence

of length len(α.β) = l ⊕m, where ⊕ extends the addition of N to N ∪ {ω}, with ω ⊕ n = n⊕ ω = ω for

any n ∈ N ∪ {ω}. σ = α.β is de�ned by σ(i) = α(i) for 0 ≤ i < l and σ(i) = β(i− l) for l ≤ i < len(σ).

Concatenation of sequences extends to sets of sequences in a standard way, with the same notation.

Two nonempty sequences α, β ∈ S+ω of length l = len(α) andm = len(β) are joinable i� last(α) is β(0)

or ω. When they are joinable, their join (or junction) αaβ is a sequence σ of length len(σ) = (l⊕m)	 1,

where 	 extends the subtraction of N to N∪ {ω}, with ω 	 n = ω for any n ∈ N∪ {ω}. σ = αaβ is such

that σ(i) = α(i) for all 0 ≤ i < l and σ(i) = β(i− l + 1) for all l ≤ i < len(σ) when l < ω. The junction

SaT of the sets of nonempty sequences S and T is the set of junctions αaβ of joinable sequences α ∈ S

and β ∈ T.

3.3 Complete Lattices

A partial order v on a set S is a relation on S which is re�exive (∀x ∈ S. x v x), transitive (∀x, y, z ∈

S. (x v y∧y v z)⇒ x v z) and antisymmetric (∀x, y ∈ S. (x v y∧y v x)⇒ x = y). A partially ordered

set 〈S,v〉, or poset, is a set equipped with a partial order v. A lower bound l of U ⊆ S is an element l of

S such that ∀x ∈ U. l v x. A greatest lower bound of U is a lower bound g of U such that l v g holds for

all lower bound l of U. A (least) upper bound of U for v is a (greatest) lower bound of U for the inverse

partial order v−1. By antisymmetry of v, greatest lower and least upper bounds, when they exist, are

unique.

A complete lattice 〈S,v,t,u〉 is a poset 〈S,v〉 where every subset U ⊆ S has a least upper bound,

denoted uU, and a greatest lower bound, denoted tU. An endofunction f of S is monotone if ∀x, y ∈

S. x v y ⇒ f(x) v f(y). A consequence of Tarski's �xpoint theorem [27] is the existence of least and

greatest �xpoints for any monotone function in a complete lattice.

Proposition 1 Every monotone endofunction f on a complete lattice 〈L,v,t,u〉 admits a least �xpoint

lfp(f) =def u{x|x ∈ L ∧ f(x) v x} and a greatest �xpoint gfp(f) =def t{x|x ∈ L ∧ x v f(x)}.

3.4 Sequence Set Lattice

When a program can either run forever or end, its execution (or trace) semantics is a set of �nite or

in�nite sequences (of states). Following [10], these sets can be speci�ed as �xpoints in the set 2S
+ω

of

sets of nonempty �nite or in�nite sequences. The following proposition de�nes a lattice over this set by

fusion of the complete lattices 〈2S+
, ⊆, ∪, ∩〉 and 〈2Sω

, ⊇, ∩, ∪〉 of sets of respectively nonempty �nite
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and in�nite sequences. A proof that they are complete lattices can be found in [10], Th. 11 and 12. In

all that follows, X+ (resp. Xω) shortens X ∩ S+ (resp. X ∩ Sω) for any X in 2S
+ω

.

Proposition 2 (Corollary of [10], Th. 9) Let 2S
+ω

be the (disjoint) union of 2S
+
and 2S

ω

. For any

X in 2S
+ω

, let v be de�ned by X v Y = X+ ⊆ Y + ∧Xω ⊇ Y ω. For any subset Z of 2S
+ω

, let t and u

be respectively de�ned by tZ =
⋃

X∈Z X
+ ∪

⋂
X∈Z X

ω and uZ =
⋂

X∈Z X
+ ∪

⋃
X∈Z X

ω.

Then 〈2S+ω

,v,t,u〉 is a complete lattice.

4 Execution Semantics

Our aim is to verify liveness properties of Java/JML components. A suitable semantics for this is a set of

maximal execution paths. Intuitively, an execution path (or simply an execution) is a sequence of states

reached during an execution of the class. An execution path is maximal if it cannot be extended to form

a longer execution path. A maximal execution path is either in�nite or is terminating with a blocking

state.

4.1 Context Restrictions

We study a component that is a Java class enriched with some JML annotations: invariant, constraint

and ghost variables for the class, behavior for methods and set in their bodies. The annotation pure

means that a method is side-e�ect free. The annotations helper and assignable are useless in de�ning

the liveness properties that we address. Consequently, we do not take these annotations into account.

We do not address the problems of inheritance, multithreading and exception hierarchy. To simplify the

presentation, we do not take into account the �nalizers and the static methods. The execution of the

component environment is restricted to creating only one instance of the class. The execution invokes

only the non static methods.

We assume that the environment and the class respect the contract de�ned by the JML speci�cations.

That means that the environment calls method m from a memory state that satis�es its requires

condition. It is assumed that the annotated class is consistent, i.e. each method m leads to a state that

satis�es either its ensures condition if m does not diverge and does not raise an exception or the signals

predicate if it raises an exception.
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4.2 Java Subset Semantics

In this section De�nitions 1 and 2 describe the Java/JML components that we consider. Then an execution

semantics of a Java subset is given in Def. 4 as a sequence of memory states, de�ned in Def. 3.

A component is a Java class de�ning a set of methods and a set of attributes and ghost variables. The

class can be annotated with JML annotations as invariant, constraint and behavior. A behaviour is

a method annotation. A class can also contain ghost variables and set annotations. A component is,

therefore, an annotated class in Java/JML de�ned as follows:

De�nition 1 (Annotated Class) An annotated class C is a tuple (VC , IC , CC ,MC ) where VC is the

set of attributes and ghost variables of the class, IC is a set of JML invariants, CC is a set of JML

constraints and MC is the set of all method names of the class except the constructor iC . A method

named m in MC is de�ned by a tuple (behaviorm, paramListm, bodym) where behaviorm is the JML

speci�cation of a canonical behaviour, paramListm is its set of parameters and bodym is the Java program

that implements m.

By a desugaring operation [25], the method m behaviours can be reduced to a single canonical be-

haviour annotation: behavior; requires Pm; diverges Dm; ensures Qm; signals (Exception e)

Rm;. In the rest of the paper, Pm, Dm, Qm and Rm respectively denote the requires, diverges, ensures

and signals predicates of the behaviour of method m.

The addressed Java subset to de�ne method bodies bodym is composed of atomic and method call

statements respectively denoted by as and m(E, . . . , E), sequential, conditional and iterative statement

compositions, and exception handling. An atomic statement is any statement that does not de�ne other

memory states than the states before and after its execution. A typical example is an assignment of a

variable in VC .

De�nition 2 (Java Subset) Let E be a Java expression, m a Java identi�er and P a Java predicate

(a boolean Java expression). We consider the Java statement subset T de�ned by the following abstract

syntax:

T ::= as | m(E, . . . , E) | T ; T | if (P ) {T} else {T} | while (P ){T}

| throw | try {T} catch {T} | try {T} finally {T} .

A memory state assigns values to variables. For a component in isolation, we consider three sets of

variables, namely: the set VC of attributes and ghost variables, the set PC =
⋃

m∈MC
paramListm of

parameters of all the methods (to simplify, we assume that distinct methods have disjoint parameter

sets), and a set of three special variables to control the execution.

7



De�nition 3 (Memory State) A memory state s is composed of:

• two total functions VC → VAL and PC → VAL ∪ {⊥}, where VAL is the set of all values of the

di�erent Java types and ⊥ 6∈ VAL; the former function assigns a value to any attribute and ghost

variable of C ; the latter assigns a value to any parameter of any method of C ; when the parameter

is not used, its value is unde�ned - denoted ⊥.

• a boolean variable excp; the predicate s(excp) indicates that an exception has been thrown,

• a variable cM ∈MC , indicating the name of the method currently performed,

• a variable sH, that is a natural number that represents the height of the execution stack.

This de�nition simpli�es memory models for object oriented languages [22, 29]. The Java memory

also contains an execution stack [20]. As in [21], we do not explicitly use the execution stack, but

we observe it with the three special variables excp, cM and sH. Given a state s and a variable x in

VC ∪ PC ∪ {excp, cM, sH}, s(x) denotes the value of x in the state s, when it is de�ned. We denote by

STATE the set of memory states of a class C .

Let E be a Java/JML expression. We consider an evaluation function, written eval(E, s), that returns

the value of E in the state s. We suppose that expressions are side-e�ect free and do not contain method

calls. They are denoted E, Ei. JML predicates are boolean expressions de�ned over attributes, ghost

variables and values of their types. Some predicates, for example in the constraint or ensures clauses,

are pre-/post-predicates using the values of variables in the previous state by the \old notation. Let P

be a JML predicate and s, s′ be two memory states. If P does not contain the keyword \old, s |= P

denotes that eval(E, s) = true. Otherwise, (s, s′) |= P denotes that the evaluation of P w.r.t. the states

s and s′ is true. The subterms t of P appearing as \old(t) in P are evaluated in the state s, and the

subterms t′ that are not included in the keyword \old are evaluated in the state s′.

Intuitively, we de�ne the semantics of a Java statement T as the execution sJT K that is generated by

the execution of T from the memory state s of STATE. An execution is a sequence of memory states,

i.e. an element of STATE+ω.

De�nition 4 (Java Subset Semantics) Let T be a Java statement and s ∈ STATE a memory state

without exception (¬s(excp)). The execution sJT K is de�ned in Fig. 2, where fas : STATE → STATE is

the state transformer of the atomic statement as.

Each equality in this de�nition must be understood as follows:

1. The execution for an atomic statement as is the output state resulting from as.
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2. The �rst state sin is a pre-state that contains the value of every parameter of m. In this state,

the current method is m and the stack height is incremented. If sin does not satisfy the pre-

condition Pm of method m, the execution the execution raises an exception. Otherwise, the state

sin is followed by the sequence of states resulting from the execution of the body of m. When this

execution is �nite, it ends with a last state sexit whose parameters, cM and sH, are equal to their

values in the �rst state s and whose other values are those of the last state of the body execution.

3. The execution for a sequence of T1 and T2 is the concatenation of the executions of T1 and T2 if T1

terminates without raising an exception. Otherwise, it is the execution of T1.

4. The execution for the conditional statement is the execution of T1 if s satis�es P and the execution

of T2 otherwise.

5. De�ning the execution semantics of the iterative while statement is a di�cult point. For any

predicate P and statement T it is expected that this execution is empty if s does not satisfy P , is

the execution of T if T does not terminate or raises an exception, and is otherwise the concatenation

of a �rst execution of T and the execution of the same iterative statement from the last state of

this �rst execution of T . To simplify our semantics we de�ne never an empty execution in such a

way the function last is always de�ned. The semantics of while (false){T} is de�ned by s. This

stuttering has no e�ect on the visibles states. Last, note that this is an expression of the syntactic

statement skip. This is the intended meaning of the �fth equality in Fig. 2. The trouble is that this

�de�nition� of (λs. sJwhile (P ){T}K) is circular. The question remains whether this equation admits

a solution and, if it admits more than one, which one should be retained as the right de�nition. A

basic answer is to de�ne this solution as a �xpoint over an adequate lattice. Consider the set JT K of

executions starting from any memory state in STATE. This set is related to the unique execution

sJT K after a given state s by JT K = {s.σ | s ∈ STATE ∧ σ ∈ sJT K}. Jwhile(P ){T}K could be

de�ned in the sequence set lattice from Prop. 2 as the least �xpoint of the endofunction W de�ned

by W = (λX.{σ ∈ STATE+ω | len(σ) = 1 ∧ σ(0) 6|= P} ∪ {σ ∈ STATE+ω | σ ∈ JT K ∧ σ(0) |=

P ∧ last(σ)(excp)} ∪ {σ ∈ STATE+ω | σ ∈ JT K ∧ σ(0) |= P ∧ ¬last(σ)(excp)}aX) with the

convention that ω(excp) = false. On the one hand, this function is monotone. On the other hand, a

proof by induction on the statement language shows that the execution set W (X) contains exactly

one execution starting from any given state, for any execution set X. Then sJwhile(P ){T}K is

de�ned as the execution starting with s in the least �xpoint of W .

6. The execution for the try{T1}catch{T2} statement is the execution of T1 if T1 either does not

9



terminate or terminates without raising an exception. Otherwise, when T1 terminates, the raised

exception is removed and the execution continues with the execution of T2.

7. The execution for the try{T1}finally{T2} statement is the execution of T1 if T1 does not terminate.

Otherwise, when T1 terminates either normally or by throwing an exception, the raised exception

is caught if necessary and the execution continues with the execution of T2.

8. The throw statement assigns the special variable excp to true. If the throw statement is in the T1

part of a try{T1}catch{T2} statement, the execution continues with the execution of T2 as it is

speci�ed by its semantics. Otherwise, the execution stops.

4.3 Class Semantics

As explained in Sect. 1, we aim to verify that a class C satis�es a liveness property. This satisfaction

obviously depends on the context of use of that class. Here, we focus on the life cycle of a single object of

type C , after its construction. We assume the encapsulation hypothesis, i.e. that the class attributes can

be modi�ed only by the invocation of class methods. Consequently, the class use only depends upon the

manner invoking the class methods. The class executions result from the activation of the constructor

followed by a �nite or in�nite sequence of method calls that respect the contract - each of them protected

by an exception recuperation statement. This class semantics Σ+ω
C is de�ned in this section.

A method execution at toplevel is a (maximal) execution of a method m that starts from any state

where the execution stack is empty and the exception �ag is down. The set of executions of a class C at

toplevel is denoted JC K and de�ned by

JC K =def { s.sJtry{m(v(p1), . . . , v(pn))}catch {}K | m ∈MC ∧

v ∈ paramListm → VAL ∧ s ∈ STATE ∧ ¬s(excp) ∧ s(sH) = 0 ∧ s |= Pm }

where paramListm = {p1, . . . , pn}.

Let C be an annotated class, STATE its set of states, JC K ∈ STATE+ω its execution semantics and

S0 ⊆ STATE the set of initial states resulting from the constructor iC of C . The set f(C ) of blocking (or

�nal) states for the class C is de�ned by f(C ) = STATE \ {σ(0) | σ ∈ JC K}. With these notations, the

maximal execution semantics of an annotated class can be de�ned thanks to the following endofunction.

Proposition 3 In the complete lattice 〈2STATE+ω

,v,t,u〉, the endofunction F de�ned by F (X) =

f(C ) ∪ (JC KaX) is monotone.
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Proof Notations are the same as in Prop. 2, except for S replaced here with the set STATE of memory

states. By separating �nite and in�nite sequences, one has F (X)+ = f(C ) ∪ (JC K+aX+) and F (X)ω =

(JC K+aXω) ∪ JC Kω. X v Y implies that F (X)+ ⊆ F (Y )+ and F (X)ω ⊇ F (Y )ω, i.e. F (X) v F (Y ). 2

When JC K is a transition relation, i.e. when it is a set of executions of length 2, this proposition is

a corollary of Th. 13 from [10], proved by fusion of �xpoints on the two lattices of nonempty �nite and

in�nite executions. The present result is more general, since JC K may contain �nite executions of any

length, and even in�nite executions. A consequence is that a proof by fusion is no more possible.

By Prop. 1 and 3, F admits a least�xpoint, denoted lfp(F ).

De�nition 5 (Class Semantics) The restriction of lfp(F ) to executions starting from the states result-

ing from the constructor is called the class semantics and is denoted Σ+ω
C =def lfp(F )∩ (S0

a STATE+ω).

4.4 Visible States

The semantics of the JML invariant and constraint clauses is based on the notion of �visible� states.

This section formalises this notion and its semantics. Under the hypotheses of Sect. 4.1, the original

de�nition of visible states, given in the JML reference manual [18], is restricted to three cases, as follows.

A visible state is a state that occurs at one of these moments in a program's execution: at the �rst state

of the execution, just after the end of a constructor invocation that has created the executed object; at

the beginning or end of a (non-static non-�nalizer) method invocation; outside of the execution of any

constructor, �nalizer, or method when the execution stack is empty.

Let us �rst formalise the notions of pre- and post-states for a method m as follows.

De�nition 6 (Pre- and Post-States) Let C be a class, σ ∈ Σ+ω
C an execution, m a method of class

C and 0 ≤ i < len(σ). For i > 0, the ith state σ(i) of σ is a pre-state of m, denoted prestate(σ, i,m),

if σ(i)(cM) = m and σ(i)(sH) = σ(i − 1)(sH) + 1. The ith state of σ is a post-state of m, denoted

poststate(σ, i,m), if σ(i)(cM) = m and σ(i)(sH) = σ(i+ 1)(sH) + 1.

With this de�nition, for any execution of class C , we formalise � in conformity with [18] � what a

visible state is.

De�nition 7 (Visible States) Given an execution σ ∈ Σ+ω
C , the ith state σ(i) of σ is a visible state,

denoted visible(σ, i), i� i = 0, σ(i)(sH) = 0 or there is a method m ∈ MC in C s.t. prestate(σ, i,m) or

poststate(σ, i,m).

It is now possible to abstract any execution by keeping only its visible states. The following de�nition

of this abstraction is based on an auxiliary partial function nv : N × Σ+ω
C → N, such that nv(i, σ) is
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the position of the i + 1-th visible state in σ, when it exists. Let min(S) denote the minimum of any

subset S of N. nv is inductively de�ned by nv(0, σ) = min({j | 0 ≤ j < len(σ) ∧ visible(σ, j)}) and

nv(i, σ) = min({j | nv(i− 1, σ) < j < len(σ) ∧ visible(σ, j)}) for i > 0.

De�nition 8 (Visible State Abstraction) The visible state abstraction of a class C , denoted vsaC ,

is the endofunction of Σ+ω
C de�ned by vsaC (σ)(i) = σ(nv(i, σ)) for any σ in Σ+ω

C and any 0 ≤ i < len(σ).

4.5 Class in Isolation Semantics

The semantics of a class in isolation is de�ned as the set of abstractions to visible states of complete (max-

imal) class executions. Following [21], this execution semantics is called the class in isolation semantics.

It is de�ned as follows:

De�nition 9 (Class In Isolation Semantics) The class in isolation semantics of a class C is de�ned

by ΣC =def {vsaC (σ) | σ ∈ Σ+ω
C }.

4.6 Annotated Class Consistency

To express temporal properties by JML annotations, we need an execution semantics of JML annotations.

To our knowledge, JML semantics has been given in terms of wp-calculus (see for example [22]), but

never in terms of properties of the executions. In this section, we give an execution semantics of JML

annotations de�ning their consistency with the set of executions ΣC of the class in isolation.

In an annotated class, there are three canonical kinds of annotations: invariant, constraint and

behavior. Their semantics are given by Def. 11 w.r.t. the de�nition in [18]. In Def. 11, we use the

predicate mp(σ, j,m, i) that is true if σ(j) is the matching post-state of the pre-state σ(i) (Def. 10).

De�nition 10 (Matching Post-State of a State for a Method in an Execution) The jth state of

σ ∈ Σ+ω
C is the matching post-state of the ith state of σ for method m, denoted mp(σ, j,m, i), if

poststate(σ, j,m) ∧ σ(j)(sH) = σ(i)(sH) ∧ ∀k.(i < k < j ⇒ σ(k)(sH) ≥ σ(i)(sH)).

De�nition 11 (Consistency) Let C be an annotated class. We de�ne that an execution σ of ΣC

satis�es a JML annotation A of the class C , denoted σ : A, according to the formulae in Fig. 3.

This de�nition must be understood as follows:

• Invariant: The invariant must be satis�ed by each visible state (see (1) in Fig. 3).
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• Constraint: For the body of each method included in the for clause, the constraint must hold

between two consecutive visible states that arise during the execution of the method, i.e., all visible

states between the pre-state and the matching post-state of the method (see (2) in Fig. 3).

• Behavior method speci�cation: This JML speci�cation is interpreted over an execution as follows.

If the predicate Pm of the requires clause is satis�ed by the pre-state of the method m, that

implies:

� If Dm does not hold (¬Dm), then the method must terminate, i.e., it must have a post-

state. Moreover, if it is a normal termination (σ(j)(excp)), the predicate Qm of the ensures

clause must be satis�ed between the pre-state and the post-state, and the predicate Rm of the

signals clause must be satis�ed otherwise (see the case ¬Dm in (3)).

� If Dm holds and the method terminates, then the pre-state and its matching post-state satisfy

the same condition postcontract(σ, j,m, i) as in the previous case (see the case Dm in (3)).

5 Liveness Properties

Liveness properties extend the notion of program termination by stipulating that a program must eventu-

ally reach some given states. This section deals with the expression and veri�cation of liveness properties

on a class C .

5.1 Liveness Operator

The liveness properties under consideration are those expressible by the Loop operator de�ned in this

section. For any state predicate Q, the temporal formula Loop(Q) corresponds to the linear-time temporal

logic (LTL) property GF¬Q for in�nite sequences of states. It is also satis�ed by �nite sequences of states

ending in a state where Q does not hold. Its semantics is based on the notion of visible states in JML.

It is de�ned on �nite and in�nite executions as follows:

De�nition 12 (Loop Operator) Let Q be a predicate. The execution σ ∈ ΣC satis�es the liveness

operator Loop(Q), written σ |= Loop(Q), if

∀i. (0 ≤ i < len(σ)⇒ ∃j. (i ≤ j < len(σ) ∧ σ(j) |= ¬Q)).

This satisfaction relation is lifted up to sets of executions with the semantics that every execution in the

set satis�es the formula.
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5.2 Class Liveness

In object-oriented programming, de�ning and checking the satisfaction of a liveness property on a whole

program - composed of many classes - may be an heavy task. As a �rst step, this section presents the

semantics of a liveness property attached to a single Java class.

A liveness property Loop(Q) declared in a class C must hold for every object o of type C . For the

sake of simplicity, C is assumed to have no static attribute. Thus Q is a JML predicate with variables

among the (non-static) attributes of C . The satisfaction of Loop(Q) on an execution of ΣC intuitively

means that if, during the execution, any instance of the class C is in a state satisfying Q, then it is always

possible to reach a state satisfying ¬Q by invoking methods of C on this instance. In other words, C

satis�es the liveness property Loop(Q) if ΣC |= Loop(Q).

5.3 Proving Liveness

Along the line of Floyd's total correctness proof method, we plan to prove liveness with the help of a

variant function that assigns a value to each program state. That value should decrease at each program

step, according to a well-founded ordering. In the deterministic case, it is su�cient [11] to consider

variants taking their values in N, totally ordered with <.

In the present case, some program steps are calls to methods of a class C . It is obvious that a call

to a side-e�ect free method of C cannot change the value of any variant. Thus, the variant of a liveness

property will be required to decrease strictly for a subset of methods with side e�ects. Consequently,

when assigning a liveness property to a Java class, the user is asked to specify a variant V and a set M of

progress methods. This extension of the Loop operator with V and M , attached to a class C , is denoted

LoopC (Q,V,M).

In order to verify ΣC |= LoopC (Q,V,M), we need to assume progress of the environment, i.e., that

the environment invokes the methods of the subset M .

De�nition 13 (Progress Hypothesis) For any set of methods M , an execution σ ∈ ΣC satis�es the

progress hypothesis, written σ |= PH(M), if

∀i. (0 ≤ i < len(σ)⇒ ∃j. (i ≤ j < len(σ) ∧
∨

m∈M prestate(σ, j,m))).

This satisfaction relation extends to sets of executions in a standard way. The semantics of LoopC (Q,V,M)

is given by the following de�nition, where 1M is the characteristic function of set M , whose value 1M (m)

at m is 1 if m ∈M , 0 otherwise:
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De�nition 14 (Liveness Clause) Let C = (VC , IC , CC ,MC ) be an annotated class, Q a predicate on

the attributes of C , V : VC → N a variant function, and M ⊆MC a set of methods of C . An execution

σ ∈ ΣC satis�es the liveness clause LoopC (Q,V,M), written σ |= LoopC (Q,V,M), if

σ |= PH(M)⇒ ∀i. ((0 ≤ i < len(σ)− 1)⇒ (σ(i) |= Q⇒
∧

m∈MC
V (σ(i))− V (σ(i+ 1)) ≥ 1M (m))).

The variant-based liveness proof method is summarised in the following proposition:

Proposition 4 For any execution σ ∈ ΣC satisfying the progress hypothesis PH(M), if σ |= LoopC (Q,V,M)

then σ |= Loop(Q).

5.4 Approximation with JML Annotations

This section shows how to use existing JML tools for verifying liveness properties on a class in isolation.

The idea is to replace the liveness clause with standard JML annotations, whose satisfaction is su�cient

to establish ΣC |= LoopC (Q,V,M).

Veri�cation of the LoopC (Q,V,M) property is quite similar to a termination proof. As long as Q

holds, it must be possible to invoke a method ofM , and methods inM must decrease the variant V . Here

we propose proof obligations � inspired from [9] � expressed as JML annotations. These proof obligations

guarantee the satisfaction of the LoopC (Q,V,M) property by the executions of the class C in isolation.

Let A1−5 be the following set of JML annotations:

invariant V >= 0; (A1)

constraint Q ==> V < \old(V ) for M; (A2)

constraint Q ==> V <= \old(V ); (A3)

invariant Q ==>
∨

m∈M

Pm; (A4)

invariant Q ==>
∧

m∈MC

(Pm ==> !Dm); (A5)

Remember that JML invariants have to hold on all visible states, and JML constraints have to hold

between any two successive visible states [18]. These annotations A1−5 relate to Q, V , M , and a class C

and its methods as follows:

A1 The variant V is actually greater than zero, it is a function returning a natural number.
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A2 As long as Q holds, the variant V must decrease when a method in M is executed.

A3 As long as Q holds, the variant V must not increase when a method of C is executed.

A4 As long as Q holds, there should always be a method in M that may be called, i.e., whose pre-

condition Pm (in the clause requiresPm) holds. This ensures the deadlock-freeness of the system.

A5 As long as Q holds, all callable methods must not diverge, according to the clause divergesDm.

This ensures the non-divergence of the system.

In the rest of the paper, σ : A1−5 denotes σ : A1 ∧ . . . ∧ σ : A5.

Theorem 1 Let σ ∈ ΣC be an execution. If σ : A1−5 then σ |= LoopC (Q,V,M).

Proof 1 There are two cases:

1. If σ ∈ ΣC is a �nite execution, the de�nitions in Sect. 4 imply that last(σ) 6|= Pm for any method

m in MC , and that last(σ) is the prestate of no method. That falsi�es PH(M) for any M ⊆ MC

when i = len(σ)− 1. Thus σ |= LoopC (Q,V,M).

2. If σ is an in�nite execution, the proof is by contradiction. Suppose there exists σ ∈ ΣC such that

σ 6|= LoopC (Q,V,M). By Def. 13 and 14,

σ |= PH(M) (1)

and there are some i, 0 ≤ i < len(σ)− 1 and some method m ∈M , s.t. σ(i) |= Q and

V (σ(i))− V (σ(i+ 1)) < 1M (m) (2)

Since σ ∈ ΣC , by the progress hypothesis (Def. 13), we have:

∀k ≥ 0. ∃k2 ≥ k. ∃m ∈M.prestate(σ, k2,m).

The above property being true for each index k ≥ 0, it is also the case for each index k ≥ i:

∀k ≥ i. ∃k2 ≥ k. ∃m ∈M.prestate(σ, k2,m). (3)

Independently, from the semantics of Java statements (Def. 4) and the de�nition of pre-states
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(Def. 6), we derive:

∀k ≥ 0. ∀m ∈MC . prestate(σ, k,m)⇒ σ(k) |= Pm. (4)

On the one hand, from (3) and (4), we obtain:

∀k ≥ i. ∃k2 ≥ k. ∃m ∈M. prestate(σ, k2,m) ∧ σ(k2) |= Pm. (5)

On the other hand, from (2) and (A5), we have:

∀m ∈M. σ(k2) |= Pm ⇒ σ(k2) 6|= Dm. (6)

Then, from (5) and (6), we obtain:

∀k ≥ i. ∃k2 ≥ k. ∃m ∈M. prestate(σ, k2,m) ∧ σ(k2) |= Pm ∧ σ(k2) 6|= Dm. (7)

By Def. 11 (Fig. 3), when using default values [18] of all but Dm of the behavior clause on σ

above, item (3) results in:

∀k ≥ i. ∃k2 ≥ k. ∃m ∈M. prestate(σ, k2,m) ∧ ∃k3 ≥ k2. mp(σ, k3,m, k2). (8)

By (A2), (8) and transitivity of history constraints (Def. 11, item (2) in Fig. 3), we obtain:

∀k ≥ i. ∃k2 ≥ k. ∃m ∈M.

prestate(σ, k2,m) ∧ ∃k3 ≥ k2. mp(σ, k3,m, k2) ∧ 〈σ(k2), σ(k3)〉 |= V < \old(V ). (9)

By a similar reasoning, we also obtain, from (A3):

∀k ≥ i. ∃m ∈MC .

prestate(σ, k,m)⇒ ∃j ≥ k. mp(σ, j,m, k) ∧ 〈σ(k), σ(j)〉 |= V ≤ \old(V ). (10)

Consequently, from (9) and (10) one deduces that the variant V decreases in�nitely during the

execution. And so, A1 cannot be established. A contradiction. 2

In JML side-e�ect free methods can be identi�ed syntaxically thanks to the keyword pure. Let PureC

17



be the set of pure methods of the class C . Let PMC = MC \PureC denote the set of so-called progress

methods of the class C , i.e. with a side e�ect. An interesting property is obtained when M = PMC . In

this particular case, the progress hypothesis PH(M) is not only su�cient but also necessary.

Proposition 5 Let σ ∈ ΣC be an execution. If σ |= LoopC (Q,V,PMC ) and C : A1−5 then σ |=

PH(PMC ).

6 Liveness Temporal Patterns

In [15], we have presented a way to verify liveness properties expressed with the LoopC operator. This

section presents a practical context of Java/JML veri�cation where this veri�cation method is applied.

Along the line of helping Java programmers in writing formal speci�cations, Trentelman and Huis-

man [28] proposed a temporal extension of JML inspired by the pragmatic work of the SanTos Speci�-

cation Pattern Project [12]. We refer to this temporal extension of JML as JTPL, for Temporal Pattern

Language, pre�xed by a `J' to denote its adaptation to Java. The semantics of temporal formulae in

JTPL and translation rules into JML annotations are detailed in [28] for safety properties and in [1]

for liveness properties. This section de�nes a veri�cation technique for liveness properties expressible in

JTPL, a problem left open by Trentelman and Huisman [28]. This veri�cation is performed by translating

these properties into the LoopC operator.

6.1 Language Overview

JTPL provides the user with patterns to express common temporal requirements of Java classes. More-

over, the language deals with normal and abnormal method terminations. JTPL is based on the notion

of trace property which is either always P , eventually P , or the conjunction or disjunction of two trace

properties. always P is true on an execution σ if P holds on every state of σ. eventually P is true on

an execution σ if P holds on at least one state of σ.

It is often useful to reduce the scope of a trace property, i.e. specifying it only for subparts of an

execution. This is made possible by the notion of event. An event can be: (i) m called, denoting that

the method m has been invoked; (ii) m normal, denoting that the method m has terminated normally,

i.e., without throwing any exception; (iii) m exceptional, denoting that the method m has terminated

by throwing an exception; or (iv) m terminates, denoting that the method m has terminated either

normally or by throwing an exception.

Now, a temporal property in JTPL is inductively de�ned as follows: let E be a disjunction of events,
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C a trace property and T a temporal property. A temporal property can be either: (a) after E T , which

is true on an execution σ if the su�x of σ starting after each occurrence of an event in E satis�es the

temporal formula T ; (b) before E C, which is true on an execution σ if the pre�x of σ ending with each

occurrence of an event in E satis�es the trace property C; (c) C until E, which is true on an execution σ

if an event in E occurs and if the trace property C is satis�ed on the segment of σ ending with an event

in E; (d) C unless E, which is true on an execution σ if an event in E occurs and the trace property

C is satis�ed on the segment of σ ending with an event in E, or the trace property C is satis�ed on the

whole execution σ and E never happens; or (e) between E E′ C, which is true on an execution σ if the

temporal formula after E (C until E′) holds on σ, or (f) a trace property C.

6.1.1 Safety and Liveness Characterisation

The properties described by this extension of JML are either safety properties or liveness properties. The

following proposition makes it possible to distinguish them syntactically:

Proposition 6 (Characterisation of Safety and Liveness Properties) The properties containing

only the keywords after, before, unless and always are safety properties. The properties containing the

keyword eventually i� they contain the keyword before also are safety properties. The other properties

are liveness properties.

For liveness properties, the veri�cation is based on the decrease of a well-founded variant given by the

user. Therefore, we propose to extend the syntax of liveness formulae with the following clause:

under [invariant <JMLProp> ] variant <JMLExpr> [for <Methods>]

In the above clause, <JMLProp> is a JML predicate which is an optional local invariant - like a loop

invariant - that can help the proof, <JMLExpr> is the variant expression (its type is a natural number),

and <Methods> is a list of Java method names.

6.1.2 Back to the Example

Using JTPL formulae, one can express the following properties on the Buffer example (Fig. 1 Sect. 2):

1. After the invocation of storeData (after storeData called), the variable customized is always

true, expressed in JTPL as follows:

after storeData called always customized; (S)
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2. After starting a transaction, i.e., after normal termination of the method begin (after begin

normal), a state where trDepth is false must eventually be reached.

after begin normal eventually !trDepth

under variant getBufferLess()

for begin, commit, abort, write; (L)

Property S is a safety property and property L is a liveness property. Notice that in (L), the event

is begin normal and not begin called since a bu�er transaction starts only when the method begin

terminates normally. Notice also that since (L) is a liveness property, the user has to give a variant and

a set of progress methods with the JTPL clause under variant ... for. Here, the variant corresponds

to the free space in the Buffer, and the for clause contains a list of methods that can potentially modify

the value of the variant. So, storeData is not in the list.

6.2 Embedding Liveness Properties into the Loop Clause

This section presents a translation of a JTPL liveness property into a LoopC clause completed with

other JML annotations. Firstly, we present the translation for the basic after E eventually P liveness

property. Then, we generalise to the other JTPL liveness properties.

Let us consider a temporal formula of the form:

after E eventually P under variant V for M . (11)

To translate liveness JTPL properties, like (11), into a LoopC clause, one needs to observe whether a par-

ticular event has already occurred or whether a state satisfying a predicate has already been reached. For

that, we de�ne a witness primitive, denoted JML(X1, X2), where X1 and X2 are either JML predicates

or JTPL events. Intuitively, given an execution σ, JML(X1, X2) is satis�ed on all states of σ between the

states satisfying X1 and X2.

De�nition 15 (witness Primitive) Let σ be an execution and i a natural number between 0 and

len(σ) − 1. A state σ(i) satis�es JML(X1, X2) i� ∃j.(0 ≤ j < i ∧ σ(j) |= X1 ∧ ∀k.(j < k <

i⇒ σ(k) 6|= X2)).

The witness primitives are expressed by JML ghost variables that are assigned w.r.t. events occurring

in the formula. The general rules can be easily derived from the following examples:
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Example 1 (Ghost Variables Generation for S) The ghost variable witness_S corresponds to the

event storeData called of S. It is initially declared with the value false (see annotation Sa in Fig. 5)

and it is set to true when the method storeData is called (see annotation Sb). So, in each state after

the event storeData called, the value of the ghost variable witness_S is true, i.e., witness_S is true

exactly with the scope of the property.

Example 2 (Ghost Variables Generation for L) The ghost variable witness_L, corresponding to

the event begin normal of the temporal property L is also declared with the value false (annotation La

in Fig. 5). The ghost variable witness_L is assigned using a try {try {T1} catch {T2}} finally {T3}

statement (see annotation Lb). Notice that in the case of exception, the caught exception is re-thrown.

The reader can see that witness_L is set to true only when begin normal occurs. The ghost variable

witness_L is set to ¬trDepth again by adding a set statement (annotation Lc) to each method.

Thanks to an adequate witness, one can give a LoopC clause ensuring property (11). Using the

semantics of JTPL in [1] and the semantics in Sect. 4, one can show that property (11) holds on the

execution σ if σ |= LoopC (JML(E,P ), V,M).

In a similar way, the other JTPL liveness patterns can be translated into JML annotations (using the

LoopC clause) by the rules given in Fig. 4. For each LoopC (Q,V,M), the local invariant J is expressed

by an invariant clause invariant Q ==> J . The safety part of the property is also translated into an

invariant.

Example 3 (Generation of annotations for L) The JML translation of L is

LoopC (witness_L, getBufferLess(), {begin, commit, abort, write}).

The corresponding annotations are displayed in Fig. 5 (see annotations Lloop). Notice that, since no

method of Buffer diverges, annotation A5 does not appear.

7 JML Annotation Generator

The automatic generation of JML annotations for safety properties in [28] and for liveness properties

in Sect. 5 has been implemented in a tool, called JAG (for JML Annotation Generator) [13]. The JAG

0.1 release parses a Java �le - possibly already JML annotated - with the JML parser included in the

Common JML tools and takes a �le containing temporal formulae as other input. JAG is freely available

from page http://jag.univ-fcomte.fr.
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Translating Temporal Formulae into Intermediate Primitives. The tool reduces each temporal

property into one or more intermediate primitives, like the witness primitive, that are semantically

equivalent [28, 1]. These primitives are an internal format which is independent of the JML syntax,

allowing an easy extension of the annotation generation to other speci�cation languages, such as Spec].

Translating Intermediate Primitives into Standard JML Annotations. Each intermediate Inv

primitive representing the safety part of a property is translated into a JML invariant. Each interme-

diate Loop primitive representing the liveness part of the property is translated into a set of invariants

and history constraints that imply the decreasing of the variant and the deadlock-freeness of the sys-

tem. Each witness is translated into a JML ghost variable. Finally, the tool generates an output �le

including the original �le and enriched with the generated JML annotations. Figure 5 contains the result

of the translation of Properties S and L.

Example 4 (Invariant Generation for S) The invariant for S is displayed in Fig. 5 (annotation Sc).

It means that when the variable witness_S is true, i.e., after the �rst occurrence of storeData called,

the predicate must be true - the de�nition of property S.

Trace Preservation. The tool is able to keep the trace of the generated annotations, i.e. it is possi-

ble, given a generated annotation, to �nd the original intermediate primitive and the original temporal

property.

Experiments. Since the generated output �le contains standard JML annotations, it can be used with

other JML tools [7] to validate or prove the temporal formulae. For instance, Table 1- where �PO� stands

for �Proof Obligation� - summarises the results we have obtained with the JACK tool [8]. All the 277 POs

in 4th column have been proved either fully automatically (for 274 POs) or interactively (for remaining

3 POs by enforcing invariants) with the B4free tool as a back-end theorem prover.

TransactionSystem and AtmTransaction are two academic examples. TransactionSystem is adapted

from [28] and inspired by the JavaCard transaction mechanism, that ensures that every transaction in

a smart card is atomic. AtmTransaction implements a transactional mechanism between a smard card

and a terminal. Notice that our theoretical contributions have been applied not only to that academic

examples but also to the Demoney system, a Java Card Electronic Purse application we have developed

in the framework of an industrial collaboration with Trusted Logic 2, via the ACI GECCOO project. For

this application 3, we wrote over 500 lines of JML annotations.

2http://www.trusted-logic.com/
3whose demonstrative electronic purse - card speci�cation is available at http://www.doc.ic.ac.uk/ siveroni/secsafe/.
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Moreover, we have successfully used the JAG tool for the following purposes:

• Veri�cation of the correctness of the Java code w.r.t. the JML annotations with the

proof obligation generators Jack [8] and Krakatoa [22];

• Validation of a JML model with JML-TT [5];

• Formal veri�cation of a JML model with the JML2B method [2];

• Test generation and Runtime Assertion Checking with the test generators Tobias [19],

Jartege [24] and JML-TT [4].

Test generation and Runtime Assertion Checking using JAG has been studied on an industrial Java Card

application [3].

8 Conclusion and Future Works

This paper presents a way to verify liveness properties on Java classes in isolation by generating appro-

priate JML annotations. This requires that the user specify a variant for the veri�cation of a Loop clause

to which liveness properties are reduced. The generated JML annotations are veri�ed (or validated)

with any tool handling JML. The JAG tool implements this translation. It has been used for several toy

examples and a Java Card Electronic Purse Speci�cation (over 500 lines of JML).

To the best of our knowledge, this is the �rst attempt to verify liveness properties for potentially

in�nite-state systems using a translation into JML. We are working on extensions of JAG to other temporal

properties. In particular, we currently address the veri�cation of properties expressed by Büchi automata.

Assuming that a liveness is established on the class in isolation, another challenge is to provide techniques

for verifying that the (single- or multi-threaded) environment e�ectively satis�es a progress hypothesis.
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public class Buffer {
private int len;
private byte[] status;
private byte[] buffer;
private int position = 0;
private boolean customized = false;

//@ ghost boolean trDepth = false;

//@ invariant position >= 0;

/*@ constraint
@ position > \old(position)
@ for write;
@*/

/*@ normal_behavior
@ requires customized == false;
@ requires l > 0;
@*/

void storeData(int l){
len = l;
customized = true;

}

byte[] getStatus(){
return status;

}

int getBufferLess(){
return len - buffer.length;

}

/*@ normal_behavior
@ requires trDepth == false;
@ requires customized == true;
@ also
@ exceptional_behavior
@ requires customized == false;
@ signals (Exception e) true;
@*/

void begin() throws Exception{
if (customized == false) {

throw new Exception();
}
buffer = new byte[len];
//@ set trDepth = true;

}

/*@ normal_behavior
@ requires trDepth == true;
@ requires customized == true;
@*/

void commit(){
status = buffer;
position = 0;
//@ set trDepth = false;

}

/*@ normal_behavior
@ requires trDepth == true;
@ requires customized == true;
@*/

void abort(){
position = 0;
//@ set trDepth = false;

}

/*@ normal_behavior
@ requires trDepth == true;
@ requires customized == true;
@ requires position
@ + b.length <= len;
@ diverges false;
@ ensures position <= len;
@ ensures position ==
@ \old(position)+b.length;
@*/

void write(byte[] b){
int i = 0;
while (i < b.length){
buffer[position] = b[i];
position++;
i++;

}
}
}

Figure 1: JML annotated transaction system. Every opened transaction must eventually be closed
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sJasK = fas(s)

sJm(E1, . . . , En)K = let sin = s[p1 7→ eval(E1, s), . . . , pn 7→ eval(En, s), cM 7→ m, sH 7→ s(sH) + 1]
in if sin |= ¬Pm then s[excp 7→ true] else
let σ = sinJbodymK in if len(σ) = ω then sin.σ else
let sexit = s[excp 7→ last(σ)(excp), {a 7→ v | a ∈ VC ∧ v = last(σ)(a)}] in sin.σ.sexit

sJT1;T2K = let σ = sJT1K in if len(σ) = ω then σ else
let s′ = last(σ) in if s′(excp) then σ else σ.s′JT2K

sJif (P ){T1} else {T2}K = if s |= P then sJT1K else sJT2K

sJwhile (P ){T}K = if s |= ¬P then s else
let σ = sJT K in if len(σ) = ω then σ else
let s′ = last(σ) in if s′(excp) then σ else σ.s′Jwhile(P ){T}K

sJtry {T1} catch {T2}K = let σ = sJT1K
in if len(σ) = ω then σ else
let s′ = last(σ) in if ¬s′(excp) then σ else σ.(s′[excp 7→ false])JT2K

sJtry {T1} finally {T2}K = let σ = sJT1K
in if len(σ) = ω then σ else
let s′ = last(σ) in σ.(s′[excp 7→ false])JT2K

sJthrowK = s[excp 7→ true]

Figure 2: Java subset semantics
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(1) σ : invariant I if ∀i ≥ 0.σ(i) |= I.

(2)
σ : constraint H for M if
∀i ≥ 0.∀m ∈M.(prestate(σ,m, i)⇒ ∀j, k.(mp(σ, j,m, i) ∧ i < k ≤ j ⇒ (σ(k − 1), σ(k)) |= H)).

(3)

σ : behavior; requires Pm; diverges Dm; ensures Qm; signals (Exception e) Rm; if
∀i ≥ 0.(prestate(σ,m, i) ∧ σ(i) |= Pm ⇒

(σ(i) |= ¬Dm ⇒ ∃j > i.(mp(σ, j,m, i) ∧ postcontract(σ, j,m, i)))∧
(σ(i) |= Dm ⇒ ∀j > i.(mp(σ, j,m, i) ⇒ postcontract(σ, j,m, i))))

where postcontract(σ, j,m, i) = (¬σ(j)(excp)⇒ (σ(i), σ(j)) |= Qm) ∨ (σ(j)(excp)⇒ (σ(i), σ(j)) |= Rm)

Figure 3: Consistency between JML annotations and executions
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Temporal Formula Translation

eventually P under invariant J LoopC (¬JML(P, false), V, M)
variant V for M //@ invariant ¬JML(P, false)==>J;
always P until E under LoopC (¬JML(E, false), V, M)
invariant J variant V for M //@ invariant ¬JML(E, false)==> P && J;
eventually P under invariant J LoopC (¬JML(P, false), V, M)
variant V for M unless E //@ invariant JML(E, false)==>JML(P, false);

//@ invariant ¬JML(P, false)==>J;
eventually P until E LoopC (¬JML(E, false), V, M)
under invariant J //@ invariant JML(E, false)==>JML(P, false);
variant V for M //@ invariant ¬JML(E, false)==>J;
after E1 always P until E2 LoopC (JML(E1, E2), V, M)
under invariant J variant V for M //@ invariant JML(E1, E2) ==> P && J;

after E eventually P under LoopC (JML(E, P ), V, M)
invariant J variant V for M //@ invariant JML(E, P ) ==> P && J;
after E1 eventually P until E2 under LoopC (JML(E1, E2), V, M)
invariant J variant V for M //@ invariant JML(E2, E1)==>JML((JML(E1, E2) ∧ P ), E1)&& J;
after E1 eventually P under LoopC (JML(E1, P ), V, M)
invariant J //@ invariant JML(E2, E1)==>JML((JML(E1, E2) ∧ P ), E1);
variant V for M unless E2 //@ invariant JML(E1, P )==>J

Figure 4: Translation of JTPL liveness patterns using the LoopC clause
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public class Buffer {

//@ ghost boolean witness_S = false; (Sa)

//@ ghost boolean witness_L = false; (La)

/*@ invariant witness_S
@ ==> customized;
@*/

(Sc)

//@ invariant getBufferLess() >= 0;
/*@ constraint witness_L ==>
@ getBufferLess() < \old(getBufferLess())
@ for begin,commit, abort, write;
@*/

/*@ constraint witness_L ==>
@ getBufferLess() <= \old(getBufferLess())
@*/

/*@ invariant witness_L ==> (
@ (trDepth == false && customized == true) ‖
@ (trDepth == true && customized == true) ‖
@ (trDepth == true && customized == true
@ && position + b.length <= len))
@*/

(Lloop)

void storeData(int l){
...
//@ set witness_S = true; (Sb)

//@ set witness_L = !trDepth; (Lc) }

void begin(){

Exception e1;
try {
try {

(Lb)

...
//@ set witness_L = !trDepth; (Lc)

}
catch (Exception e) {
e1 = e;
} }
finally {

if (e1 == null) {
//@ set witness_L = true;

}
else {
throw e1;

}
}

(Lb)

}
void commit(){
...
//@ set witness_L = !trDepth; (Lc) }

void write(byte b){
...
//@ set witness_L = !trDepth; (Lc) }

void byte[] /*@ pure @*/ getStatus(){
... }
}

Figure 5: Bu�er with generated annotations

32



List of Tables

1 Results for temporal properties veri�cation . . . . . . . . . . . . . . . . . . . . . . . . . . 34

33



Example Number Number Number
Name of temporal of generated of POs

properties annotation (automatically
to verify lines proved)

TransactionSystem 2 18 92 (91)
AtmTransaction 2 21 171 (171)
Electronic Purse (Demoney) 2 25 14 (12)

Table 1: Results for temporal properties veri�cation
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