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Abstract

This paper is about the verification of dynamic properties by model-checking for
finite state reactive systems. Properties are expressed as PLTL formulae. Systems
are specified through a top-down refinement process. In order to cope with the
state explosion problem, we propose partitioning the state space to be verified and
to verify the properties independently on each part. Properties that are such that
if they hold on every part then they hold for the whole system are called verifiable
by parts.

In a previous paper, we presented a class of interesting PLTL properties that are
always verifiable by parts. That is, they are verifiable by parts with any partitioning
of the state space. In addition to these properties, some properties are verifiable by
parts on a system provided with a particular partitioning.

In this paper, we propose a partitioning of the state space of a system that is
guided by the refinement process. We introduce an extended class of PLTL proper-
ties that are verifiable by parts with regard to this partitioning. This class includes
the first one. In particular, the new class includes liveness properties under fairness
assumptions. This class is defined from Büchi automata that accept the language
of the negations of the properties.

Our work is illustrated by its application to a chip card protocol called T = 1.
This protocol is specified through successive refinements.
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1 Motivations

Refinement is a specification method that aims to produce reliable software. A
way to get into a system that is complex is to consider it first globally, with no
details (as seen from the sky), and then to gradually get a more precise view
by looking at it more and more closely. This is the approach that is considered
when a system is specified through a top-down refinement process [13]. The
specifier first gives an abstract specification of how the system works. Then,
step by step, he introduces new operational details that were “hidden” at the
previous level of specification. Each specification level is a refinement of the
previous one. At the end of the process, the specifier gives a specification that
is precise enough to be directly implemented.

In this paper, we take the specification by refinement as a context. We specify
reactive systems as transition systems. We want to verify dynamic properties
on these systems. In particular, we aim at verifying properties of safety and
liveness with fairness assumptions. We propose to provide a set of new dynamic
properties at every level of the refinement. These properties are the ones that
have to be verified at this level of specification. They could not have been
verified on the previous levels because they are concerned with details that
were previously “hidden”. For this verification method to be useful in practice,
properties must be preserved by the refinement. That is, if a property holds at
a given level of specification, then it must also hold on all future refinements
of it (compatibility with the refinement).

The dynamic properties expressed as formulae of Propositional Linear Tempo-
ral Logic (PLTL) [21] are compatible with the refinement [10]. We verify them
by model-checking [24,6,8]. It is well known that the main drawback of PLTL
model-checking [20,27] is that it cannot handle very large finite state systems.
This problem is known as the exponential blow-up of state space. To deal with
this problem, many solutions have been proposed, such as partial order tech-
niques [17,29], abstraction techniques [9,7,12], modular techniques [14,19,2],
symbolic representations by BDD [4,23], and SAT-based methods [3]. For a
class of PLTL properties, we have proposed [22,16] another solution, which
can be used in association with the previous ones. We have called this method
verification by parts.

Verification by parts is an out-of-core [26] model-checking technique 1 . A tran-
sition system expresses the semantics of the system that we want to verify.
Verifying this system by parts consists of partitioning the transition system
into several parts, and verifying each part independently from the others. As
every part is verified separately from the others, the other parts can be stored

1 The idea of out-of-core algorithms is to store on disks data structures that are
too large to fit in the main memory.

2



on disks while the part of interest is in the main memory.

We say that a property is verifiable by parts if, when it holds on every part,
then it also holds on the whole transition system. Of course, verification by
parts applies only to properties that are verifiable by parts. In [22,16], we
have showed that some PLTL properties are always verifiable by parts, in-
dependently from the way the transition system is partitioned into parts. To
decide if a property ϕ is (always) verifiable by parts, we have given a suf-
ficient condition C on the Büchi automaton that accepts the ω-language of
¬ϕ. C is expressed as syntactic and propositional conditions on the Büchi
automata. Safety and liveness properties such as 2 (p ⇒ © q), 2 (p ⇒ ♦ q)
and 2 (p ⇒ q U r) are (always) verifiable by parts.

Now some PLTL properties are not, at least not always, verifiable by parts.
In particular, if ϕ is a PLTL property and if f is the expression of a fairness
assumption (f is a PLTL formula), then in general f ⇒ ϕ is not always
verifiable by parts.

In this paper, we state that a property does not have to be always verifiable
by parts to be verified by parts. As a matter of fact, once the choice of a
particular partitioning P of the transition system has been made, it does not
matter that a property ϕ is not verifiable by parts with a partitioning different
from the one that has been chosen. The fact that ϕ is verifiable by parts with
regard to P is enough to verify ϕ by parts.

By doing so, we extend the class of the properties that are verifiable by parts
by adding properties that are verifiable by parts only in the context of a given
partitioning of the original transition system. In this paper, we propose a
partitioning of the transition system that is based on the refinement process.
We call it refinement based partitioning. For this, we express the semantics of
the refinement as a relation between two transition systems (the abstract and
the refined one), as we have proposed in [1].

We exhibit sufficient conditions to decide if a property ϕ is verifiable by parts
with regard to a refinement based partitioning. These conditions are expressed
from

• the Büchi automaton that accepts the ω-language of ¬ϕ,
• the transitions of the system, as they appear in the refined transition system.

We show that the properties that are always verifiable by parts satisfy the
conditions as well.

Such conditions allow for example to extend the method of verification by
parts to PLTL properties expressed with fairness assumptions.
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In section 2, we review some background on transition systems and on PLTL
and Büchi automata. Refinement is presented in section 3. In section 4, we
present the partitioned model-checking technique. Section 5 extends the class
of the properties verifiable by parts by considering that the transition sys-
tems are partitioned according to the refinement. Throughout the paper, the
method is illustrated through the example of a chip card protocol (T = 1) [11].
Finally, we compare our method to related works and we present some possible
future extensions in section 6.

2 Preliminary Definitions

In this section we give formal definitions for transition systems, PLTL prop-
erties and their validity on executions of transition systems. Note that the
notations we give in this section will be used throughout the whole paper.

2.1 Transition Systems

Assume that V is a finite set of variables v with their respective finite domain
Dv. Let APV

def

= {v = d | v ∈ V ∧ d ∈ Dv} be the set of atomic propositions
over V . Let SPV be a set of state propositions defined by the grammar

p ::= ap | p ∨ p | ¬p where ap ∈ APV .

Definition 1 (Transition Systems) A transition system TS
def
= 〈S0, S, A, T,

L〉 interpreted over V has a set of initial states S0 included in a finite set of
states S, an alphabet A of labels, a labelled transition relation T ⊆ S ×A× S
that must be total, and a state labelling function L : S → 2APV .

A label in A is the name of an action that modifies the state of the system.
We consider transition systems that are labelled and interpreted. A transition
(s, a, s′) of T is written as s

a
→ s′ and is labelled by an action a of A. The

transition system is interpreted 2 as every state is decorated with a set of
atomic propositions by means of function L.

Remark 2 As the transition relation is total, there can be no deadlock in a

transition system. If a state s has no successor, a transition s
Skip
→ s (where

Skip does not belong to A) is added to obtain a transition system. Notice
that we do not consider in practice transition systems where actions (other
than Skip) could relate a state to itself. In other words, transitions s

a
→ s are

forbidden, as they are of no interest in practice.

2 This is a Kripke structure
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Definition 3 (Validity of a State Proposition) The validity of a state
proposition p ∈ SPV on a state s of a transition system interpreted over V ,
written s |= p (we say that p holds on s), is defined as

• s |= ap iff ap ∈ L(s),
• s |= p1 ∨ p2 iff s |= p1 or s |= p2,
• s |= ¬p iff it is not true that s |= p (written s 6|= p).

Definition 4 (Execution) An execution of a transition system TS is an in-

finite sequence σ
def
= s0

a0→ s1
a1→ s2 · · · si

ai→ si+1 · · · of pairs of states and
actions such that s0 ∈ S0 and for every i ≥ 0, we have si

ai→ si+1 ∈ T .

We note Inf s(σ) the set of states occurring infinitely often in an execution σ:

Inf s(σ)
def
= {s | σ = s0

a0→ s1 · · · si
ai→ si+1 · · · ∧ s = si for infinitely many i}

We call ΣTS the set of all the executions of a transition system TS. In an
execution σ = s0

a0→ s1
a1→ s2 · · · , we denote by (σ, j) the state sj, and by σj

the suffix of σ starting in sj .

2.2 PLTL properties

The Propositional Linear Temporal Logic (PLTL) is an extension of the propo-
sitional logic, introduced to specify properties with temporal aspects of the
executions of a system. Future PLTL formulae are built with two temporal
operators, ‘©’ (Next) and ‘U ’ (Until), according to the following grammar:

ϕ ::= ap | ¬ϕ | ϕ ∨ ϕ | © ϕ | ϕ U ϕ

Other operators can be used: 3ϕ
def
= true U ϕ (eventually ϕ), �ϕ

def
= ¬3¬ϕ

(always ϕ) and ϕ1 W ϕ2
def

= ϕ1 U ϕ2 ∨ �ϕ1 (ϕ1 unless ϕ2).

PLTL properties are interpreted on the executions of a transition systems.
The semantics of PLTL is as follows. Let ϕ, ϕ1 and ϕ2 be PLTL formulae. Let
σ = s0

a0→ s1
a1→ s2 · · · be an execution. We define that ϕ holds on the state sj

(j ≥ 0) of σ, written (σ, j) |= ϕ, as

• (σ, j) |= ap iff ap ∈ L(sj),
• (σ, j) |= ¬ϕ iff it is not true that (σ, j) |= ϕ, written (σ, j) 6|= ϕ,
• (σ, j) |= ϕ1 ∨ ϕ2 iff (σ, j) |= ϕ1 or (σ, j) |= ϕ2

• (σ, j) |= ©ϕ iff (σ, j + 1) |= ϕ,
• (σ, j) |= ϕ1U ϕ2 iff ∃k · (k ≥ j∧ (σ, k) |= ϕ2∧∀i · (j ≤ i < k ⇒ (σ, i) |= ϕ1)).

When (σ, 0) |= ϕ we say that “ϕ holds on σ”, and we write σ |= ϕ. A PLTL
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formula holds on a transition system TS if it holds on all the executions of
TS.

A PLTL property ϕ defines an ω-language that is the set of all the executions
on which ϕ holds. It is always possible to associate to a PLTL formula ϕ a non-
deterministic Büchi automaton (see Def. 5) which recognizes the ω-language
of ϕ [28].

Definition 5 (Büchi Automaton) Let SPV be a set of state propositions

over V . A Büchi automaton is a 5-tuple B
def
= 〈q0, Q, SPV , TB,FB〉 where Q is

a finite set of states (q0 ∈ Q is the initial state), TB is a finite set of transitions
labelled by elements of SPV : TB ⊆ Q × SPV × Q and FB ⊆ Q is the set of
accepting states of the automaton.

An infinite sequence π = q0
p0→ q1

p1→ q2 · · · qi
pi→ · · · such that qk

pk→ qk+1 ∈ TB

for k ≥ 0, is called a run of B. We denote by ΣB the set of all the runs of B. A
run π of B is accepting if at least one of the accepting states appears infinitely
often in the run : Infs(π) ∩ FB 6= ∅, where the notation Infs(π) has the same
meaning for runs and executions.

Definition 6 (Synchronization of an execution and a run) Let σ =
s0

a0→ s1 · · · si
ai→ si+1 · · · be an execution of a transition system, and let

π = q0
p0→ q1 · · · qi

pi→ qi+1 · · · be a run of a Büchi automaton. We say that
σ synchronizes with π if ∀i · (i ≥ 0 ⇒ si |= pi).

In the case where σ and π are finite sequences σ = s0
a0→ s1 · · · sn−1

an−1

→ sn and

π = q0
p0→ q1 · · · qn−1

pn−1

→ qn, σ synchronizes with π if ∀i·(0 ≤ i < n ⇒ si |= pi).

For n = 1, we say that the transition s
a
→ s′ synchronizes with q

p
→ q′ if s |= p.

Definition 7 (Acceptance of an execution) A run π accepts an execu-
tion σ if π is accepting and σ synchronizes with it. A Büchi automaton B
accepts σ if there exists a run of B that accepts σ.

We denote by Bϕ a Büchi automaton that recognizes the ω-language of ϕ. The
set of executions satisfying ϕ are exactly those accepted by Bϕ.

3 Refinement

In this section we consider the refinement of transition systems. We express
the refinement as a relation between TS2

def
= 〈S02

, S2, A2, T2,L2〉 and TS1
def
=

〈S01
, S1, A1, T1,L1〉, which are respectively the refined and abstract transition

systems. TS2 and TS1 are respectively interpreted over sets of variables V2
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and V1.

Refining a transition system is achieved by

• introducing new actions, so A1 ⊆ A2,
• introducing new variables, so that V1 ∩ V2 = ∅,
• gluing the states of S2 to the states of S1, by means of a gluing predicate

expressed on the variables of V2 and V1.

This is expressed on the transition systems by a particular kind of simulation
of TS2 by TS1, which is a τ -simulation, as defined in [1]. The τ -transition
system of TS2 on A1 is a transition system identical to TS2 in which every
transition label that is not in A1 is replaced by τ . This means renaming every
new action by τ in the refined transition system. A τ -transition is a transition
labelled by τ . We say that TS2 is a refinement of TS1 by requiring that the
τ -transition system of TS2 on A1 satisfy some conditions given in section 3.2.

3.1 Gluing Predicate

Consider the sets of variables V1 and V2 of two transition systems TS1 and
TS2. The set SPV12

of state propositions over V1 and V2 is defined by the
following grammar:

p ::= ap1 | ap2 | ¬p | p ∨ p where ap1 ∈ APV1
and ap2 ∈ APV2

.

Definition 8 (Validity of a state proposition on a pair of states)
A state proposition p ∈ SPV12

holds on a pair of states (s1, s2) of two transition

systems TS1
def
= 〈S01

, S1, A1, T1,L1〉 and TS2
def
= 〈S02

, S2, A2, T2,L2〉, written
(s1, s2) |= p, if

• (s1, s2) |= ap1 iff ap1 ∈ L1(s1), where ap1 ∈ APV1
.

• (s1, s2) |= ap2 iff ap2 ∈ L2(s2), where ap2 ∈ APV2
.

• (s1, s2) |= p ∨ q iff (s1, s2) |= p or (s1, s2) |= q,
• (s1, s2) |= ¬p iff it is not true that (s1, s2) |= p, also written (s1, s2) 6|= p.

We express the link between the states of TS2 and TS1 as a gluing predicate
P12, which is a state proposition of SPV12

. It says that any state of TS2 is
linked to one and only one state of TS1.

Definition 9 (Gluing predicate) A state proposition P12 ∈ SPV12
is a glu-

ing predicate of two transition systems TS1
def
= 〈S01

, S1, A1, T1,L1〉 over V1 and

TS2
def
= 〈S02

, S2, A2, T2,L2〉 over V2 if

∀s2 · (s2 ∈ S2 ⇒ ∃s1 · (s1 ∈ S1 ∧ (s1, s2) |= P12 ∧

∀s′1 · (s
′
1 ∈ S1 ∧ (s′1, s2) |= P12 ⇒ s′1 = s1))).
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3.2 Refinement Relation

Now we define the refinement relation between TS2 and TS1 as a τ -simulation
which respects the gluing predicate of TS2 and TS1. Intuitively, it is defined
by the four following clauses:

• strict refinement (abstract transitions): for every refined transition labelled
by a former action, there is an abstract transition labelled by the same
former action, and such that the source state of the refined transition is
related to the source state of the abstract transition, and the target state of
the refined transition is related to the target state of the abstract transition;

• stuttering of τ -transitions: this clause says that the source and target states
of a τ -transition must be related to the same abstract state;

• satisfaction of the gluing predicate: states which are in relation satisfy the
gluing predicate;

• abstract actions preservation: for every abstract transition labelled by an
action a, there is a refined transition labelled by a such that its source state
is related to the source state of the abstract transition.

Definition 10 (Refinement relation ρ) Let TS1
def
= 〈S01

, S1, A1, T1,L1〉

and TS2
def
= 〈S02

, S2, A2, T2,L2〉 be two transition systems where A2 = A1∪{τ}
3

and such that TS2 is τ -livelock free 4 . Let P12 be the gluing predicate between
TS2 and TS1. We define the refinement relation ρ as the greatest relation in-
cluded in S2 × S1 that is such that (s2 ∈ S2, s1 ∈ S1, and we denote as s2 ρ s1

that s2 is related to s1): if s2 ρ s1 then

• strict refinement: s2
a
→ s′2 ∧ a ∈ A1 ⇒ ∃s′1 · (s1

a
→ s′1 ∧ s′2 ρ s′1).

• stuttering of τ -transitions: s2
τ
→ s′2 ⇒ s′2 ρ s1.

• satisfaction of the gluing predicate: (s1, s2) |= P12.
• abstract actions preservation: s1

a
→ s′1 ∧ a ∈ A1 ⇒ ∃s′2, s

′′
2 · (s

′
2 ∈ S2 ∧ s′′2 ∈

S2 ∧ s′2
a
→ s′′2 ∧ s′2 ρ s1.

Remark 11 In [1], one additional clause defines the refinement relation,
namely the lack of new deadlocks. It means that there must not exist deadlocks
in TS2 which do not exist in TS1. This additional clause allows to benefit of
the preservation of all PLTL properties by the refinement relation [10], while
only safety properties are preserved by the relation of Def. 10. Even if we do
not consider this clause in the sequel, note that the results presented in the
next sections for partitioned model-checking also hold when adding it in the

3 Actually, the refinement relation is defined w.r.t. the τ -transition system of TS2

on A1.
4 This means that the new actions (seen as τ -transitions) cannot take control for-
ever. So there is not infinitely successive τ -transitions in an execution, i.e. there is
no τ -cycle in the refined system.
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definition of refinement.

Definition 12 (Refinement) A transition system TS2
def
= 〈S02

, S2, A2, T2,

L2〉 refines a transition system TS1
def
= 〈S01

, S1, A1, T1,L1〉, written TS2 ⊑ TS1,
if:

∀s2 · (s2 ∈ S02
⇒ ∃s1 · (s1 ∈ S01

∧ s2 ρ s1)).

Proposition 13 To every abstract transition s1
a
→ s′1 of TS1 (with s′1 6= s1)

corresponds a fragment of an execution of TS2 composed of a finite (possibly
null) sequence of τ -transitions followed by a transition labelled by a.

PROOF. Consider a transition s1
a
→ s′1 of TS1. Due to the abstract actions

preservation clause, there is a transition s2
a
→ s′2 of TS2 such that s2 ρ s1.

Moreover, any fragment of execution made of a sequence of transitions leading
to s2 via states all related to s1 is a sequence of τ -transitions. Indeed, the
occurrence of an old action would lead to a state related to another state of
TS1 (due to the strict refinement and the satisfaction of the gluing predicate).
Due to the τ -livelock freeness, the succession of τ -transitions is finite, and so
action a finally occurs. 2

Proposition 13 is illustrated by Fig. 1, where we represent the relation between
an abstract (on top) and a refined (at the bottom) execution. The new actions
performed by the refined system are seen as τ -actions on the figure.

· · · • • • a
// • b

// • • • · · ·

· · · • τ
//

ρ

777w7w7w7w7w7w7w7w
• τ

??

?�
?�

?�
?�

•

ρ

OO

O�
O�
O�

a
// •

ρ

OO

O�
O�
O�

τ
// •

__

_�
_�

_�
_�

τ •
ρ

gg g' g' g' g' g' g' g' g'
b

// •
ρ

gg g' g' g' g' g' g' g' g'
· · ·

Fig. 1. Execution refinement

3.3 Equivalence class

We require ρ to be a total function. This makes it possible to define an equiv-
alence relation ∼ρ between the states of the refined transition system. This
equivalence relation on the states of TS2 then induces a partitioning of the
state space, as presented in the next section. We say that two states s2 and s′2
of TS2 are equivalent w.r.t. ρ if they are related to the same state s1 of TS1.

Definition 14 (Equivalence class) Consider a state s1 ∈ S1. The equiva-
lence class EC(s1) ⊆ S2 of S2/∼ρ is defined as

EC(s1) = {s2 ∈ S2 | s2 ρ s1}.
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3.4 An example: the protocol T=1

We use as running example the protocol T=1 [11]. This protocol defines the
exchange of message in an asynchronous half duplex transmission protocol be-
tween a device (the reader) and a card. We present here a simplified modeling
of this protocol on two refinement levels.

3.4.1 Abstract model of protocol T=1

At this level of abstraction, we only consider the message transmission between
the card and the reader, by using two variables: Sender1 indicates which
component is going to send the next message and Cstatus1 indicates whether
the card is inserted into the device or not.

Four actions are described at this level of abstraction. Action Rsends cor-
responds to the sending of a message by the device, whereas action Csends
corresponds to the sending of a message by the card. The two actions Cinsert
and Eject correspond respectively to the insertion and the ejection of the
card.

The transition system for this model of the protocol is given in Fig. 2. In each
state, the card and the reader are graphically represented, as well as the values
of the variables. Cstatus1 takes its values in {in, out}. In states s2 and s3 the
card is outside the reader, whereas it is inside in states s0 and s1. The signs
“!” and “?” are used to represent the value of Sender1, by saying respectively
that the reader sends (Sender1 = reader) or receives (Sender1 = card).

Eject

Csends

Eject
Rsends 312 ss0ss

 ! !??
Cinsert

Cinsert

Fig. 2. Transition system of the abstract model of protocol T = 1

3.5 Refined model of protocol T=1

At the refined level, each message is considered as a sequence of blocks. For
each block sent (bl), one receives an acknowledgement of receipt (ackb). Each
message is ended by a last block (lb). The term used to designate these three
types of information is frame.

Two variables are added at the refined model: CardF2 and ReaderF2 , repre-
senting the type of the last frame (in the domain {bl, lb, ackb}) respectively
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sent by the card and the device. The variable Cstatus2 represents the same
thing as Cstatus1 , and SenderF2 indicates which component (card or reader)
is going to send the next frame.

Eight actions are described in this refined model. Actions Cinsert and Eject
still represent the insertion and the ejection of the card. The two actions
Rsends and Csends, also already described in the abstract model, make it
possible here to end the sending of a message by sending the last block. The
sending of blocks bl and of the acknowledgement of receipt ackb by the card
and the device are treated in actions Cblocksends, Rblocksends, Cacksends
and Racksends.

11

r1

Legend

Rblocksends

Eject

Eject

Rsends

Eject

Cblocksends

Rsends
Rblocksends

Csends

Eject

Csends

Csends

Cblocksends

Rblocksends

Cacksends

Racksends

Cacksends

Cinsert

Cinsert

Cinsert

Cinsert

ackb

lb

bl

?

?

? ?

? ??

!!     !

! !

!

!

Racksends

Cblocksends

Rsends

r13

r6

r0

r0

r9

r8

r7

r12

r5

r10

r0

r2

r3

r4

r

Fig. 3. Transition system of the refined model of the protocol T = 1

The gluing predicate between this refined model and the abstract one is the
following:
(Cstatus2 = in) ⇔ (Cstatus1 = in) ∧
(Cstatus2 = out) ⇔ (Cstatus1 = out) ∧
(ReaderF2 = bl ∨ ((CardF2 = ackb ∨ CardF2 = lb) ∧ SenderF2 = reader))
⇔ (Sender1 = reader) ∧
(CardF2 = bl ∨ ((ReaderF2 = ackb ∨ ReaderF2 = lb) ∧ SenderF2 = card))
⇔ (Sender1 = card).

The transition system for this refined model is given in Fig. 3. In the states,
the type of the last frame emitted by the card and the reader is represented
as indicated by the legend.

Notice that the refined transition system as presented here does not meet the τ -
livelock freeness hypothesis. Indeed, new actions Cblocksends and Racksends
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can “loop” between the states r8 and r9, and new actions Rblocksends and
Cacksends between the states r3 and r4. But a fairness assumption stating
that the card and the reader can not infinitely exchange messages can be
expressed, for the τ -livelock freeness to hold in this example.

4 Partitioned Model-Checking

In this section, we present the main results of the out-of-core model-checking
technique that we have called verification by partitioned model-checking (see
[22,16]). In order to perform model checking on large transition systems, the
partitioned verification technique relies on a simple idea: splitting the tran-
sition system into several smaller pieces, and performing the verification on
each piece separately. The pieces are called parts. Parts are transition systems
as well. The initial transition system is called the global transition system.
Performing a partitioned verification means verifying a property on each part
separately, and concluding that it is globally true when it is true on every
part.

In order that every transition belongs to a single part, the parts are constructed
by partitioning the transitions of the global transition system. Some states
may belong to two distinct parts: they can be the target state of a transition
t in one part, and the initial state of a transition t′ in another part. Due
to the partitioning, some states may lose their successors. If this is the case,
remember that a Skip loop is added to the state (see Remark 2).

4.1 Properties Verifiable by Parts

Consider a transition system split into a set of parts (transition systems) ac-
cording to a partition of its set of transitions 5 . Some PLTL properties are
globally true when they are true on every part. We call such properties veri-
fiable by parts, and they are defined according to Def. 15.

Definition 15 (Property Verifiable by Parts) Let ϕ be a PLTL property.
Let TS be a transition system, and let M be a partitioning of TS. The property
ϕ is verifiable by parts on TS based on partitioning M if

∀M · (M ∈ M ⇒ M |= ϕ) ⇒ TS |= ϕ.

5 Actually, the fact that the parts are obtained by an overlapping of the transitions
is sufficient.
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Remark 16 We simply say ϕ is verifiable by parts, instead of ϕ is verifiable
by parts on TS based on partitioning M.

Remark 17 To say “if ϕ is true on every part, then it is true on the global
transition system” is equivalent to saying “if ϕ is false on the global transition
system, then it is false on at least one part”. So, a definition of a property
verifiable by parts, equivalent to that of Def. 15, is

¬(TS |= ϕ) ⇒ ∃M · ∃σ · (M ∈ M ∧ σ ∈ ΣM ∧ σ |= ¬ϕ).

4.2 A Class of PLTL Properties Verifiable by Parts

By using Büchi automata, we give a sufficient condition for when a PLTL prop-
erty is verifiable by parts. We define a class named Cmod (see Def. 18) of Büchi
automata, and we prove that every PLTL property whose negation defines an
ω-language recognized by an automaton in Cmod is a property verifiable by
parts (see Theorem 20).

The Büchi automata in Cmod are defined in Def. 18 as Büchi automata for
which the following requirements hold.

(1) The initial state is not an accepting one and there is a loop labelled True

on it.
(2) Every transition leaving a non-initial state leads to a non-initial state

that is an accepting state.
(3) For every transition with a label p leading to an accepting state, there is

a transition leaving that state with a label p′ such that p ⇒ p′ holds.

A consequence of requirement 2 is that every transition leaving an accepting
state necessarily leads to an accepting state. Another consequence is that once
the initial state is left, an accepting state is reached immediately after.

Definition 18 (The Cmod Class) Let B = 〈q0, Q, SPV , TB,FB〉 be a Büchi
automaton. The automaton B is in the Cmod class if

q0
True
→ q0 ∈ TB ∧ q0 6∈ FB [1]

q
p
→ q′ ∈ TB ∧ q 6= q0 ⇒ q′ ∈ FB [2]

q
p
→ q′ ∈ TB ∧ q′ ∈ FB ⇒ ∃(p′, q′′) · (q′

p′

→ q′′ ∈ TB ∧ p ⇒ p′) [3]

Proposition 19 If B = 〈q0, Q, SPV , TB,FB〉 is a Büchi automaton in Cmod,

then every accepting run π = q0
p0→ q1 · · · qi

pi→ qi+1 · · · of B is such that

∃k · (k > 0 ∧ ∀i · ((i < k ⇒ qi = q0) ∧ (i > k ⇒ qi ∈ FB))).
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0 1 2p : qTrue True 0 1p ^ : qTrue : q 0 1 2p ^ : r : q ^ : rp ^ : q ^ : rTrue
: r

True
B¬2 (p⇒© q) B¬2 (p⇒♦ q) B¬2 (p⇒q U r)

Fig. 4. The properties 2 (p ⇒ © q), 2 (p ⇒ ♦ q) and 2 (p ⇒ q U r) are verifiable
by parts

PROOF. Every accepting run is such that its first state is q0. As q0 6∈ FB,
then every accepting run necessarily leaves q0 in order to reach an accepting
state. Consider qk to be the first state of B to be reached just after the initial
state is left for the first time in an accepting run. By construction, every state
preceding the occurrence of qk in the accepting run is the initial state.

As qk 6= q0, then every target state q′k of a transition whose source state is qk

is such that q′k ∈ FB (by Clause 2 in Def. 18) and q′k 6= q0 (since by Clause 1
in Def. 18, q0 6∈ FB). Thus, by recurrence, every state q′′k reachable from qk is
such that q′′k 6= q0 and q′′k ∈ FB. 2

Notice that Clause 3 is not used to prove Property 19. But it is necessary for
the proof of Theorem 20.

Theorem 20 All the PLTL properties whose negation defines an ω-language
recognized by a Büchi automaton in the Cmod class are verifiable by parts,
regardless of the transition system and its partitioning.

PROOF. We refer the reader to [5] for a proof of Theorem 20. 2

As examples, the properties 2 (p ⇒ © q), 2 (p ⇒ ♦ q) and 2 (p ⇒ q U r)
(with p, q and r being state propositions about a transition system) are always
verifiable by parts because the automata of the negations of these properties
are all in Cmod (see Fig. 4).

4.3 A Partitioning Based on Refinement

In order to perform the verification of PLTL properties by parts, it is necessary
to partition the transition system to be verified into a set of parts. We are
within the context of refined transition systems, and as a possible partitioning
we propose a partitioning of a refined transition system that is based on the
refinement relation.
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Consider a refined transitions system TS2 refining an abstract transition sys-
tem TS1, and consider a state s1 of TS1. A part issued from s1 encloses, for all
the abstract transitions leaving s1, the fragments of executions of TS2 defined
according to Prop. 13, and followed by a Skip loop.

Intuitively, each state of the abstract transition system is exploded in the
refined transition system as a set of states, related to each other by transitions
labelled by new actions (i.e. the new actions, previously hidden, become visible
at the refined level). This corresponds to the sequence of τ -actions represented
in Fig. 1.

Then the occurrence of an action of the abstract level (see for example actions
a and b in Fig. 1) causes the part to reach a “border” state of it. Each border
state of a part is extended by a Skip loop according to Remark 2.

This partitioning is illustrated by Fig. 5, where the four states of the abstract
transition system of protocol T=1 (see Fig. 2) give birth to four parts. Since
in Fig. 2 the state s0 was possibly left by actions Rsends or Eject, then the
border states of Part 1 in Fig. 5 are reached either by Rsends or Eject. The
same thing goes for the other parts.

Definition 21 (Refinement Based Part) Let TS1
def
= 〈S01

, S1, A1, T1,L1〉

and TS2
def
= 〈S02

, S2, A2, T2,L2〉 be two transition systems such that TS2 refines
(⊑) TS1. Consider s1 ∈ S1 and EC(s1), an equivalence class of S2/ ∼ρ. The
part of TS2 based on EC(s1) is a transition system TSM = 〈S0M

, SM , AM , TM ,
LM〉 defined as:

• S0M
= {s2 ∈ EC(s1) | s2 ∈ S02

∨ ∃(s, a, s2) · (s
a
→ s2 ∈ T2 ∧ s 6∈ EC(s1))},

• SM = {s2 ∈ EC(s1)} ∪ {s′ | s2
a
→ s′ ∈ T2 ∧ s2 ∈ EC(s1) ∧ s′ 6∈ EC(s1)},

• TM = {s2
a
→ s′ ∈ T2 | a ∈ A2 ∧ s2 ∈ EC(s1)} ∪ {s′

Skip
→ s′ | s′ ∈

SM \ EC(s1)},
• AM is the restriction of A2 to the labels of TM ,
• LM is the restriction of L2 on the states of SM .

Proposition 22 Any execution of a part is made of a succession of occur-
rences of new actions, ended by the occurrence of an old action, and followed
by a Skip loop.

PROOF. By Def. 21, the states of a part (see the definition of SM) are
the states that are related to the same state s1 of the abstract transition
system (they belong to EC(s1)), plus the states s′ that can be reached by one
occurrence of an old action. The Skip loop is added to s′ as the transition
relation is total (see Remark 2).

Due to the stuttering of τ -transitions (see Def. 10), the transitions between
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two states in EC(s1) are all labelled by a new action. Due to the τ -livelock
freeness, an old action necessarily occurs in an execution. This occurrence of
an old action necessarily terminates the execution (apart from the Skip loop)
as it leads to a state not in EC(s1), from which no transition other than a
Skip one is allowed (see the definition of TM in Def. 21). 2

Corollary 23 Any execution of a part of the refined transition system is ei-
ther a suffix of an execution of the refined system, or is made of a sub-sequence
of an execution ending in a state s of the refined system, and extended by an

infinite sequence s
Skip
→ s

Skip
→ s · · · .

PROOF. Immediate. 2

Examples of refinement based parts are given in Fig. 5.

In the next section, we extend the partitioned verification approach to a class
of PLTL properties (which includes Cmod) that are not always verifiable by
parts (not with every partitioning). They are verifiable by parts for a given
system with regard to this refinement based partitioning.

5 Partitioned Verification on Refined Systems

The sufficient condition of verification by parts presented in the previous sec-
tion focuses on a limited class of PLTL properties. Indeed, several usual prop-
erties do not satisfy it and are not a priori verifiable by parts. In particular,
this is the case for response properties with fairness assumptions. The previous
condition does not consider the way the system was split into parts. But we
intend to use the refinement based partitioning in order to split the system.
By using the specificity of this kind of partitioning, we are able to extend the
class of properties verifiable by parts. In this way, properties which are not a
priori verifiable by parts could be so in the particular context of a system and
its refinement. In this section, we present sufficient conditions to determine
if a property is verifiable by parts, regarding to a partitioning based on the
refinement process.
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Fig. 5. The four parts obtained by splitting the global refined transition system of
protocol T=1

5.1 Preliminary Definitions

First, let us give some preliminary definitions that are necessary to define the
sufficient conditions we propose. In the sequel, we consider a Büchi automaton
B

def

= 〈q0, Q, SPV , TB,FB〉.

• The starting states of B are the accepting states and the states reached by
one or more transitions from these accepting states. The set QsB of starting
states is defined as:

QsB

def
= {q | q ∈ Post∗(FB)}.

where Post∗(FB) is the set of all the successors of the states in FB, reachable
with zero or a finite number of transitions.

• The inhospitable states are all the non-accepting states which can be reached
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from a starting state. The set QhB
of inhospitable states is defined as:

QhB

def
= QsB \ FB.

• Let ∆aB
⊆ TB be the set of transitions such that the target state is an

accepting state and the source state is a starting state.

∆aB

def
= {q

p
→ q′ | q

p
→ q′ ∈ TB ∧ q ∈ QsB ∧ q′ ∈ FB}

• Let ∆hB
⊆ TB, be the set of transitions such that the target state is an

inhospitable state and the source state is a starting state.

∆hB

def
= {q

p
→ q′ | q

p
→ q′ ∈ TB ∧ q ∈ QsB ∧ q′ ∈ QhB

}.

• We define PrefixB as the set of prefixes (with at least two transitions) of
runs of B which start when the initial state is left and which end in the first
accepting state encountered.

PrefixB
def

= {q0
p0→ q1 · · · qn−1

pn−1

→ qn |

q1 6= q0 ∧ qn ∈ FB ∧ n ≥ 2 ∧ ∀i · (1 ≤ i < n ⇒ qi 6∈ FB)}.

• We define LastTransInPrefixB as the set of transitions occurring in the
runs of PrefixB such that they leave a non-initial state and lead to an
accepting state.

LastTransInPrefixB
def
= {q

p
→ q′ | q 6= q0 ∧ q0

p0→ q1 · · · q
p
→ q′ ∈ PrefixB}.

5.2 Conditions of verifiability by parts with a refinement-based partitioning

We now present some conditions which, when they hold, ensure that an ex-
tended class of PLTL properties (in comparison to the initial method) is ver-
ifiable by parts, when considering the particular partitioning based on the
refinement process.

The conditions are expressed with respect to two transition systems (such
that one refines the other) and to a PLTL property, for which we consider the
Büchi automaton of its negation. When both these conditions hold, and the
automaton is in a class 6 that we have called C, then the property is verifi-
able by parts with the refinement based partitioning of the refined transition
system, as stated by Theorem 28.

6 the class in itself is not a sufficient condition for the verifiability by parts in
general.
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5.2.1 The C class of Büchi automata

A Büchi automaton belongs to the C class if the two following criteria hold:

• the initial state is not accepting and there is a loop labelled by True on it
(see Clause 1),

• for each transition q
p
→ q′ leading to an accepting state q′, there is a cycle

reachable from q′ that contains an accepting state. Moreover, the label p
implies both
· the label of every transition leading to the cycle,
· the label of every transition in the cycle (see Clause 2).

Definition 24 (C class) A Büchi automaton B belongs to the C class if the
following two clauses hold:

(1) q0
True
→ q0 ∈ TB ∧ q0 6∈ FB, [1]

(2) q
p
→ q′ ∈ TB ∧ q′ ∈ FB ⇒ ∃π·

(π = q′
p0→ q1

p1→ q2 · · · ∧ Infs(π) ∩ FB 6= ∅ ∧ ∀i · (i ≥ 0 ⇒ (p ⇒ pi))). [2]

Example 25 To illustrate the definition of the C class expressed in Def. 24, let
us consider the example of the Büchi automaton B in Fig. 6. This automaton
accepts the negation of the PLTL property �(�3p ⇒ 3q) ⇒ �(r ⇒ 3s),
which is a liveness property under a fairness assumption. For this automaton,
we have (the labels of the transitions are omitted for readability reasons):

PrefixB = { 0 → 1 → 2, 0 → 1 → 1 → 2, 0 → 1 → 1 → 1 → 2, · · · ,

0 → 3 → 2, 0 → 3 → 3 → 2, 0 → 3 → 3 → 3 → 2, · · · ,

0 → 3 → 4, 0 → 3 → 3 → 4, 0 → 3 → 3 → 3 → 4, · · · }

LastTransInPrefixB = {1 → 2, 3 → 2, 3 → 4 }.
QsB = {2, 3, 4}, QhB

= {3}
∆aB

= {2 → 2, 4 → 2, 4 → 4, 3 → 4}.
∆hB

= {3 → 3, 4 → 3}.

This automaton B belongs to the C class since the clauses 1, 2 expressed in
Def. 24 hold.

• There is a loop labelled by True on the initial state (which is state 0), so
the clause 1 holds.

• There are two accepting states in this automaton: states 2 and 4.

· State 2. Five transitions lead to this state: 0
¬p∧r∧¬s
→ 2, 1

¬p∧r∧¬s
→ 2, 2

¬p∧¬s
→

2, 3
¬p∧¬s
→ 2 and 4

¬p∧¬s
→ 2. By considering cycle 2

¬p∧¬s
→ 2, the clause 2

holds.
· State 4. Two transitions lead to this state: 3

q∧¬s
→ 4 and 4

q∧¬s
→ 4. By

considering cycle 4
q∧¬s
→ 4, the clause 2 holds.
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Fig. 6. A Büchi automaton belonging to the C class

5.2.2 Sufficient conditions

The intuition to express the conditions of verifiability by parts is based on the
definition of a property verifiable by parts, expressing that: if a property is
false on the global system, then there is at least one part on which it is false. If
a property ϕ is false on the global system, then there is at least one execution
(of the global system) on which it does not hold. That is, this execution is
accepted by some run of B¬ϕ (the Büchi automaton that recognizes the ω-
language of ¬ϕ). We focus on the first occurrence of an accepting state in
this run. Let us call qf this first occurrence of the accepting state in the run.
Reaching qf in the run occurs when synchronizing with a particular transition
in the execution. The source state s of this transition necessarily belongs to
a part. Note that if q

p
→ qf is the transition that reaches qf in the run, then

s |= p. Remember that with a refinement-based partitioning, according to
Prop. 22, every execution of a part is made of a finite sequence of occurrences
of new actions (τ), ended by the occurrence of a former action (see Fig. 1),
after which there is an infinite sequence of Skip. We indicate two conditions
ensuring that there is an execution of a part which is accepted by the Büchi
automaton:

(1) The accepting state qf can be reached from inside a part. That is, by
synchronization with a prefix of an execution of the part, leading to the
state s whose label allows the synchronization to reach qf (condition c1).

(2) It is possible to recognize the violation inside the part, from the state s
which allows to reach qf . That is, it must always be possible to reach an
accepting state when exiting the part (condition c2).

Condition c1. The condition c1 concerns the prefixes of the runs (of the
Büchi automaton B¬ϕ) leading to an accepting state, but which do not contain
any other accepting states (i.e., the set PrefixB¬ϕ

). It expresses that, for each
prefix, the first occurrence of an accepting state is reachable by synchronization
with the prefix of an execution of the part. This is true when:
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• Either the accepting state, reachable by some transition which do not leave
the initial state, can also be directly reached from the initial state.

• Or if the prefix of the run can synchronize with some part of execution going
to s, then this part of execution is a sequence of new actions, possibly ended
by the occurrence of an old one (thus, the part of execution is contained in
one part).

Let us now define formally this condition. In the definition, the notation
Factorn, of a set of executions Σ, represents the set of all subsequences of
length n (in terms of number of states) of the executions in Σ.

Definition 26 (Condition c1) Let TS1
def
= 〈S01

, S1, A1, T1,L1〉 and TS2
def
=

〈S02
, S2, A2, T2,L2〉 be two transition systems respectively interpreted over sets

of variables V1 and V2, such that TS2 ⊑ TS1. Let B
def
= 〈q0, Q, SPV , TB,FB〉 be

a Büchi automaton. The condition c1 is defined as follows:

∀s, q, p, q′ · (s ∈ S2 ∧ q
p
→ q′ ∈ LastTransInPrefixB ∧ s |= p ⇒

∃p′ · (q0
p′

→ q′ ∈ TB ∧ p ⇒ p′) ∨

∀σ · (σ = s1
a1→ s2 · · · sn−1

an−1

→ s ∈ Factorn(Σ(TS)) ∧

∃ρ · (ρ = q1
p1→ q2 · · · qn−1

pn−1

→ q
p
→ q′ ∈ PrefixB ∧

∀i · (1 ≤ i ≤ n − 1 ⇒ si |= pi))

⇒ ∀i · (1 ≤ i < n − 1 ⇒ ai ∈ A2\A1))).

Note that in the second part of c1 (i.e., the second part of the disjunction),
the execution σ contains one transition less than the run ρ. This is because,
since s |= p, any transition from s can synchronize with q

p
→ q′, and lead

to the accepting state. Thus in c1, we do not focus on one such transition in
particular, since we are only interested in being able to reach the accepting
state q′.

Condition c2. We now express condition c2, that guarantees that once an
accepting state is reached, the violation is recognized inside the part. We call
exit states, the states which are target of a transition labelled by an old action
(i.e., an action of the abstract transition system). The condition expresses
that, from every starting state of the automaton, if the transitions from the
exit states can not synchronize with a transition leading to an accepting state,
then they can not synchronize with a transition going to an inhospitable state.

Definition 27 (Condition c2) Let TS1
def
= 〈S01

, S1, A1, T1,L1〉 and TS2
def
=

〈S02
, S2, A2, T2,L2〉 be two transition systems respectively interpreted over sets

of variables V1 and V2, such that TS2 ⊑ TS1. Let B
def
= 〈q0, Q, SPV , TB,FB〉 be
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a Büchi automaton. The condition c2 is defined as follows:

∀s, a, s′, q · (s
a
→ s′ ∈ T2 ∧ a ∈ A1 ∧ q ∈ QsB∧ 6 ∃q′, p · (q

p
→ q′ ∈ ∆aB

∧ s′ |= p)

⇒6 ∃q′′ · (q
p′

→ q′′, p′ ∈ ∆hB
∧ s′ |= p′)).

5.2.3 Verifiability by parts

These conditions lead to the following theorem of verifiability by parts, in the
case of a refinement-based partitioning, for properties whose negation can be
represented by a Büchi automaton in C.

Theorem 28 Let TS1
def
= 〈S01

, S1, A1, T1,L1〉 and TS2
def
= 〈S02

, S2, A2, T2,L2〉
be two transition systems respectively interpreted over sets of variables V1 and
V2, such that TS2 ⊑ TS1. Suppose that TS2 is split into a set of refinement-
based parts M (see Def. 21). Let B be a Büchi automaton in the C class that
recognizes the ω-language of a PLTL property ¬ϕ.
If c1 and c2 are valid then ϕ is verifiable by parts on M.

PROOF. The complete proof can be found in Appendix A. 2

Comparison with our previous works. The following propositions show
that the method described in this section to guarantee the verifiability by
parts subsumes the previous one (presented in section 4).

Proposition 29 The Cmod class is included in the C class.

PROOF. We want to prove that if a Büchi automaton verifies the clauses 1,
2, 3 of the Cmod class, then it also verifies the clauses 1, 2 of the C class.

• From the clause 1 of the Cmod class, we know that there is a loop labelled
by True on the initial state.

• From the clauses 2 and 3 of Cmod, we know that each accepting state has
a successor which is also an accepting state. As the number of accepting
states (in FB) is finite, it is always possible to reach a cycle containing
an accepting state from an accepting state (more precisely, the cycle only
contains accepting states and is reached by accepting states). With the
clause 3 of Cmod, and as the cycle only contains accepting states and is
reached by accepting states, we can conclude that the clause 2 holds.

2
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Proposition 30 For an automaton in the Cmod class, whatever the transition
systems considered, conditions c1 and c2 hold.

PROOF.

• Condition c1: from Proposition 19, we know that any run of a Büchi au-
tomaton B in Cmod visits at most one non-accepting state after leaving the
initial state and before reaching an accepting state. Thus, for those au-
tomata, the prefixes of runs in PrefixB are of length two. The second part
of the condition (i.e., the second part of the disjunction) forbids the parts of
executions which synchronizes with those prefixes of runs to contain tran-
sitions labelled by old actions, except for the last transition. Recall that
these parts of executions have one transition less than the prefixes of runs.
Thus, the parts of executions only contains one transition. These executions
thus immediately satisfy the second part of the disjunction, and thus the
condition itself.

• Condition c2: in any run of an automaton in Cmod, all the successors of an
accepting state are also accepting states (see Proposition 19). Thus, the set
of starting states of such an automaton is the set of its accepting states.
Moreover, as the inhospitable states are the non-accepting states that can
be reached from a starting state, there are no inhospitable states for an
automaton in Cmod, and so condition c2 holds.

2

5.3 Application to the protocol T=1

We use the refinement-based partitioning to split the refined transition system
of the protocol T=1. This partitioning leads to the creation of four parts, as
illustrated in Fig. 5 in section 4. Using our method, we want, in particular,
to verify two properties indicating that each message is composed of a finite
number of blocks, i.e. each time a device sends a block, then it will eventually
send a last block. These two properties are expressed formally with the liveness
properties P1 and P2:

• P1
def
= �(CardF2 = bl ⇒ 3(CardF2 = lb)),

• P2
def
= �(ReaderF2 = bl ⇒ 3(ReaderF2 = lb)).

These two properties must be respectively verified under the following fairness
assumptions f1 and f2. They ensure that the card and the reader will not send
blocks (bl) forever.
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• f1
def
= �(�3(SenderF2 = card ∧ CardF2 = bl) ⇒ 3CardF2 6= bl),

• f2
def
= �(�3(SenderF2 = reader ∧ ReaderF2 = bl) ⇒ 3ReaderF2 6= bl).

Thus, the two properties considered are f1 ⇒ P1 and f2 ⇒ P2. They can
be represented by a Büchi automaton in the C class that is in the shape of
the one in Fig. 6. The experimentation demonstrates that both properties are
verifiable by parts and verified by parts. Indeed, the two conditions c1 and c2

hold for these properties with the refinement based parts, and the verification
on the four parts of the protocol (using the model-checker SPIN [15]) was
successful.

Notice that the verification of the conditions c1 and c2 is decidable and can
be performed by an algorithm that works on automata issued from the Büchi
automata of the properties, and of the transition systems of the parts. The
condition c1 is to be verified on the finite sets S2 (the states of the refined
system, which can be obtained by parts) and LastTransInPrefixB, and on
the infinite set PrefixB, which is regular. The condition c2 is to be verified on
the finite sets ∆aB

, ∆hB
and T2 (the transitions of the refined system, which

can be obtained by parts).

6 Conclusion and Future Work

In this paper, we remind the reader of the main results of an out-of-core
model-checking technique that has been presented in [22,16]. This technique
is called verification by parts. The transition system of a system is partitioned
into a set of parts, and every part is verified independently from the others.
We call verifiable by parts the properties that can be verified in this way, and
we present an interesting class of PLTL properties that are verifiable by parts
for any partitioning. We propose a partitioning of the transition system that
is based on the refinement process.

Our contribution in this paper is to present sufficient conditions called c1 and
c2 according to which a PLTL property is verifiable by parts with regard to
this partitioning and a refined system. This allows more PLTL properties to be
verified by parts, such as liveness properties expressed with fairness assump-
tions. In particular, the properties concerned are the ones which negation can
be represented by a Büchi automaton belonging to a class called C. The suf-
ficient conditions c1 and c2 are expressed as predicates that link the Büchi
automaton of the negation of the property to the refined transition system.

We have presented in [5] a different (though similar) approach for the verifi-
cation of properties under fairness assumptions in a partitioned way. Only the
class Cmod is presented in [5], and fairness is handled by adding explicit fairness
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constraints to the transition systems. This allows properties in the shape of
f =⇒ ϕ (where ϕ is a property in Cmod and f is a fairness assumption) to
become verifiable by parts, even if f =⇒ ϕ as a whole is not in Cmod.

We adopt a different approach in the present paper. Indeed, fairness con-
straints need not be added to the transition systems we consider, and we can
deal for the verification by parts with properties in the shape of f =⇒ ϕ
without the need for ϕ to be in Cmod. Also, the method in the present paper
is not restricted to properties under fairness assumptions. It applies to any
property in class C expressed on a system for which conditions c1 and c2 hold.
Moreover, the partitioning is not the same. In [5], it is necessary that some
fair transitions be added to the parts as considered in the present paper, for
the method to apply. Thus the parts are usually “bigger” in [5]. However the
two methods can not be compared from their generality, as properties of [5]
are verifiable by parts for any partitioning, whereas in the present paper we
address more properties, but for which verifiability by parts depends on the
refinement based partitioning.

Notice that the results in the present paper still apply if the fairness assump-
tions are added explicitly to the transition system, as was the case in [5].

Another interesting approach to the model-checking blow up problem when
dealing with fairness assumptions is that of [18]. The authors suggest deal-
ing with the fairness assumptions at the algorithmic level instead of adding
them to specification. For that, they express fairness requirements as Street
automata acceptance conditions, and they propose a symbolic model-checking
algorithm that checks for the emptiness of the language defined by Street au-
tomata. Thus, the verification of a formula f ⇒ ϕ is reduced to the verification
of ϕ. Our partitioned verification approach is compatible with the symbolic
model-checking approach of [18]. For this, we need to translate our fair tran-
sition systems into Street automata. It is always possible as our fairness as-
sumptions are expressible in PLTL. Once the global system is partitioned, the
symbolic model-checking can be applied on each of the parts.

Our approach has similarities with methods based on the assume-guarantee
paradigm [14,2,19]. We simply assume that the property holds on all parts
but the being currently verified. And if it also holds on the current part,
then we guarantee that it holds for the whole system. Our partitioning is not
based on a parallel composition of interacting components. It is consecutive to
the conception of a system through successive refinements. It can be applied
inside a component, in addition to a technique that guarantees that the parallel
composition of all the components still satisfies the property.

Also, our approach has to be compared with [25], where a partitioning of
the state space is proposed for the verification of a property. Our approach
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is orthogonal since the partitioning in [25] is guided by the property. Our
partitioning is guided by the refinement of a transition system.

Our research team is currently working on an implementation of the parti-
tioned model-checking technique, so that we can evaluate its performance on
industrial-size applications. Some of the tools have already been implemented
such as a partitioner for a transition system, parsers and interfaces with propo-
sitional calculus provers in order to determine if a given Büchi automaton is
in Cmod, or in C.
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A Appendix: Proof of theorem 28

PROOF. Consider a transition system TS2, which refines a transition sys-
tem TS1. A property ϕ is verifiable by parts on TS2, split according to the
refinement process in a set of parts M, iff when ¬ϕ holds on an execution of
TS2, then a part M in M contains an execution on which ¬ϕ holds.

Thus, assume that there is an execution σ ∈ Σ(TS2) on which ¬ϕ holds:

σ = s0
a0→ s1

a1→ s2
a2→ · · · si−1

ai−1

→ si
ai→ si+1 · · ·

Consider now a Büchi automaton B¬ϕ which represents the negation of ϕ. As
σ satisfies ¬ϕ, there exists a run π in B¬ϕ which accepts σ:

π = q0
p0→ q1

p1→ q2
p2→ · · · qi−1

pi−1

→ qi
pi→ qi+1 · · ·

such that ∀k ≥ 0, sk |= pk and Infs(π) ∩ FB 6= ∅.

Thus, π synchronizes with σ and contains an infinity of accepting states. We
focus on the first occurrence of an accepting state in π. Let qi be this accepting
state. Notice that the first accepting state met in π (i.e., the state qi) can not
be the initial state, since B¬ϕ is in the class C. As si−1 |= pi−1, the transition

si−1
ai−1

→ si synchronizes with the transition qi−1
pi−1

→ qi. The state si−1 neces-
sarily belongs to a part M . We want to prove that there exists an execution
in this part M , which contains si−1 and on which ¬ϕ holds. Note that si−1

can also belong to two different parts: as an initial state in one part, and as
an exit state in the other. In this case, we consider the part where si−1 is an
exit state. Consider an execution σ′ in M

σ′ = s′0
a′
0→ s′1

a′
1→ · · · sj−1

a′

j−1

→ s′j
a′

j
→ s′j+1 · · ·

where s′0 is an initial state of M and sj−1 = si−1 (but the indices i and j can
be different). We prove that there exists a run π′ of B¬ϕ which accepts σ′:

π′ = q0
p′
0→ q′1

p′
1→ · · · q′j−1

p′
j−1

→ qj

p′
j

→ q′j+1 · · ·

where qj = qi (as for σ′, the indices i and j can be different). The state qj still
represents the first occurrence of an accepting state in π′. We split the proof
in two parts:

• (Part 1) The prefix of π′ up to the state qj synchronizes with the prefix

of σ′ up to state s′j . That is, q0
p′
0→ q′1

p′
1→ · · · q′j−1

p′j−1

→ qj synchronizes with

s′0
a′

0→ s′1
a′

1→ · · · sj−1

a′

j−1

→ s′j.
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• (Part 2) The suffix of π′ from the state qj synchronizes with the suffix of
σ′ from the state s′j. Moreover, the suffix of π′ from qj contains an infinity

of accepting states. That is, qj

p′
j

→ q′j+1 · · · synchronizes with s′j
a′

j
→ s′j+1 · · · ,

and ∀k > j, ∃l > k such that q′l ∈ FB (recall that qj is also an accepting
state).

Proof of Part 1: the prefix of π′ up to the state qj synchronizes with
the prefix of σ′ up to the state s′j .

To prove this first clause, let us go back to the transition qi−1
pi→ qi of the

run π. We know that qi (which is qj in π′) is an accepting state and that
si−1 |= pi−1 (si−1 is sj−1 in σ′). We handle the two following cases: in π, either
(1) qi is directly reached from the initial state, or (2) it is reached from some
other non-initial state.

(1) case qi−1 = q0. By the clause 1 of the class C, there is a loop true on the
initial state of B¬ϕ. Thus, in this case, the prefix of π′ which synchronizes
with σ′ is immediately the following:

π′ = q0
true
→ q0

true
→ · · · q0

pj−1

→ qj

where qj−1 is the same state as qi−1 in π and pj−1 is equal to the label
pi−1 in π.

(2) case qi−1 6= q0. Now, in the run π, we consider that the first accepting
state qi is not directly reached from the initial state in one step. We use
the condition c1 to prove this case. In π, the transition qi−1

pi−1

→ qi belongs
to the set lastTransInPrefix since qi−1 6= q0 and qi ∈ FB. The condition
c1 states that

(i) either there is a transition q0
p
→ qi such that pi−1 ⇒ p. As si−1 |= pi−1,

then si−1 |= p. In σ′, we have sj−1 |= p, and therefore the run π′ which
accepts σ′ is the following:

π′ = q0
true
→ q0

true
→ · · · q0

p
→ qj.

(ii) or if there exists a part of an execution up to the state si−1 which syn-
chronizes with a part of a run leaving the initial state q0 of the Büchi
automaton and leading to the transition qi−1

pi−1

→ qi, then this part of
execution up to the state si−2 only contains transitions labelled with new
events. This part of execution exists: it is the part of σ which synchro-
nizes with the part of π from the last occurrence of q0 to qi. Call qk this
last occurrence of q0 in π, we have for π up to the state qi:

π = q0
p0→ q0

p1→ q0 · · · qk
pk→ qk+1 · · · qi−1

pi−1
→ qi · · ·

and the corresponding σ up to state si:

σ = s0
a0→ s1

a1→ s2 · · · sk
ak→ sk+1 · · · si−1

ai−1

→ si · · ·
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By the condition c1, we know that each al, k ≤ l < ai−2, is a new
action (i.e., labelled in A2\A1). Thus, the part of σ from sk to si is
entirely contained in one part. Indeed, recall Prop. 22 saying that, with
a refinement-based partitioning, the executions of a part are composed
of a finite sequence of new actions, ended by an old one (labelled in A1),
and a Skip loop. Thus, ak to ai−3 are new actions, ai−2 can be either
a new action or an old one, and ai−1 can be either a new action, or an
old one, or a Skip loop. Thus, the execution σ′ is the part of σ from sk

to si, preceded by a possible sequence of consecutive transitions that
goes to sk in σ and that are labelled by new actions. The transitions
can synchronize with the loop true on the initial state of the Büchi
automaton.

Proof of Part 2: the suffix of π′ from the state qj synchronizes with
the suffix σ′ from the state s′j, and this suffix of π′ contains an infinity
of accepting states.
In the first part of the proof, we proved that the state sj−1 in σ′ satisfies the
label p′j−1 of some transition in π′ leading to the accepting state qj (whatever
this transition is, according to the first part of the proof). Thus, as sj−1 |= p′j−1,

then any transition from sj−1 can synchronize with the transition q′j−1

p′
j−1

→ qj .

In particular, this is the case for the transition si−1
ai−1

→ si in the global execu-
tion σ. Moreover, recall that the suffix of σ from the state si can synchronize
with the suffix of the run π from the state qi, and that this suffix of π contains
an infinity of accepting states. Thus, consider that σ′ has the same suffix from
sj−1 as σ from the state si−1. Call σ′

j−1 the suffix of σ′ from sj−1:

σ′
j−1 = sj−1

aj−1

→ sj

aj
→ sj+1

aj+1

→ · · ·

where sj−1 = si−1, aj−1 = ai−1, sj = si, · · · . We consider the two following
cases:

(1) either σ′
j−1 is entirely contained in the part M which contains sj−1,

(2) or it is cut on some exit state sx of the part. That is, only the prefix from
sj−1 to sx is contained in M , and is then extended with Skip transitions:

σ′
j−1 = sj−1

aj−1

→ sj

aj
→ sj+1

aj+1

→ · · · sx−1
ax−1

→ sx
Skip
→ s′x+1

Skip
→ · · ·

where x ≥ j and ∀k > x, s′k = sx.

Note that we go back to the states of indices j − 1. Indeed, in the first part
of the proof, we only proved that sj−1 |= p′j−1, for some transition labelled by
p′j−1 leading to the accepting state qj . But we did not specify which transition

from sj−1 synchronizes with the transition q′j−1

p′
j−1

→ qj .

(1) The suffix σ′
j−1 is entirely contained in M . In this case, the proof is
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immediate. The suffix σ′
j−1 synchronizes with the following suffix π′

j−1:

π′
j−1 = q′j−1

p′
j−1

→ qj

pj
→ qj+1

pj+1

→ · · ·

such that the suffix from qj is the same as the suffix of π from its state
qi. As this suffix πi contains an infinity of accepting states, then π′

j also
contains an infinity of accepting states.

(2) The suffix σ′
j−1 is cut on some exit state sx of M , and is extended

with Skip transitions from sx. We consider two cases: either sx = sj−1

or sx 6= sj−1:
(i) if sx = sj−1: in this case, the only transition available from sx is a Skip

transition. Thus, we have

σ′
j−1 = sj−1

Skip
→ s′j

Skip
→ s′j+1 · · ·

such that ∀k ≥ j, s′k = sj−1. By the clause 2 of the class C, we know
that there exists a suffix π′

j−1 of π′ from the state q′j−1:

π′
j = q′j−1

p′
j−1

→ qj

p′
j

→ q′j+1

p′
j+1

→ q′j+2 · · ·

such that p′j−1 ⇒ p′k, ∀k ≥ j and that Infs(π
′
j)∩FB 6= ∅. As sj−1 |= p′j−1

(whatever p′j−1 is, according to the first part of the proof), then ∀k ≥ j,
sj−1 |= p′k and thus s′k |= p′k.

(ii) if sx 6= sj−1: by construction of the parts, sx−1
ax−1

→ sx is labelled by an
old action in A1. Recall that σ′

j−1 has the following shape:

σ′
j−1 = sj−1

aj−1

→ sj

aj
→ sj+1

aj+1

→ · · · sx−1
ax−1

→ sx
Skip
→ s′x+1

Skip
→ · · ·

We can prove that there exists a suffix π′
j−1

π′
j−1 = q′j−1

p′
j−1

→ qj

pj
→ qj+1

pj+1

→ · · · qx−1
px−1
→ qx

p′x→ q′x+1

p′x+1
→ · · ·

which synchronizes with σ′
j−1 and contains an infinity of accepting

states. For this purpose, we use the assumption that condition c2 holds.
First recall that there exists a transition qx

px
→ qx+1 in the Büchi au-

tomaton such that sx |= px. Thus, each s′k |= px, for k > x. As x ≥ j
and qj is an accepting state, each state qk, k ≥ j, is a starting state
and each state qk, k > j, is either an inhospitable or an accepting state.
Thus, qx ∈ QsB and qx+1 ∈ QhB

∪ FB:
· If qx+1 ∈ FB: according to the clause 2 of the class C, there is

a run from qx+1 which contains an infinity of accepting states,
such that pk implies the labels of each transition in this run. As
each s′k satisfies pk, for k > x, then each s′k satisfies the labels of
the transitions of this run. The suffix σ′

j−1 synchronizes with the
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following accepting suffix π′
j−1:

π′
j−1 = q′j−1

p′
j−1

→ qj

pj
→ qj+1

pj+1

→ · · · qx−1
px−1

→ qx
px→ qx+1

p′x+1
→ · · ·

such that px ⇒ p′k, for k > x.

· If qx+1 ∈ QhB
: we know that the transition sx−1

ax−1

→ sx is labelled
by an old action in A1, and that sx |= px. By condition c2, we

know that there exists a transition qx
p′x→ q′x+1 such that sx |= p′x

and q′x+1 ∈ FB. At this point, the previous case applies. The suffix
σ′

j−1 synchronizes with an accepting suffix π′
j−1:

π′
j−1 = q′j−1

p′
j−1

→ qj

pj
→ qj+1

pj+1

→ · · · qx−1
px−1

→ qx
p′x→ q′x+1

p′x+1
→ · · ·

such that p′x ⇒ p′k, for k > x.

2
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