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Abstract. To identify the modal parameters of a vibrating system from output data only we use a state space 
model and usually two approaches are considered: the block Hankel matrix and its shifted version and the 
block observability matrix and its shifted version. It is shown in the communication that these two approaches 
give the same results even in the noisy data case. We present numerical and experimental results, who prove 
the effectiveness of the procedure. An application to a MEMS is developed.   

1 Introduction  

In modal parameter identification the key point is to 
determine the relationship between the system parameters 
and the measured data. Because in practice the system 
input data are often unavailable, in recent years attention 
has been paid to system identification when only output 
data are available and there are variety of available 
approaches to estimate structural modal parameters using 
output responses. Numerous papers have been presented 
on system identification, acquiring the estimation of 
parameters from measured data. Ho and Kalman [1] 
introduced the minimal state space realization problem 
for a linear time-invariant system in which the Hankel 
matrix is constructed by a sequence of impulse response 
functions called the Markov parameters. Kung [2] 
proposed a concept combining singular value 
decomposition and minimal realization algorithm for the 
problem of retrieving sinusoidal processes from noisy 
measurements. Juang [3] introduced an eigensystem 
realization algorithm (ERA) for modal parameter 
identification and model reduction for dynamical systems 
from test data. This algorithm is an extension of the Ho-
Kalman procedure where two indicators are developed to 
quantitatively identify the system and noise modes. A 
stochastic subspace identification (SSI) method has been 
presented by Van-Overschee and De Moor [4]. The 
subspace method identifies the state space matrices based 
on the measurement and by using robust numerical 
techniques such as QR-factorization, singular value 
decomposition (SVD) and least squares. The state space 
matrices are related to the modal parameters and the key 
concept of SSI is the projection of the row space of the 
future outputs into the row space of the past outputs.  

The fundamental problem in modal parameter 
identification by subspace methods is the determination 
of the state space matrix (or transition matrix) which 
characterizes the dynamics of the system. We propose in 
the paper two methods to estimate the transition matrix. 
The first method uses properties of the block 
controllability matrix and the second method uses 
properties of the deleted first block column of the block 
Hankel matrix. It is shown that these two decomposition 
methods give the same modal parameters.   

The paper is organized as follows: in the second 
section we present the two identification methods based 
on properties of the block Hankel and block observability 
matrices. Validity tests are presented in the third section 
with simulated and experimental tests in laboratory. The 
paper is briefly concluded in section 4.  

2 Subspace identification methods  

2.1 The discrete state space representation 
The subspace identification method assumes that the 

dynamic behaviour of a vibrating system can be 
described by a discrete time state space model [1-5]  

                   zk+1 = A zk + wk                                     (1)          

                    yk = C zk + vk                                        (2) 

where (1) is the state equation, (2) is the observation 
equation, zk is the unobserved state vector of dimension n; 
yk is the (mx1) vector of observations or measured output 
vector at discrete time instant k; wk contains the external 
non measured force or the excitation which can be 
random force, an impulse force, a step force...and vk is a 
measurement noise term. A is the (nxn) transition matrix 
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describing the dynamics of the system and C is the (mxn) 
output or observation matrix, translating the internal state 
of the system into observations. The subspace 
identification problem deals with the determination of the 
two state space matrices A and C using output-only data 
yk .The modal parameters of a vibrating system are 
obtained by applying the eigenvalue decomposition of the 
transition matrix A   
                                A = ΨΨΨΨ Λ ΨΨΨΨ -1                             (3)                                             

where ( )idiag λΛΛΛΛ = , i=1,2,…,n, is the diagonal matrix 

containing the complex eigenvalues and ΨΨΨΨ  contains the 
eigenvectors of A as columns. The eigenfrequencies Fi  

and damping factors iξ  are obtained from the 
eigenvalues which are complex conjugate pair : 
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with ∆t  the sampling period of analyzed signals. 
The mode shapes evaluated at the sensor locations are the 

columns of the matrix C
~

 obtained by multiplying the 
output matrix C with the matrix of eigenvectors ΨΨΨΨ  : 

                                            C
~

 = C ΨΨΨΨ                       (6) 

We propose two methods to determine the transition 
matrix A, in order to identify the eigenfrequencies and 
damping factors of a vibrating system. However it is 
shown that these two methods are equivalent even in the 
case of a system with noisy data. 

2.2 Determination of the transition matrix by 
shifting properties  
Define the (mpx1) future data vector as y+

k = [yT
k, y

T
k+1, . 

. ., yT
k+p-1]

T and the (mpx1) past data vector as  y-
k-1  = 

[yT
k-1, . . ., yT

k-p]
T , where the superscript T denotes the 

transpose operation. The (mpxmp) covariance matrix 
between the future and the past is given by   
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where E denotes the expectation operator. H is the block 
Hankel matrix formed with the (mxm) individual 
theoretical auto-covariance matrices Ri = E[yk+i  y

T
k ] = 

CAi-1G, with G=E[xk+1y
T

k].In practice, the auto-
covariance matrices are estimated from N data points and 

are computed by  Ri  = N-1 ∑
1-N

1=k

T
ki+k yy .The block Hankel 

matrix H can be written as 
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Where O  is the (mpxn) block observability matrix and 
the K is the (nxmp) block controllability matrix : 
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where O1 and O2  are m(p-1)xn matrices obtained by 
deleting respectively the last and the first block row of 
the block observability matrix . It is easy to show that O2 

= O1 A and the transition matrix obtained by the deleted 
block row of the observability matrix method is 

                       AO  =  O1
+ O2                                        (11) 

The eigenvalues of the transition matrix AO  can be used 
to identify the modal parameters and we have   
                         λ ( AO)  = λ ( O1

+ O2
 )  

Another method to determine the transition matrix is 
obtained by deleting block rows of the block Hankel 
matrix. Let H1 and H2 be the matrices m(p-1)xmp 
obtained by deleting respectively the first and the last 
block row of the block Hankel matrix 
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From these expressions we get  

          H1 = O1 AK = O2 K  and  H2 = O1K                   (12) 

and the transition matrix obtained by the shifted block 
row of the block Hankel matrix method is  

                      AH1 = O1
+ H1 K

+                                      (13) 

The eigenvalues of the transition matrix AH1  are   

λ ( AH1) = λ ( O1
+H1K

+) = λ (H2
+ H1) = λ ( K+ O1

+ O2 K) 

  = λ (O1
+ O2) = λ ( AO)                                              (14) 
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Firstly, the eigenvalues of the transition matrix obtained 
by shifting properties of the block observability matrix 
are the same as those obtained by shifting properties of 
block rows of the block Hankel matrix and and secondly 
the eigenvalues of the transition matrix are also the 
eigenvalues of the matrix (H2

+ H1). So, in practical 
conditions it is sufficient to form the block Hankel matrix 
H, to extract matrices H1 and H2 by deleting a block row 
from H and compute the eigenvalues (and eventually the 
eigenvectors) of the matrix (H2

+ H1). 

In the presence of noise, both methods use the singular 
value decomposition (SVD) of the block Hankel matrix 
to get the same performances. By retaining the n 
dominant singular values and the corresponding sigular 
vectors, we get 

                           H = U S VT  = O K                            (15)  

with U, V  (mpxn) matrices of singular vectors and S 
(nxn) diagonal matrix of singular values. From (15) we 
choose O = U and we consider the following matrix 
decomposition 

                  O = U = 









2

11
U
U = 








12

1
U
U                          (16)                                         

where U11 and U12 are matrices formed respectively with 
the (p-1) first and (p-1) last block rows of the matrix of 
singular vectors U. The eigenvalues of the transition 
matrix are 

          λ ( AO) = λ ( O1
+ O2 )  = λ ( U11

+ U12 )              (17)                           

and this relation can also be obtained by shifting 
properties of the block Hankel matrix. Indeed, we have  

      H1 = O2 K = U12  K   and   H2 = O1 K = U11 K       (18)                                                      

 λ ( AH1) = λ (H2
+ H1 ) = λ (K+ U11

+ U12 K)   

= λ (U11
+ U12

 )= λ ( AO)                                              (19) 

We have showed that in the state space approach, the 
modal parameters obtained by shifting properties of the 
block Hankel matrix are the same as those obtained by 
shifting properties of the block observability matrix. 
Finally we note that the output or observation matrix C 
can be obtained from the first block row of the matrix O1  
or from U11.                                       

With estimates of the transition matrix A and the 
observation matrix C in hand we compute the eigenvalues 
and eigenvectors of the transition matrix and we can 
identify eigenfrequencies, damping factors and mode 
shapes of the vibrating system following (4), (5) and (6).  
However, all the subspace modal identification 
algorithms have a serious problem of model order 
determination. When extracting physical or structural 
modes, subspace algorithms always generate spurious or 
computational modes to account for unwanted effects 
such as noise, leakage, residuals, nonlinearity’s … For 

these reasons, the assumed number of modes, or model 
order, is incremented over a wide range of values and we 
plot the stability diagram. The stability diagram involves 
tracking the estimates of eigenfrequencies and damping 
factors as a function of model order. As the model order 
is increased, more and more modal frequencies and 
damping ratios are estimated, hopefully, the estimates of 
the physical modal parameters are stabilized using a 
criterion based on the modal coherence of measured 
modes and identified modes [5]. Using this criterion we 
detect and remove the spurious modes. A numerical 
example and two experimental tests in laboratory are now 
presented to identify eigenfrequencies and damping 
factors of vibrating systems.  
   

3 Applications  

3.1 A simulated example 

To prove the effectiveness of the identification procedure 
based on the subspace analysis we consider a two-DOF 
system with very closely spaced modes. The parameters 

of the system are F1 = 30 Hz, F2 = 30.5 Hz, 1ξ  = 0.01 

and 2ξ  = 0.02. Figure 1 shows the free response of the 
system where a Gaussian white noise has been added : 
the generated data were corrupted by a random noise.  
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Figure 1. Time response of the simulated system 

 
The sampling frequency is 100 Hz and 300 time samples 
are used in the simulation. We convert to the frequency 
domain this time response by taking the discrete Fourier 
transform of the noisy signal. It is impossible to identify 
the two frequencies components by using the FFT as 
shown in Figure 2, where the power spectral density has 
been plotted. 
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Figure 2. Spectrum for the simulated system 
 
 In our identification procedure, we plot the stabilization 
diagram on eigenfrequencies and damping factors. Figure 
3 shows stabilization diagrams using shifting properties 
of the procedure presented in the previous section with 
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the modal coherence indicator: spurious modes have been 
eliminated and only physical modes are present.  
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Figure 3. Stabilization diagram on eigenfrequencies and 

damping factors for the simulated system 
 
Our procedure can separate closely spaced modes and the 
mean values on identified  eigenfrequencies and damping 
factors obtained by an average over the orders of the 

stabilization diagram are 
1

F̂  = 31 Hz; 
2

F̂ =  31.5 Hz;  

1
ξ̂ = 0.01 ;

2
ξ̂ = 0.0199. A very satisfactory estimation on 

eigenfrequencies and damping factors has been obtained 
using simulated data. wo experimental tests in laboratory 
are presented in the following sections.   
 

3.2 Modal parameter identification of a clamped 
beam 
 
Figure 4 shows the first experimental system tested in 
laboratory. It is a simple clamped horizontal rectangular 
cantilever beam with five measurement locations equally 
spaced. 
 

 Random excitation

Channel 1 Channel 2 Channel 3 Channel 4 Channel 5

 
Figure 4. A clamped beam in laboratory 

 
        A Gaussian excitation is applied transversally at the 
free end of the beam and Figure 5 shows a typical 
response of an accelerometer. Only the time responses of 
all accelerometers are used for modal parameter 
identification of the clamped beam which is excited with 
an unmeasured random force. 
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Figure 5.  Time response from an accelerometer 
 
 The sampling frequency of signals is 1280 Hz and 8192 
data points are collected for each channel. Figure 6 shows 
the stabilization diagram on eigenfrequencies and 
damping factors. For comparison purposes the theoretical 
values on eigenfrequencies are also computed. These 
values are obtained from the mechanical characteristics of 
the beam : Young’s modulus E= 2.1x105 MPa, mass 
density  ρ = 9000 kg.m-3, length of the beam L = 0,56 m, 

thickness of the beam e =97x10-4 m. According to the 
hypothesis of clamped-free beam, the flexural 
eigenfrequencies result from the expression derived from 
the Euler-Bernoulli theory : 

                            Fi = 
ρ

E

L

eα

2

2
i

34 π
                 (20) 

                                                          
Using boundary conditions of the beam we obtain the 

equation cos( iα ) cosh ( iα ) = -1 and by resolution of 

this equation we determine the values of coefficients iα .  
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Figure 6.  Stabilization diagram eigenfrequencies and damping 
factors for the clamped beam 

Table 1 gives the mean values of these identified modal 
parameters obtained by an average over the orders of the 
stabilization diagram. For comparison purposes the 
theoretical values on eigenfrequencies are also computed. 
 
Table 1.  Natural eigenfrequencies and damping factors for the 
experimental beam 
 

Modes Theoretical 
eigenfrequencies 

Fi  (Hz) 

Identified 
eigenfrequencies 

iF̂  (Hz) 

Identified 
damping 

factor (%) 

1 24.13 24.17 1.06 
2 150.81 150.58 0.13 
3 422.29 419.72 0.04 

 
We note that the eigenfrequencies are very well 
identified; the maximum value of the relative error is 
only  -0.61%. Another experimentation test in laboratory 
is presented in the next section. 
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3.3 Modal parameter identification of a clamped 
perforated microplate (a MEMS) 
 
 
     A micro electromechanical system (MEMS) can be 
constituted by a perforated rectangular plate [6] as shown 
in Figure 7. The main purpose of perforations is to reduce 
the damping and spring forces acting in the MEMS due to 
the fluid flow inside and around the micro structure. 
Generally, the modeling problem is quite complicated 
since the damping force acting in the moving MEMS 
depends on the 3D fluid flow in the perforations and also 
around the structure. 

 

Figure 7.  Schematic of the microplate 

 In this paper a single degree of freedom of a spring-
mass-damper model is used to study the microplate 
behavior. The model is constituted by the following 
parameters : the plate mass m concentrated in the central 
plate, the damping coefficient c and the stiffness 
coefficient k which are constituted of fluidic and non 
fluidic components. The second order differential 
equation describing the dynamic behavior of the 
microplate is : 

                 m (t)z&& + c (t)z&   + k z (t) =  f                     (21) 

where f  is the external force acting in the microplate. In 
our experimental test this excitation force is step function 
and Figure 8 shows the time response of the microplate 
center. The dynamic measurements are conducted in the 
time domain by means of a laser vibrometer. 
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Figure 8.  Time response of the microplate 

          Only this time response of the structure is used in 
the identification procedure where the sampling 
frequency of signals is 2 MHz and 3000 time samples are 
considered. The dimensions and material properties of the 
microplate are : plate side  a = 185.96 mµ , Plate 

thickness hc=6.312 mµ , hole size s0 = 7.19 mµ , plate 

densityρ =13920 kg.m3, number of holes Nh = 64. The 

perforated microplate area is given by A = a2– s0 Nh = 
3.127x10-8 m2 and its mass is m = ρ A hc = 3.814x10-9 kg. 

The microplate stiffness is given by k = m (2 π F)2 and 

the damping coefficient is c = 4 πm F ξ  where F is the 

resonance frequency of the perforated microplate and ξ  
the damping factor. These two modal parameters are 
obtained by an average over the orders of the stabilization 
diagram presented in Figure 9.  
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Figure 9.  Stabilization diagram eigenfrequencies and damping 
factors for the perforated microplate 

Table 2 shows the identified microplate parameters and 
Figure 10 shows the comparison between the measured 
time response of the structure and the reconstructed 
response obtained from the identified modal parameters. 
 
Table 2.  Parameters identified for the perforated microplate 
Resonance 
frequency F 

Damping 

factor ξ  

Stiffness 
coefficient k 

Damping 
coefficient c 

22810 Hz 1.62 % 78.33 N.m-1 17.71x10-6 N.s.m-1 
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Figure 10. Comparison between the measured time response (in 
blue) and the identified time response (in red) 

        The decay function of the response is expressed by 
the relation x(t) = A exp (-D t), where A is obtained by 
initial conditions and  D = 2 π F ξ  is computed from the 

identified modal parameters. This decay function is 
plotted in Figure 11. Note that the coefficients A and D = 
c/(2m) can also be evaluated directly by interpolating the 
measured response of the microplate and in this case we 



MATEC Web of Conferences 

can obtain the value of the damping coefficient c from D 
and m. 
 

4 Conclusion 

The problem of modal parameter identification from 
output data only is very important because such 
parameters can be used for fault detection, structural 
health monitoring and model validation. We have 
proposed four methods for modal parameter 
identification, but we have proved that the shifted 
controllability matrix method gives the same modal 
parameters than the shifted block column of the block 
Hankel matrix method and that the shifted observability 
matrix method gives the same modal parameters than the 
shifted block row of the block Hankel matrix method. 
These relationships have been established in the exact 
data case and in the noisy data case. Numerical and 
experimental results have shown the effectiveness of 
subspace methods in modal parameter identification.  
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