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Abstract
Although several mature approaches and theories exist for the analysis of 2D-heterogeneous finite element
models, few have been developed for computing equivalent models to 3D-heterogeneous structures. Yet,
the cases of equivalent modelling of anisotropic or preconstrained structures are hardly ever discussed in the
literature. In this paper, a novel method of equivalent material identification is proposed for finite element
anisotropic structures and for models subjected to preloads, with high computation speed and low resource
requirements. The proposed approach is applied to superelements and enables converting a stiffness matrix
into the equivalent material’s elasticity matrix. Applied to preloaded homogeneous and heterogeneous finite
element structures, the method leads to equivalent models. Compared at low frequencies, the dynamic
behaviour of each of the preloaded structures and its corresponding equivalent are in good accordance.

1 Introduction

Frequently used in the domain of composite structures, a large number of so-called “homogenization” meth-
ods exist in order to model 2D-heterogeneous structures such as laminates or honeycomb plates. Some of the
most common ones have been thoroughly reviewed in [1]. The large majority of these techniques are applied
to structures whose global behaviours are orthotropic, therefore defined by 9 explicit elastic coefficients;
Young’s moduli Ex, Ey and Ez , shear moduli Gxy, Gyz and Gzx and Poisson’s coefficients νxy, νyz and νzx
when considering the directions x, y and z. Relatively few amongst them are both accurate and simple to
implement in the case of 3D structures, and seldom lead to equivalent elasticity matrices.

There yet exists some situations in which orthotropic materials are not accurate enough to model the be-
haviour of a given heterogeneous structure. In such cases, equivalent materials are called anisotropic (or
sometimes “triclinic”) and need to be defined by their most general expression. Instead of 9 explicit elastic
coefficients, anisotropic materials are defined by 21 independent constants [2] composing the elasticity ma-
trix C in Hooke’s law {σ} = C {ε}, where {σ} is the stress tensor and {ε} the strain tensor [3]. The entire
linear system is detailed as following:
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where the indices 1, 2 and 3 respectively refer to the directions x, y and z.

Although their formulations are not straightforward to implement for finite element models, an analytical
homogenization method that can be applied to 3D triclinic structures has been developed in [4], the core of
which was taken as a reference for other approaches. Leading to equivalent elasticity matrices, it nonetheless
fails to model external effects onto the structure, such as friction or preconstraining conditions.

Several other works such as [5], [6], [7] or [8] have addressed the issues of modelling friction or hetero-
geneity with equivalent properties, but none enables computing equivalent elasticity matrices, though neces-
sary for creating finite element models and updating procedures. As for superelements and preconstrained
structures, there does not exist to the author’s knowledge any approaches capable of determining equivalent
homogeneous elasticity matrices in such cases.

This is why a new method is proposed, in order to create homogeneous materials whose elasticity matrices
approximate the phenomena existing in the initial heterogeneous structures, take into account boundary
conditions and external loadings as well.

In the following sections, the development of the algorithm for the identification of elastic properties in the
case of triclinic materials will be presented, and followed by applications on numerical structures.

2 Identification method for anisotropic materials

Orthotropic material properties imply no couplings between tension-compression and shear. When mod-
elling a heterogeneous assembly or a structure subjected to preloads or contact effects with equivalent homo-
geneous materials, these no-coupling assumptions may not be valid in the general case, and any linear elas-
ticity matrix approximating the global behaviour shall be therefore expressed as anisotropic, or “triclinic”.
Representing non-linear phenomena by linear elasticity matrices is therefore an approximation of the real
behaviour. Entire elasticity matrices (see Hooke’s law in Equation (1)), therefore describe the equivalent
material properties, and are identified by the means of finite element models.

2.1 Computation of the stiffness matrix

The example taken for the development of the method is a finite element model made of two 8-node solid
elements, as shown on Figure 1: the elements <1, 2, 3, 4, 101, 102, 103, 104> and <105, 106, 107, 108,
5, 6, 7, 8> are superimposed along the z-axis, and preloads are applied onto the structure (red arrows). In
order to model possible friction properties, the two elements have to be separated: the interface nodes are
doubled and coincident (as illustrated in the ellipses on Figure 1), and each of them only belongs to one of
the two elements. If no friction conditions are to be taken into account, the interface nodes may be merged
and therefore linked to both of the elements. The dimensions of the assembled cuboid are Lx, Ly and Lz ,
and its faces’ respective areas Ax (faces x = 0 and x = 1), Ay (faces y = 0 and y = 1) and Az (faces z = 0
and z = 1).
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Figure 1: Finite element sample

In order to stabilise the system, each of the outer nodes 1, 2, 3, 4, 5, 6, 7 and 8 is linked to a node-to-ground
3D-stiffness element (this is represented equivalently by a coincident, clamped node and a 3D-stiffness
linking element). The numerical values of these stiffness elements have to be small enough not to perturb the
entire structure’s stiffness matrix values. Now, the preloads−→σ0 and−→σ1 applied to the system can be expressed
with

−→σ0 =
1

Az

∑
i∈Uz0

Fi · −→z (2)

and

−→σ1 = − 1

Az

∑
i∈Uz1

Fi · −→z , (3)

where the values Fi stand for the loadings at the nodes 1 through 8, and where the sets of nodes Ux0, Ux1, Uy0,
Uy1, Uz0 and Uz1 are detailed in the Appendix, in Table 4. The contact properties are defined according to
the physics of the interface (deformable bodies, friction, etc.). Creating the superelement (with translational
degrees of freedom) at the outer nodes is an efficient way to output a stiffness matrix, but the solver used has
to take into account the influence of the preloads and the contact properties on the values.

2.2 Determination of the elastic properties

As it has been shown, the 21 independent coefficients of a triclinic elasticity matrix C have to be identified.
To do this, the proposed approach consists in computing the compliance matrix S such that S = C−1. The
general relation of Hooke’s law, detailed in Equation (1), is reversed to express the matrix S:
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To calculate all the constants of S, the method needs six series of simulations, ie. one per component of
{ε}. Thus, for each series i, one has to perform as many independent simulations as the corresponding
line’s constants Sij . The first series of simulations are pure tension schemes. The example of series xx
(corresponding to the deformed state εxx) is made by a displacement δx enforced along +x to the nodes of
the face x = 1, the same displacement δx enforced along −x to the nodes of the face x = 0, and constraints
of plane contact applied to the face x = 0 and z = 0. This is illustrated on Figure 2.
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Figure 2: Pure tension along x

Computing the stress values σij therefore leads to the constants Sij for each of the schemes xx, yy and
zz. In a similar way, the terms of S involving shear are computed by simulations of shear. Yet in the
cases of heterogeneous structures, some attention must be paid for defining shear. Although the moduli are
often defined without respect for either sliding or transverse shear configurations (both are equivalent in the
theory of homogeneous structures [9, 10, 2, 11]), it may be observed in practice that the two behaviours
are not equivalent in general when homogenizing heterogeneous structures. This is why in this paper, the
analysis separates sliding shear (illustrated on Figure 3a) from transverse shear (illustrated on Figure 3b),
in the respective “T1” and “T2” methods, which are yet completely identical for the determination of the
compliance matrix’s first three rows.
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(a) Pure sliding shear z − y
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Figure 3: Pure shear schemes



Describing the deformed state γyz = 2 · εyz , the simulation series is divided into two distinct schemes:

• the sliding shear scheme z − y (method “T1”) combines an enforced displacement δy along −y on
face z = 0, the same displacement δy along +y on face z = 1, and constraints of plane contact on the
same faces z = 0 and z = 1;

• the transverse shear scheme y− z (method “T2”) combines an enforced displacement δz along −z on
face y = 0, the same displacement δz along +z on face y = 1, and constraints of plane contact on the
same faces y = 0 and y = 1.

In both cases, the constraints of plane contact are necessary in order to generate pure shear. As for the
previous simulations, computing the stress values σij leads to the remaining constants of matrix S.

3 Validation

3.1 Homogeneous triclinic sample

The method “T1” has been first validated onto a simple, homogeneous case. For this example, a cuboid
8-node element whose dimensions are Lx = 20 mm, Ly = 40 mm and Lz = 60 mm was used, to which a
triclinic material defined by the elasticity matrix

Cexp =



3.51 0.47 1.27 −0.67 −0.02 −0.56
13.2 1.03 −0.04 −0.07 0.24

2.97 −0.23 −0.59 0.14
0.37 0.17 −0.07

sym. 1.09 0.06
0.81

 · 109 (5)

and the associated compliance matrix

Sexp =



0.926 −0.016 −0.397 1.848 −0.538 0.913
0.079 −0.022 −0.041 0.001 −0.034

0.570 −0.649 0.426 −0.454
6.719 −1.483 2.093

sym. 1.407 −0.678
2.186

 · 10−9 (6)

was applied, but without any preloading or friction conditions.

Each simulation has been made with enforced displacements of magnitude δ = 1 mm. A linear static solution
is initiated (completed within a few seconds), including output requests at all nodes in terms of displacements
and reaction forces. Computing the stress values from the reaction forces leads, for the deformed state εxx,
to the first row of the equivalent compliance matrix:
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=



9.262 · 10−10

−1.582 · 10−11

−3.973 · 10−10

1.848 · 10−9

−5.376 · 10−10

9.133 · 10−10



(7)

The values found here are very close to the initial compliance matrix, including the terms of coupling between
tension-compression and shear, namely S14, S15 and S16. The maximum relative discrepancy U rel

max is such
that

U rel
max = max

i,j

∣∣∣∣∣Sij − S
exp
ij

S
exp
ij

∣∣∣∣∣ = 0.8% , (8)

which is very low and therefore shows that the computed results are close to the initial values. The other
rows are computed in the same way. As the values match, the validation is successful for this triclinic
homogeneous element. Identical results are found with method “T2”.

3.2 Preloaded homogeneous structure

3.2.1 Global structure

The second application of the methods is an analysis of a preloaded structure. The FE model is a homo-
geneous cuboid of isotropic steel (Young’s modulus E = 207 GPa, Poisson’s ratio ν = 0.292 and density
ρ = 7875 kg ·m−3) of respective dimensions along x, y and z of 100 mm, 70 mm and 80 mm, and has
1,008 elements and 8,034 DOFs. Tension preloads are applied along direction y to the structure. The faces
y = 0 mm and y = 70 mm are subjected to static forces of respective total magnitudes 9.81 · 106 N and
−9.81 · 106 N, equally distributed on the faces’ nodes, so that ±81.1 · 103 N is applied along y to each of
these nodes (the values have been chosen to be voluntarily high to ensure observing notable effects on the
responses, and none of the yield or fracture limits are taken into account in the simulation: the material is
assumed not to ever reach any of these limits while calculating the solutions). Also, a node-to-ground 3-D
stiffness element is linked to each of the global cuboid’s 8 outer nodes on every direction x, y and z. The
initial structure is illustrated on Figure 4.

3.2.2 Equivalent material

To apply the identification method and determine an equivalent material, a sample is created from a few ele-
ments of the structure: 3 elements along y (48 DOFs), as shown on Figure 5. To recreate the stress field ex-
isting in the global structure, the sample’s 8 outer nodes are subjected to the same nodal loads (±81.1 ·103 N
per node), as the dimensions of the base cell are identical in the sample and in the global structure. To sta-
bilise the system, a node-to-ground 3-D stiffness element is linked to each of the sample’s 8 outer nodes on
every direction x, y and z.

A 48 × 48 stiffness matrix is computed (which is real and symmetric) and takes into account the influence
of the preload. By creating a new model with the sample’s 16 nodes (and no elements), and importing the
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Figure 4: Initial structure under preloading (thin red arrows)
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Figure 5: Sample under preloading (red arrows)

stiffness matrix as an external superelement, a linear static solution is initiated to apply the methods “T1”
and “T2” presented in Section 2. Post-processing the results yields the elasticity matrices

CITL1 =



265 118 110 −4.82 · 10−6 −1.66 · 10−5 −1.89 · 10−6

316 118 −5.55 · 10−6 −1.69 · 10−5 7.56 · 10−6

264 −1.29 · 10−5 −4.43 · 10−5 6.54 · 10−6

51.2 8.27 · 10−6 5.16 · 10−4

sym. 97.4 9.97 · 10−1

182


· 109 (9)

and



CITL2 =



265 118 110 −8.39 · 10−6 −1.32 · 10−5 −8.44 · 10−7

316 118 −9.64 · 10−6 −1.35 · 10−5 3.79 · 10−6

264 −2.24 · 10−5 −3.52 · 10−5 3.43 · 10−6

88.9 −2.20 · 10−5 −4.07 · 10−8

sym. 77.4 0.00

89.1


· 109 , (10)

respectively corresponding to “T1” and “T2” methods. Associated to them, the matrix corresponding to steel
(without preloading) is detailed as following:

Cstl =



273 125 125 0 0 0
273 125 0 0 0

273 0 0 0
80.1 0 0

sym. 80.1 0
80.1

 · 109 . (11)

Judging from the values of the matrices, the following observations can be made:

• The terms of terms of coupling between tension-compression and shear are relatively low;

• In both matrices CITL1 and CITL2, the tension preloading along y resulted in a significantly higher
value of the coefficient C22 (diagonal term of Hooke’s law in direction yy) compared to Cstl. This is
consistent with the expected stiffening effect from tension preloading in this direction [12].

Two equivalent homogeneous structures are then computed, with the same dimensions and the same density
as the initial model, and in which the equivalent stiffness values of every node-to-ground elements have taken
into account the stiffening effects.

3.2.3 Correlation analysis

To evaluate the validity of the equivalent materials to recreate the behaviour of the preloaded structure, a
state of modal correlation is calculated. To perform this, modal bases of the first 200 modes (excluding the 6
low-frequency modes describing the “suspension” related to the node-to-ground elements) are computed for
the following structures:

• Init (initial structure made of homogeneous steel);

• Prld (initial structure with preloading);

• T1 (equivalent structure with material identified with “T1” method);

• T2 (equivalent structure with material identified with “T2” method).

The similarities in the modal behaviours of two structures can be evaluated by a process of correlation. In
this paper, this correlation is evaluated by comparing the natural frequencies and the deformed shapes of the
models by computing the matrices [∆f ] and [MAC]. Each component ∆f (me,i,ma,j) of the matrix [∆f ]



expresses the relative difference between the natural frequency of the first structure’s i-th mode m1,i and the
second structure’s j-th mode m2,j , and is defined by the relation:

∆f (m1,i,m2,j) =
f1,i − f2,j

f1,i
, (12)

where f1,i et f2,j are the natural frequencies respectively corresponding to the modes m1,i and m2,j . The
second matrix, [MAC], expresses the similarities between the deformed shapes of the modes m1,i and
m2,j (respectively called {φ1,i} and {φ2,j}), according to the so-called MAC criterion (Modal Assurance
Criterion). Its components MAC (m1,i,m2,j) are defined by the expression [13]:

MAC (m1,i,m2,j) =

∣∣∣{φ1,i}T {φ2,j}∣∣∣2
{φ1,i}T {φ1,i} {φ2,j}T {φ2,j}

. (13)

According to these expressions, two models perfectly correlated are defined by a matrix [∆f ] in which every
diagonal component is at 0%, and a matrix [MAC] in which every diagonal is at 100%, and the others at
0%. Finally, the pairs of modes for which MAC values are highest are assembled, and are taken into account
for the correlation if the MAC values are above a fixed threshold.

For the correlation, the reference modal basis is “Prld”, to which the other bases are compared. The MAC-
threshold is fixed at 0% for pairing the modes (so that all the modes are paired and taken into account). The
results of the correlation are gathered in Table 1. For Npm mode pairs in a given correlation, the entities
|∆f | and MAC are defined by the expressions:

|∆f | = 1

Npm
·
Npm∑
q=1

|∆f (mq
1,m

q
2)| (14)

and

MAC =
1

Npm
·
Npm∑
q=1

MAC (mq
1,m

q
2) , (15)

where mq
1 and mq

2 are the modes composing the q-th pair.
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|∆f | [%] 3.85 7.64 1.40
MAC [%] 72.0 42.6 90.3

Table 1: Correlation of the first 194 modes above 3,000 Hz

Table 1 clearly shows that method “T2” is capable of recreating the behaviour of the structure under preloads
with good accuracy, while method “T1” is much less efficient in this setting.



3.3 Preloaded laminated structure

3.3.1 Global structure

For the last validation case, a laminated cuboid of 5,024 elements, 30,144 DOFs and respective dimensions
along x, y and z of 210 mm, 110 mm and 60 mm is analysed. The stack’s base cell is composed of 3
isotropic layers, the properties of which are detailed in Table 2, and is oriented along z. For each layer, E is
the Young’s modulus, ν the Poisson’s ratio, ρ the density and e the thickness. Also, the volume fraction φn
of layer n is defined by the layer’s volume Vn and the base cell’s total volume V cell, so that

V cell =
3∑

n=1

Vn (16)

and

φn =
Vn
V cell

. (17)
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E [GPa] 207 2.0 121
ν [−] 0.25 0.40 0.34

ρ
[
kg ·m−3

]
7875 1200 4430

e [cm] 0.40 0.20 0.40
φ [−] 0.40 0.20 0.40

Table 2: Details of the layers

In this case, the structure is subjected to tension preloads along the stacking direction (z). The total loads on
the top and bottom faces are respectively 13.2 · 109 N and −13.2 · 109 N, equally distributed on the faces’
nodes, so that±500 ·103 N is applied along z to each of these nodes. As before, the values have been chosen
to be voluntarily high to ensure observing notable effects on the responses. None of the yield or fracture
limits are taken into account in the simulation: the material is assumed not to ever reach any of these limits
while calculating the solutions. Also, no contact conditions are taken into account between the different
layers: the structure is assumed to experience no delamination.

A node-to-ground 3-D stiffness element is linked to each of the global cuboid’s 8 outer nodes on every
direction x, y and z. The global structure taken as reference is illustrated on Figure 6.

3.3.2 Equivalent material

To apply the identification method and determine an equivalent material, a sample is created from a few
elements of the structure. In this application, the sample consists of the 3-layered base cell (48 DOFs) which
constitutes the entire model, and is illustrated on Figure 7. To recreate the stress field existing in the global
structure, the sample’s outer nodes are subjected to the same nodal loads (±500 · 103 N per node), as the
dimensions of the base cell are identical in the sample and in the global structure. To stabilise the system, a
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Figure 6: Global laminated structure under preloading (thin red arrows)

node-to-ground 3-D stiffness element is linked to each of the sample’s 8 outer nodes on every direction x, y
and z.

node-to-ground

stiffness elements

Figure 7: Base cell under preloading (red arrows)

As before, the addition of node-to-ground elements to the sample is necessary to stabilise the system, and
yet independent from the initial, global structure. Again, the stiffness values of the node-to-ground elements
are negligible in comparison to the sample’s stiffness matrix’s.

A 48 × 48 stiffness matrix is computed (which is real and symmetric) and takes into account the influence
of the preload. By creating a new model with the sample’s 16 nodes (and no elements), and importing the
stiffness matrix as an external superelement, a linear static solution is initiated to apply the methods “T1”
and “T2” presented in Section 2. Post-processing the results yields the elasticity matrices

CLTL1 =



146 52.2 36.1 −2.16 −2.03 −0.207
146 36.1 −2.16 −2.03 −0.207

110 −6.61 −6.21 −0.635
30.2 0.416 1.68

sym. 30.1 1.33
47.6

 · 109 (18)

and



CLTL2 =



147 52.6 37.2 −4.89 −4.60 −1.02
147 37.2 −4.89 −4.60 −1.02

114 −15.0 −14.1 −3.14
66.5 2.87 7.65

sym. 66.2 7.28
49.1

 · 109 , (19)

respectively corresponding to “T1” and “T2” methods.

Judging from the values of the matrices, several observations can be made:

• Non-negligible terms of coupling between tension-compression and shear have been determined for
both materials;

• In both matrices CLTL1 and CLTL2, the directions x and y have similar coefficients, which shows
that the laminated structure has in this case an equivalent behaviour in planes normal to the stacking
direction;

• In CLTL2 (transverse shear), the absolute values involving shear in directions yz and xz are signifi-
cantly greater than in CLTL1 (sliding shear).

The homogeneous structure to which the equivalent material of each method is applied has the same dimen-
sions and the same total mass as the reference cuboid, and is made of 1-centimetre-long cubic, 8-node, solid
elements. Therefore, the equivalent homogeneous material’s density ρhmg is calculated by the relation of
weighted average:

ρhmg =
N∑

n=1

ρnφn , (20)

where ρn is the density of each layer n.

Two equivalent homogeneous structures are then created, with the same dimensions as the initial model. For
each of them, the dimensions are identical to the reference matrix’s, but one-centimetre-long cubic elements
replace the three-layered base-cells that were homogenised. Also, the equivalent stiffness values of every
node-to-ground elements (in the equivalent homogeneous FE models) have taken into account the stiffening
effects.

3.3.3 Correlation analysis

To evaluate the validity of the equivalent materials to recreate the behaviour of the preloaded structure, a
state of modal correlation is calculated. To perform this, modal bases of the first 50 modes (excluding the 6
low-frequency modes describing the “suspension” related to the node-to-ground elements) are computed for
the following structures:

• Init (initial laminated structure made isotropic layers);

• Prld (initial structure with preloading);

• T1 (equivalent structure with material identified with “T1” method);

• T2 (equivalent structure with material identified with “T2” method).
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Nb paired modes 23 36 17
|∆f | [%] 38.0 12.1 14.7
MAC [%] 90.3 87.5 88.1

Table 3: Correlation of the first 44 modes above 2,500 Hz

For the correlation, the reference modal basis is “Prld”, to which the other bases are compared. The paired
modes for which MAC values are below 70% are discarded. The results of the correlation are gathered in
Table 3, where |∆f | and MAC are computed from the paired modes with the expressions (14) and (15).

Table 3 clearly shows that in spite of the important behaviour difference induced by the application of the
preloads, method “T1” is capable of identifying 36 modes over 44. However, the material from method “T2”
is not efficient to simulate the behaviour of the initial structure under preloading, as only 17 modes over 44
are identified.

Therefore, it can be expressed that recreating the lower-frequency modes of laminated structures with homo-
geneous equivalent materials requires identifying the elastic properties with sliding shear simulations instead
of transverse shear. At the contrary, the results of the analysis in Subsection 3.2 showed that identifying an
equivalent material for a continuous anisotropic structure is much more accurate with transverse shear sim-
ulations.

4 Conclusion

In this paper, a novel method for identifying equivalent materials to anisotropic structures was proposed.
It has been shown that the method is also able to identify equivalent elasticity matrices for structures sub-
jected to external conditions, and its validity has been ascertained with various applications on structures
subjected to preloading. The two distinctive approaches to analyse shear have been compared; sliding shear
identification schemes are more appropriate to describe laminated structures, whereas transverse shear are
the most accurate to simulate the behaviour of an anisotropic continuous model. Additionally, this identifica-
tion method can be applied to superelements, unlike existing homogenization techniques, and can therefore
convert stiffness matrices into equivalent elasticity matrices.

APPENDIX: Node sets in the case of a structure with two layers

The node sets Ux0, Ux1, Uy0, Uy1, Uz0 and Uz1 are defined for the development of the identification method
(cf. Figure 2) with a structure composed of two separated 8-node solid elements. The details of these node
sets are given in Table 4.



node set face nodes

Ux0 x = 0 1, 2, 5, 6, 101, 102
Ux1 x = 1 3, 4, 7, 8, 103, 104

Uy0 y = 0 1, 4, 5, 8, 101, 104
Uy1 y = 1 2, 3, 6, 7, 102, 103

Uz0 z = 0 1, 2, 3, 4
Uz1 z = 1 5, 6, 7, 8

Table 4: Details about node set names in the case of a 8-outer-node structure with two layers

References

[1] A. L. Kalamkarov, I. V. Andrianov, and V. V. Danishevs’kyy, “Asymptotic homogenization of compos-
ite materials and structures,” Applied Mechanics Reviews, vol. 62, 2009.

[2] J.-M. Berthelot, Composite materials, mechanical behavior and structural analysis. Springer, 1999.

[3] Y. Chevalier and J. V. Tuong, Mechanics of viscoelastic materials and wave dispersion. Iste/Wiley,
2010.
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