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Abstract. To identify the modal parameters of a vibratingteyn from output data only we use a state space
model and usually two approaches are consideredblick Hankel matrix and its shifted version ahd t
block observability matrix and its shifted versidinis shown in the communication that these twprapches
give the same results even in the noisy data ¢&lsepresent numerical and experimental results, proge

the effectiveness of the procedure. An applicatioa MEMS is developed.

The fundamental problem in modal parameter
identification by subspace methods is the detertiaina
of the state space matrix (or transition matrix)ickih
characterizes the dynamics of the system. We peopos
the paper two methods to estimate the transitiotrixna
The first method uses properties of the block
controllability matrix and the second method uses

1 Introduction

In modal parameter identification the key pointas
determine the relationship between the system pateam
and the measured data. Because in practice thensyst
input data are often unavailable, in recent yettengon
has been paid to system identification when onltpotu
data are available and there are variety of auailab properties of the deleted first block column of thleck
approaches to estimate structural modal parameséng Hankel matrix. It is shown that these two decommsi
output responses. Numerous papers have been mésentmethods give the same modal parameters.

on system identification, acquiring the estimatioh

The paper is organized as follows: in the second

parameters from measured data. Ho and Kalman [1l]section we present the two identification methodsehl

introduced the minimal state space realization lerob
for a linear time-invariant system in which the Kah
matrix is constructed by a sequence of impulseorsp

on properties of the block Hankel and block obseitits
matrices. Validity tests are presented in the tlsigdtion
with simulated and experimental tests in laboratdiye

functions called the Markov parameters. Kung [2] paper is briefly concluded in section 4.
proposed a concept combining singular value
decomposition and minimal realization algorithm the . - .
problem of retrieving sinusoidal processes fromsyoi 2 Subspace identification methods

measurements. Juang [3] introduced an eigensystem

realization algorithm (ERA) for modal parameter 21 The discrete state space representation
identification and model reduction for dynamicastgyms The subspace identification method assumes that the
from test data. This algorithm is an extensionhaf Ho-  dynamic behaviour of a vibrating system can be
Kalman procedure where two indicators are develdped described by a discrete time state space modd| [1-5
quantitatively identify the system and noise modas.
stochastic subspace identification (SSI) method des Zo1 = A Zct Wi (1)

Vo= Cz+ W (2)

presented by Van-Overschee and De Moor [4]. The

subspace method identifies the state space matrases ) . . .

on the measurement and by using robust numericawhere (1) is the state equation, (2) is the obsieva
techniques such as QR-factorization, singular value€guationzis the unobserved state vector of dimension
decomposition (SVD) and least squares. The stateesp Yk is the (nx1) vector of observations or measured output
matrices are related to the modal parameters a‘]ﬁatn vector at discrete time inStakl;th contains the external
concept of SSI is the projection of the row spatéhe non measured force or the excitation which can be

future outputs into the row space of the past dstpu random force, an impulse force, a step force..\and a
measurement noise term.is the (xn) transition matrix

joseph.lardies@univ-fcomte.fr



MATEC Web of Conferences

describing the dynamics of the system &nid the (nxn)
output or observation matrix, translating the interstate
of the system into observationsThe subspace
identification problem deals with the determinatafrthe
two state space matricédsand C using output-only data

Yk -The modal parameters of a vibrating system are

obtained by applying the eigenvalue decompositicthe
transition matrixA

A=wAy? 3)
where A =diag(A ), i=1,2,...n, is the diagonal matrix

containing the complex eigenvalues awd contains the
eigenvectors ofA as columns. The eigenfrequencigs

and damping factors are obtained from the
eigenvalues which are complex conjugate pair :

A+ ) 2 (4)

+[ cos (

21 At 4

Fo= 1 |[In(ki )2
247 A

[In(4 % )12 ®)

b+ ) 2
24 0 4
with At the sampling period of analyzed signals.

The mode shapes evaluated at the sensor locatienkea
columns of the matrixC obtained by multiplying the
output matrixC with the matrix of eigenvectony :

C=Cy

[In( 4 /li* ) 2 + 4] cos™(

(6)

CG CAG . cAPle
H=1 cac cA?c . caPc |= OK (8)
CAPlG cAPG . cA??G
Where O is the (npxn) block observability matrix and

theK is the (xmp) block controllability matrix :

C
O=| CA |; K=[G AG... APq] (9)
CA.‘"l
The observability matrix has the form
Q
O= pl | = { c } (10)
CA O2

where O; and O, are m(p-1)xn matrices obtained by

deleting respectively the last and the first blook of

the block observability matrix . It is easy to shthwatO,

= O; A and the transition matrix obtained by the deleted

block row of the observability matrix method is
Ao = Ol+ 02 (11)

The eigenvalues of the transition mathy can be used

to identify the modal parameters and we have

A(Ao) =L (01 0O)

We propose two methods to determine the transition Another method to determine the transition matsx i
matrix A, in order to identify the eigenfrequencies and obtained by deleting block rows of the block Hankel

damping factors of a vibrating system. Howeversit i
shown that these two methods are equivalent evéimein
case of a system with noisy data.

2.2 Determination of the transition matrix by
shifting properties

Define the (mpx1) future data vectorydg= [y'y, Y'ke1, -
., Ypa T and the (mpx1) past data vector g, =
[V - - - Yka |, where the superscrifit denotes the

transpose operation. The (mpxmp) covariance matrix

between the future and the past is given by

R1 R»
R2 Rs

Rp

H=Ely%yi] = - Rp+1 (7)

Rp Rp+1 .R2p—1

whereE denotes the expectation operatdris the block
Hankel matrix formed with the(mxm) individual
theoretical auto-covariance matrid@s= E[Yi.i yi] =
CA™G, with G=E[x«1y'J.In practice, the auto-
covariance matrices are estimated frdrdata points and

-t N1 T
are computed byR; =N > Vi Vi .The block Hankel

k=1
matrixH can be written as

matrix. Let H; and H, be the matricesm(p-1)xmp
obtained by deleting respectively the first and thst
block row of the block Hankel matrix

R2 R3 . Rp+#1 C

Hi-| R3 Ra . Rp+2 |=| CA|A[G AG...A™'G]
Rp Rp+t . Rop-1| |CA”?
Ri Rz . Rp C

H=| Rz Rs .Rps |=| CA |[G AG...A"Q]
Rp-1 Rp . Rap-2 | |CA™?

From these expressions we get
H1201AK:OZK and H2=OlK (12)

and the transition matrix obtained by the shiftddck
row of the block Hankel matrix method is

AHl = Ol+ Hl K+ (13)
The eigenvalues of the transition matix;, are
A(Auy) = A(O;"HK') = A(H,"Hy) = A (K" Oy O2K)

= 2(01" 0y = A (Ao) (14)
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Firstly, the eigenvalues of the transition matrbtained these reasons, the assumed number of modes, ol mode

by shifting properties of the block observabilityatmix order, is incremented over a wide range of valuesvae

are the same as those obtained by shifting presedti plot the stability diagram. The stability diagranvolves

block rows of the block Hankel matrix and and seltpn  tracking the estimates of eigenfrequencies and damp

the eigenvalues of the transition matrix are alke t factors as a function of model order. As the mameker

eigenvalues of the matrixHe" H,). So, in practical is increased, more and more modal frequencies and

conditions it is sufficient to form the block Hahkeatrix damping ratios are estimated, hopefully, the esémaf

H, to extract matricebl; andH, by deleting a block row  the physical modal parameters are stabilized using

from H and compute the eigenvalues (and eventually thecriterion based on the modal coherence of measured

eigenvectors) of the matrixg™ H,). modes and identified modes [5]. Using this criterige
detect and remove the spurious modes. A numerical

In the presence of noise, both methods use thailaing  example and two experimental tests in laboratoeyram

value decomposition (SVD) of the block Hankel matri presented to identify eigenfrequencies and damping

to get the same performances. By retaining the factors of vibrating systems.

dominant singular values and the correspondinglaigu

vectors, we get

. 3 Applications
H=USV =0K (15)

3.1 A simulated example
with U, V. (mpxn) matrices of singular vectors argl
(nxn) diagonal matrix of singular values. From (15) we
chooseO = U and we consider the following matrix
decomposition

To prove the effectiveness of the identificationqadure
based on the subspace analysis we consider a two-DO
system with very closely spaced modes. The paramete

of the system ar&, = 30 Hz,F, = 30.5 Hz,&1 = 0.01

O=U-= {U 11}: [Ul } (16) and 2 = 0.02. Figure 1 shows the free response of the
Uo Uiz system where a Gaussian white noise has been added
the generated data were corrupted by a random.noise
whereU,; andU4, are matrices formed respectively with
the (p-1) first and (p-1) last block rows of thetmaof
singular vectorsU. The eigenvalues of the transition
matrix are

Amplitude

A(AQ) = A(0,"0;) = A(Uy"Uypp) (7)

and this relation can also be obtained by shifting
properties of the block Hankel matrix. Indeed, \a@d

Hi=0,K=Up K and H,=0,K=U;; K  (18) I T
Figure 1. Time response of the simulated system

A(An1) = L(H2" Hy) = A (K" Uy UpK)
The sampling frequency is 100 Hz and 300 time saspl

= A(Uw" U)= A (Ao) (19) are used in the simulation. We convert to the fesqy
domain this time response by taking the discreteriEo

We have showed that in the state space approaeh, thtransform of the noisy signal. It is impossibleidentify

modal parameters obtained by shifting propertieshef  the two frequencies components by using the FFT as

block Hankel matrix are the same as those Obtahwd shown in Figure 2, where the power Spectra| derhasl
shifting properties of the block observability nwatr  peen plotted.

Finally we note that the output or observation ®a@
can be obtained from the first block row of the mxa®;
or fromUy;.

With estimates of the transition matriA and the
observation matrixC in hand we compute the eigenvalues
and eigenvectors of the transition matrix and we ca i
identify eigenfrequencies, damping factors and mode | 4 _ L . |
shapes of the vibrating system following (4), (Byd6). e
However, all the subspace modal identification Figure2. Spectrum for the simulated system
algorithms have a serious problem of model order

determination. When extracting physical or strugtur In our identification procedure, we plot the stahiion
modes, subspace algorithms always generate spwious diagram on eigenfrequencies and damping factoguir€i
computational modes to account for unwanted effects3 shows stabilization diagrams using shifting prtipe
such as noise, leakage, residuals, nonlinearity’s-or. of the procedure presented in the previous sedctiibin
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the modal coherence indicator: spurious modes haga Figure5. Time response from an accelerometer

eliminated and only physical modes are present.
The sampling frequency of signals is 1280 Hz ah@é28

‘é 100 ;' ;' ;' data points are collected for each channel. Figwsiows
A B the stabilization diagram on eigenfrequencies and
5 or- - B i it damping factors. For comparison purposes the tkieale
[ e values on eigenfrequencies are also computed. These
g o5 1 5 ; > s values are obtained from the mechanical charatiteyisf

Damping factor (%) the beam : Young's modulu= 2.1x1G MPa, mass
g | | | density p = 9000 kg.I7?, length of the bearb = 0,56 m,
N I A T thickness of the beara =97x10" m. According to the
g B hypothesis of clamped-free beam, the flexural
Eor-m I eigenfrequencies result from the expression deriv@u
& 2 w5 ) FH— s % the Euler-Bernoulli theory :

Frequency Hz 2
Figure 3. Stabilization diagram on eigenfrequencies and F = ai € E (20)
damping factors for the simulated system 4\/§an p

Our procedure can separate closely spaced mode$ieand
mean values on identified eigenfrequencies andpitagn  Using boundary conditions of the beam we obtain the

factors obtained by an average over the ordershef t equation cosfij) cosh @) = -1 and by resolution of
stabilization diagram areFl = 31 Hz; F.= 31.5 Hz;  this equation we determine the values of coeffisien; .

él =0.01 ;52 =0.0199. A very satisfactory estimation on

£ ; i ; ; ;

. . . . S 100 F- - - — — - — - %~ S5 -
eigenfrequencies and damping factors has beennedtai  ; 180 | B ]
using simulated data. wo experimental tests inriziooy g ol d I T L
are presented in the following sections. é woid . S I . Lo

| | | |
S 20 f- —— - ——— - — — —— — — g — - — — = — — — —
o g : o i
3.2 Modal parameter identification of a clamped < o0 05 1 15 2 25 3
beam Damping factor (%)
§ 7 R

: ; ; ; R - i e e e e A B
Figure 4 shows the first experimental system tested AN IR DN I N RN R
laboratory. It is a simple clamped horizontal regiaar B ool b b
cantilever beam with five measurement locationsaégu § Py IR R R S S DU S Y SN
spaced.
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Figure 6. Stabilization diagram eigenfrequencies and dagpin
factors for the clamped beam

ﬂ Table 1 gives the mean values of these identifiediah

g parameters obtained by an average over the ordi¢he o
stabilization diagram. For comparison purposes the
theoretical values on eigenfrequencies are alsguoted.

Random exciati

Figure4. A clamped beam in laboratory Table 1. Natural eigenfrequencies and damping factorgHer

. . . experimental beam
A Gaussian excitation is applied transvérsst the

free end of the beam and Figure 5 shows a typical[ Modes Theoretical Identified Identified
response of an accelerometer. Only the time regzoois eigenfrequencies eigenfrequencies damping
all accelerometers are used for modal parameter Fi (Hz) IE factor (%)
identification of the clamped beam which is exciteith I YRE '21'127) 106
an unmeasured random force. > 150 81 150.58 513

3 422.29 419.72 0.04

We note that the eigenfrequencies are very well
identified; the maximum value of the relative eriier
only -0.61%. Another experimentation test in laiory

is presented in the next section.
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3.3 Modal parameter identification of a clamped
perforated microplate (a MEMS)

A micro electromechanical system (MEMS) can be
constituted by a perforated rectangular plate §6$t@own
in Figure 7. The main purpose of perforations iseiduce
the damping and spring forces acting in the MEM8 tu
the fluid flow inside and around the micro struetur
Generally, the modeling problem is quite complidate
since the damping force acting in the moving MEMS
depends on the 3D fluid flow in the perforationsl @fso
around the structure.

Figure7. Schematic of the microplate

In this paper a single degree of freedom of angpri

thicknessh.=6.312um, hole sizesy = 7.19um, plate
densityp =13920 kg.m, number of holed\, = 64. The

perforated microplate area is given By= a*~ s, N, =
3.127x10 nfand its mass im = p A h. = 3.814x10 kg.

The microplate stiffness is given ly= m (2 ©F)? and
the damping coefficientis = 4 tmF¢ whereF is the

resonance frequency of the perforated microplate @n

the damping factor. These two modal parameters are
obtained by an average over the orders of theliziaion
diagram presented in Figure 9.
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Figure 9. Stabilization diagram eigenfrequencies and dagpin
factors for the perforated microplate

mass-damper model is used to study the microplate

behavior. The model is constituted by the following
parameters : the plate massconcentrated in the central
plate, the damping coefficient and the stiffness

coefficient k which are constituted of fluidic and non
fluidic components. The second order differential
equation describing the dynamic behavior of the

Table 2 shows the identified microplate paramegerd
Figure 10 shows the comparison between the measured
time response of the structure and the reconstfucte
response obtained from the identified modal parareet

microplate is :

mZ({t)+cz(t) +kz(t)= f (21)

Table2. Parameters identified for the perforated micrtepla
Resonance | Damping| Stiffness Damping
frequencyF | factor & | coefficientk coefficientc
22810 Hz 1.62%/| 78.33Nim| 17.71x10° N.s.mi"

wheref is the external force acting in the microplate. In
our experimental test this excitation force is dtapction
and Figure 8 shows the time response of the miatepl
center. The dynamic measurements are conductdtkin t
time domain by means of a laser vibrometer.

|
|
-300 L
4.5 5

Time (s) x 107

Figure8. Time response of the microplate

Only this time response of the structisreised in
the identification procedure where the sampling
frequency of signals is 2 MHz and 3000 time samples
considered. The dimensions and material propesfidse
microplate are : plate sidea = 185.96um, Plate

Measured data

Estimated data
Decay envelope ||

100 H

i
i | |\nAHL
N
e
|

Amplitude (nm)

-1001 1

|
|
-300 L
45 5

Time (s) x10°

Figure 10. Comparison between the measured time response (in
blue) and the identified time response (in red)

The decay function of the response is esqme by
the relationx(t) = A exp (-D t), whereA is obtained by

initial conditions andD =2 TF ¢ is computed from the
identified modal parameters. This decay function is
plotted in Figure 11. Note that the coefficieAtandD =
c/(2m) can also be evaluated directly by interpolating the
measured response of the microplate and in this eas
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can obtain the value of the damping coefficiefitom D
andm.

4 Conclusion

The problem of modal parameter identification from
output data only is very important because such
parameters can be used for fault detection, straictu
health monitoring and model validation. We have
proposed four methods for modal parameter
identification, but we have proved that the shifted
controllability matrix method gives the same modal
parameters than the shifted block column of theclblo
Hankel matrix method and that the shifted obsefitgbi
matrix method gives the same modal parametersttiean
shifted block row of the block Hankel matrix method
These relationships have been established in thetex
data case and in the noisy data case. Numerical and
experimental results have shown the effectivendss o
subspace methods in modal parameter identification.
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