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Abstract. In this paper, we propose an insight into structural acoustics with interface
damping problems. A particular attention is paid to the links between static and dynamic
at several levels: on the formulation itself, on the impact on physical variables, and on
the efficiency of the Reduced Order Models that can be derived from the formulations.
Special acknowledgements are due to Prof. Roger Ohayon who inspired a large part of
this work through its articles, books and passionate discussions.

1 Formulation of structural-acoustic problem

1.1 Coupled formulation

This part exhibits the basic equations of the coupled problem, which are classically
available in literature [1, 2, 3]. The internal vibroacoustic problem which is considered in
this paper is presented in figure 1. The whole paper is related to permanent harmonic mo-
tion at frequency ω. Let ΩF be the fluid domain, ΩS the structural domain. The boundary
of the fluid domain is ΣFS ∪ ΣF ∪ ΣA, where ΣFS ∩ ΣF ∩ ΣA = ∅, while the boundary
of the structural domain is ΣFS ∪ ΣS ∪ Σ0, where ΣFS ∩ ΣS ∩ Σ0 = ∅. The partition of
boundaries is done according to the mechanical conditions: ΣFS is the structural-acoustic
coupling surface, ΣF is the part of the acoustic border on which a Neumann condition is
applied, corresponding to a rigid wall (a homogeneous Dirichlet condition could also be
considered without loss of generality), ΣA is the part of the acoustic border on which a
Robin condition is considered, corresponding typically to an absorbing material, ΣS is the
structural boundary on which a Neumann condition is applied, corresponding to a pre-
scribed force, Σ0 is the structural boundary on which a homogeneous Dirichlet condition
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Figure 1: Description of vibroacoustic problem

is applied, corresponding to a clamped area. nS and nF are respectively the outgoing
unit normals of structural and fluid domain.
The physical variables which are used to describe the behavior of the system are the dis-
placement u for the structure and the acoustic pressure p for the fluid. For the structural
part, the linearized strain tensor is denoted as �(u) and the associated stress tensor is
denoted as �(u). The choice of acoustic pressure p to describe the fluid behavior instead
of a fluid displacement vector field reduces the number of degrees of freedom. For the
structural part, the displacement field must be regular and verify

−ω2ρSu + ∇ · �(u) = 0 in ΩS, (a)
u = 0 on Σ0, (b)
�(u) · nS = FS on ΣS, (c)
�(u) · nS = pnF on ΣFS, (d)

(1)

where ρS is the structural mass density and FS is the complex amplitude of the force
exciting the structure at frequency ω. The constitutive law � = f(�) is also required to
solve the problem.
The fluid cavity must verify the following equations:

∇2p+
ω2

c2
p = 0 in ΩF , (a)

∂p

∂nF
= 0 on ΣF , (b)

∂p

∂nF
= ρFω

2u · nF on ΣFS, (c)

∂p

∂nF
= − iω

Za(ω)
ρFp on ΣA, (d)

(2)

where c is the sound speed in the fluid and ρF the mass density of the fluid at rest. Za(ω)
is the complex impedance of absorbing material.
If the fluid is inviscid and compressible, the constitutive law of a barotropic fluid can be
used:

p = −ρF c2∇ · uF , (3)
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where uF is the fluid displacement, linked to the pressure by Euler’s equation

∇p = ρFω
2uF . (4)

In order to obtain a variational formulation of this problem, the admissible spaces Cu =
{u ∈ [H1(ΩS)]3 / u = 0 on Σ0} and Cp = {p ∈ H1(ΩF )} are defined where H1(Ω) is the
Sobolev space of order 1. One has then to find u and p in Cu and Cp such as, for all
(δu, δp) ∈ Cu × Cp:

∫
ΩS

�(u) : �(δu) dΩ− ω2

∫
ΩS

ρSu · δu dΩ

−
∫

ΣFS

p nF · δu dΣ =

∫
ΣS

FS · δu dΣ, (a)

1

ρF

∫
ΩF

∇p ·∇δp dΩ− ω2

ρF c2

∫
ΩF

pδp dΩ

−ω2

∫
ΣFS

u · nF δp dΣ +
iω

Za(ω)

∫
ΣA

pδp dΣ = 0. (b)

(5)

The FE discretization of this variational formulation can be written as([
KS −L
0 KF

]
− ω2

[
MS 0
LT MF

]
+

iω

Za(ω)

[
0 0
0 AF

]){
U
P

}
=

{
FS
0

}
, (6)

where the matrices are obtained by discretization of each corresponding integral of the
weak formulation (5) using NS structural dofs {U} associated to u and NF acoustic
pressure dofs {P} associated to p, as:

[KS] →
∫

ΩS

�(u) : �(δu) dΩ, [MS] →
∫

ΩS

ρSu · δu dΩ,

[KF ] → 1

ρF

∫
ΩF

∇p ·∇δp dΩ, [MF ] → 1

ρF c2

∫
ΩF

pδp dΩ,

[L] →
∫

ΣFS

p nF · δu dΣ, [AF ] →
∫

ΣA

pδp dΣ.

(7)

N.B. For a sake of clarity, no structural damping is considered in the weak formulations
and associated FE discretizations presented here, but it can naturally be integrated in
the formulations.

1.2 Considerations about the static case

As indicated in reference [4], the considered problem is not valid for ω = 0 since when
the frequency vanishes, the ”movement” of the fluid tends to static irrotational motion.
This can be easily seen by taking the rotational of (3) leads to ρFω

2∇ × uF = 0, which
implies that the movement of the fluid is necessarily irrotational if ω 6= 0.
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In that case, the pressure can be decomposed in two terms:

p = pS + p̃, (8)

where p̃ is a dynamic pressure and pS is a so-called static pressure, which is constant
in space and differs from the static solution which could be obtained by extending the
considered problem to ω = 0, since it would result in a static pressure which is constant in
space but undetermined in amplitude. The uniqueness of p̃ is guaranteed by the condition∫

ΩF

p̃dΩ = 0. The static pressure can be determined by integration of p in the fluid domain:

∫
ΩF

pdΩ =

∫
ΩF

pSdΩ +

∫
ΩF

p̃dΩ = VFp
S, (9)

in which VF is the measure of the volume occupied by ΩF . On the other side, if the fluid is
inviscid and compressible, the constitutive law of the fluid can be used: p = −ρF c2∇·uF .
The integral of the pressure is∫

ΩF

pdΩ = −ρF c2

∫
ΩF

∇ · uFdΩ = −ρF c2

∫
ΣF

⋃
ΣFS

⋃
ΣA

uF · nFdΣ. (10)

It is then clear that:

pS = −ρF
c2

VF

∫
ΣF

⋃
ΣFS

⋃
ΣA

uF · nFdΣ. (11)

In particular, if ΣF is rigid, the static pressure can be directly derived from the normal
displacement of the structure:

pS = −ρF
c2

VF

∫
ΣFS

u · nFdΣ− ρF
c2

VF

∫
ΣA

uF · nFdΣ. (12)

2 A displacement-pressure formulation valid for the static case

Above considerations mean that several ways can be considered to solve the considered
problem using a displacement/pressure formulation. The variable which describes the
movement of the structure is the displacement u, while for the fluid one can use the
following strategies:

• use of pressure p for fluid description. This formulation has been presented in section
1.1, it is not valid for ω = 0.

• use of dynamic pressure p̃ for fluid description. This formulation is valid for ω = 0.
The constraint (??) has to be considered to solve the problem. In particular, in a
finite elements context, this constraint has to be discretized and included in the final
system. The total pressure p is then obtained by summing p̃ and pS which comes
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from equation (12). This requires in particular the discretization of pS from equation
(12) in which uF ·nF must be expressed on ΣA in function of the dynamic pressure
p̃ using the impedance condition. The corresponding system has large expressions
and exhibits no special interest comparing to other strategies.

• use of both dynamic pressure p̃ and static pressure pS for fluid description. This
formulation is valid for ω = 0. The authors did not found any mention of this
possibility in the literature, even if a (u, p̃, φ, pS) formulation can be found in [5].
To obtain this formulation, the constraint (??) and the equation (12) have to be
considered and discretized. The total pressure p is then obtained by summing p̃ and
pS. Following this approach, one can define the subspace Cp̃:

Cp̃ =

{
p̃ ∈ Cp /

∫
ΩF

p̃ dΩ = 0

}
. (13)

In a weak form, one has then to find u, p̃ and pS in Cu, Cp̃ and R such as, for all
(δu, δp̃, δpS) ∈ Cu × Cp̃ ×R:

∫
ΩS

�(u) : �(δu) dΩ− ω2

∫
ΩS

ρSu · δu dΩ

−
∫

ΣFS

p̃ nF · δu dΣ−
∫

ΣFS

pS nF · δu dΣ =

∫
ΣS

FS · δu dΣ, (a)

1

ρF

∫
ΩF

∇p̃ ·∇δp̃ dΩ− ω2

ρF c2

∫
ΩF

p̃δp̃ dΩ− ω2

∫
ΣFS

u · nF δp̃ dΣ

+
iω

Za(ω)

∫
ΣA

p̃δp̃ dΣ +
iω

Za(ω)
pS
∫

ΣA

δp̃ dΣ = 0, (b)

1

ρF c2
pSVF δp

S +

∫
ΣFS

u · nF dΣ δpS

+
1

iωZa(ω)

∫
ΣA

p̃ dΣ δpS +
1

iωZa(ω)
pSSAδp

S = 0, (c)

(14)
where VF is the volume of the fluid domain and SA the surface of the absorption
area. The corresponding finite element formulation can be written as: KS −L −`

0 KF 0
`T 0 VF

ρF c2

− ω2

 MS 0 0
LT MF 0
0 0 0


+ iω
Za(ω)

 0 0 0
0 AF aF
0 −1

ω2 a
T
F

−1
ω2 SA


U

P̃
pS

 =


FS
0
0

 ,

(15)

where the acoustic dynamic pressure dofs P̃ are associated to p̃ and:

[aF ] → pS
∫

ΣA

δp̃ dΣ, [`] → pS
∫

ΣFS

δu · nF dΣ. (16)
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One should emphasize that this system must be solved under the constraint

∫
ΩF

p̃dΩ =

0, which corresponds to [C]T{P̃} = 0 where [C] →
∫

ΩF

p̃dΩ. A useful information

can be derived from this system concerning the frequency evolution of acoustic
impedance: as indicated in [6], in order that the model is compatible with static
behavior, the impedance Za must verify the conditions{

limω→0 ω Re(Za(ω)) = 0,
limω→0 ω Im(Za(ω)) <∞, (17)

where Re(·) and Im(·) correspond respectively to real and imaginary part of complex
number. These two conditions are required to ensure that the system has a static
solution which is real and finite. This system can be symmetrized by dividing the
equations related to dynamic fluid dofs by ω2 and changing sign in the last line.

3 Alternative formulation: displacement potential

3.1 Definition of the displacement potential

An alternative formulation to the previous one is the (u, ϕ) formulation where ϕ is the
displacement potential. The relation between p and ϕ is [1]:

p = ρFω
2ϕ. (18)

This relation is valid only when ω 6= 0. The static case will be discussed later.
The admissible space Cϕ is then defined as:

Cϕ =
{
ϕ ∈ H1(ΩF )

}
. (19)

The weak form of this problem consists in searching u and ϕ in admissible spaces Cu and
Cϕ such as, for all (δu, δϕ) ∈ Cu × Cϕ:

∫
ΩS

�(u) : �(δu) dΩ− ω2

∫
ΩS

ρSu · δu dΩ

−ρFω2

∫
ΣFS

ϕ nF · δu dΣ =

∫
ΣS

FS · δu dΣ, (a)

1

ρF

∫
ΩF

∇ϕ ·∇δϕ dΩ− ω2

ρF c2

∫
ΩF

ϕδϕ dΩ

− 1

ρF

∫
ΣFS

u · nF δϕ dΣ +
iω

Za(ω)

∫
ΣA

ϕδϕ dΣ = 0. (b)

(20)

The FE discretization of this variational formulation can be written as:([
KS 0
− 1
ρF
LT KF

]
− ω2

[
MS ρFL
0 MF

]
+

iω

Za(ω)

[
0 0
0 AF

]){
U
Φ

}
=

{
FS
0

}
, (21)

where the acoustic displacement potential dofs Φ are associated to ϕ.
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3.2 Considerations about the static case

As indicated above, the definition of displacement potential ϕ by equation (18) is not
valid when ω = 0. One can use ϕ̃ instead of ϕ where [1]:

p = ρFω
2ϕ̃+ pS. (22)

The uniqueness of ϕ̃ is guaranteed by the constraint [1]
∫

ΩF
ϕ̃ dΩ = 0. This constraint

leads to the definition of the subspace Cϕ̃:

Cϕ̃ =

{
ϕ̃ ∈ Cϕ /

∫
ΩF

ϕ̃ dΩ = 0

}
. (23)

In the literature, it has been proposed to include the static pressure in (u, p̃, ϕ̃) formulation
by keeping pS as a degree of freedom in the model [5]. Here, a direct (u, ϕ̃, pS) formulation
is derived in presence of absorption area, which limits the size of the final system compared
with (u, p̃, ϕ̃) formulation.
In a weak form, one has then to find u, ϕ̃ and pS in Cu × Cp̃ × R such as, for all
(δu, δϕ̃, δpS) ∈ Cu × Cp̃ ×R:

∫
ΩS

�(u) : �(δu) dΩ− ω2

∫
ΩS

ρSu · δu dΩ

−ρFω2

∫
ΣFS

ϕ̃ nF · δu dΣ−
∫

ΣFS

pS nF · δu dΣ =

∫
ΣS

FS · δu dΣ, (a)

1

ρF

∫
ΩF

∇ϕ̃ ·∇δϕ̃ dΩ− ω2

ρF c2

∫
ΩF

ϕ̃δϕ̃ dΩ− 1

ρ

∫
ΣFS

u · nF δϕ̃ dΣ

+
iω

Za(ω)

∫
ΣA

ϕ̃δϕ̃ dΣ +
i

ρFωZa(ω)
pS
∫

ΣA

δϕ̃ dΣ = 0, (b)

1

ρF c2
pSVF δp

S +

∫
ΣFS

u · nF dΣ δpS

− iωρF
Za(ω)

∫
ΣA

ϕ̃ dΣ δpS +
1

iωZa(ω)
pSSAδp

S = 0, (c)

(24)
The FE discretization of this variational formulation can be written as: KS 0 −`

− 1
ρF
LT KF 0

`T 0 VF
ρF c2

− ω2

 MS ρFL 0
0 MF 0
0 0 0


+ iω
Za(ω)

 0 0 0
0 AF

1
ρFω2aF

0 −ρFaTF −SA
ω2


U

Φ̃
pS

 =


FS
0
0

 ,

(25)

where the acoustic displacement potential dofs Φ̃ are associated to ϕ̃. This system can
be symmetrized by multiplying the equations related to dynamic fluid dofs by ω2ρ2

F and
changing sign in the last line. One should emphasize that this system must be solved
under the constraint [C]T{Φ̃} = 0.
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4 Alternative formulation: velocity potential

4.1 Definition of the velocity potential

An alternative formulation to the previous ones is the (u, ψ) formulation where ψ is
the velocity potential. The relation between p and ψ is [7]:

p = −iωρFψ. (26)

This relation is valid only when ω 6= 0. The static case will be discussed later.
The admissible space Cψ is then defined as:

Cψ =
{
ψ ∈ H1(ΩF )

}
. (27)

The weak form of this problem consists in searching u and ψ in admissible spaces Cu and
Cψ such as, for all (δu, δψ) ∈ Cu × Cψ:

∫
ΩS

�(u) : �(δu) dΩ− ω2

∫
ΩS

ρSu · δu dΩ

+ρF iω

∫
ΣFS

ψ n · δu dΣ =

∫
ΣS

FS · δu dΣ, (a)

1

ρF

∫
ΩF

∇ψ ·∇δψ dΩ− ω2

ρF c2

∫
ΩF

ψδψ dΩ

− iω
ρF

∫
ΣFS

u · nF δψ dΣ +
iω

Za(ω)

∫
ΣA

ψδψ dΣ = 0. (b)

(28)

The FE discretization of this variational formulation can be written as:([
KS 0
0 KF

]
+ iω

[
0 ρFL

− 1
ρF
LT 1

Za(ω)
AF

]
− ω2

[
MS 0
0 MF

]){
U
Ψ

}
=

{
FS
0

}
, (29)

where the acoustic velocity potential dofs Ψ are associated to ψ. A symmetric version of
this equation is obtained by multiplying the fluid equations by −ρ2

F :[
KS − ω2MS iωρFL
iωρFL

T −ρ2
FKF + ω2ρ2

FMF − ρ2
F

iω
Za(ω)

AF

]{
U
Ψ

}
=

{
FS
0

}
. (30)

In some industrial codes (e.g. MSC.Nastran [8]), this is the version which is implemented,
in some cases it eventually differs from ρF factors in the definition of velocity potential.
In all cases, a final symmetric system is obtained. This is of particular interest for modal
analysis purposes when ΣA does not exist, since dedicated eigenvalue solvers for gener-
alized symmetric quadratic problems can be used. However, even in the case of direct
harmonic response estimation, a formulation based on symmetric matrices leads to cal-
culation time reduction. One can note that the previously presented FE formulations
can sometimes be easily transformed to symmetric problems for frequency response using
division of acoustic equations by proper terms (including frequency).
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4.2 Considerations about the static case

The remarks evoked for the displacement potential regarding the static case are still
valid for the velocity potential. One can use ψ̃ instead of ψ where [1]:

p = −iωρF ψ̃ + pS. (31)

The uniqueness of ψ̃ is guaranteed by the constraint [1]
∫

ΩF
ψ̃ dΩ = 0. This constraint

leads to the definition of the subspace Cψ̃:

Cψ̃ =

{
ψ̃ ∈ Cϕ /

∫
ΩF

ψ̃ dΩ = 0

}
. (32)

In a weak form, one has then to find u, ψ̃ and pS in Cu × Cψ̃ × R such as, for all

(δu, δψ̃, δpS) ∈ Cu × Cψ̃ ×R:

∫
ΩS

�(u) : �(δu) dΩ− ω2

∫
ΩS

ρSu · δu dΩ

+ρF iω

∫
ΣFS

ψ̃ nF · δu dΣ−
∫

ΣFS

pS nF · δu dΣ =

∫
ΣS

FS · δu dΣ, (a)

1

ρF

∫
ΩF

∇ψ̃ ·∇δψ̃ dΩ− ω2

ρF c2

∫
ΩF

ϕ̃δψ̃ dΩ− iωF
ρ

∫
ΣFS

u · nF δψ̃ dΣ

+
iω

Za(ω)

∫
ΣA

ψ̃δψ̃ dΣ− 1

ρFZa(ω)
pS
∫

ΣA

δψ̃ dΣ = 0, (b)

1

ρF c2
pSVF δp

S +

∫
ΣFS

u · nF dΣ δpS

− ρF
Za(ω)

∫
ΣA

ψ̃ dΣ δpS +
1

iωZa(ω)
pSSAδp

S = 0, (c)

(33)
The FE discretization of this variational formulation can be written as: KS 0 −`

0 KF 0
`T 0 VF

ρF c2

+ iω

 0 ρFL 0
− 1
ρF
LT 0 0

0 0 0

− ω2

 MS 0 0
0 MF 0
0 0 0


+ iω
Za(ω)

 0 0 0
0 AF − 1

iωρF
aF

0 −ρF
iω
aTF −SA

ω2


U

Ψ̃
pS

 =


FS
0
0

 ,

(34)

where the acoustic velocity potential dofs Ψ̃ are associated to ψ̃. This system can be
symmetrized by multiplying the equations related to dynamic fluid dofs by −ρ2

F and
changing sign in the last line. One should emphasize that this system must be solved
under the constraint [C]T{Ψ̃} = 0.
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5 Model reduction of structural-acoustic problem

5.1 Classical reduction using decoupled basis

In a generic way, all previous problems can be written as:

[K − ω2M +
iω

Za(ω)
A]{Y } = {F}, (35)

where {Y } includes a partition of structural and acoustic dofs. In this generic notation,
the matrices can possibly depend on frequency. A very classical way to project the size of
the harmonic problem is to search the response on a given vectorial space, typically built
from the associated undamped problem. In our case, one classically define :

• the in vacuo structural modes, which are the normal modes of the structure without
wet surface (i.e. for which ΣFS is replaced with a free surface), these modes have
shapes that can be stored in the structural modal matrix TS;

• the blocked acoustic modes, which are the normal modes of the cavity in which both
ΣFS and ΣA are replaced by rigid wall conditions. The associated shapes are stored
in the acoustic modal matrix TF .

One should emphasize that the decoupled mode shapes are identical in all formulations
providing that the static pressure is not included in the formulation. The global projection
matrix is then built as:

[T ] =

[
TS 0
0 TF

]
(36)

One can reduce now the initial problem using the projection {Y } = [T ]{q} with {q} ={
qS
qF

}
:

[K̄ − ω2M̄ +
iω

Za(ω)
Ā]{Y } = {F̄}, (37)

where:

[K̄] = [T TKT ], [M̄ ] = [T TMT ], [Ā] = [T TAT ], {F̄} = [T T ]{F}. (38)

5.2 Considerations about the static case

Concerning the remarks presented in the previous sections about the static case, one
should underline that in literature, the constraints (??), (??) or (??) are generally omitted
in the FE formulation. This is valid since the acoustic modes are calculated with rigid
boundary conditions, which implies that they automatically verify the constraints. On
the other side, for a full model computation, the constraints must be taken into account
for proper estimation of the low frequency content of the responses.
Several strategies are available to take into account static response of the fluid domain in
the projection:

10
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• The mode p0 can simply be added in the Ritz basis, even if this is not correct in a
mathematical point of view, as indicated in [4].

• One of the proposed (u, p, pS) (u, ϕ, pS) or (u, ψ, pS) formulations can be used with-
out condensation of pS.

• The impact of pS on the structure can be evaluated using elastic modes, as indicated
in [9]. In this case, its contribution is interpreted in terms of added mass and
stiffness. The projection of acoustic part leads to:[ KS +KC 0

0 diag
(

1
ρF

) ]− ω2

 MS +MC LTFdiag
(

1
ω2
α

)
sym diag

(
1

ρFω2
α

) { U
qF

}
=

{
FS
0

}
,(39)

where MC =
n∑

α=1

ρF
ω2
α

LPαP
T
α L

T is the added mass matrix and KC is the added

stiffness matrix obtained by the discretization of p2
0

∫
ΣFS

u · ndΣ
∫

ΣFS
nδudS.

The reduction of the structural part is then performed using the modified structural
eigenvalue problem [1, 9]:

(Ks +Kc)Uβ = ω2
β (Ms +Mc)Uβ, (40)

where Uβ is a structural mode of the structure including added mass and stiffness
effects of fluid, associated to Kc and Mc. The reduced problem is then:[ diag(ω2

β) 0

0 diag
(

1
ρF

) ]− ω2

 I T TS LTFdiag
(

1
ω2
α

)
sym diag

(
1

ρFω2
α

) { qS
qF

}
=

{
T TS FS

0

}
.(41)

It should be emphasized that the above equations have been obtained without consider-
ing the acoustic absorption surface Σa. When Σa, characterized by Za, is present, the
methodology used to derive the previous system leads to complex relationships which
has no special interest compared to the alternative ways to take into account the static
behavior of the fluid cavity.

6 What’s next?

Due to the limited number of pages in the WCCM proceedings papers, the next chapter
of the story will be available during the oral presentation (and also in next papers!).
Nevertheless, the main comments associated to the numerical simulations associated to
the above formulations are that in all cases, the convergence rate is very low; moreover
the direct reduction by using only ”elastic” acoustic modes leads to large errors, it is
then clear that including static contribution for the fluid part is necessary for correct

11
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estimation of low-frequency content of the responses. Another point is that considering
static contribution through added mass and stiffness is efficient for a low number of
modes, but the convergence is very low, due to the fact that the added mass is evaluated
from modal reduction and that no information is provided in the fluid domain to improve
convergence. Finally, the best convergence rate corresponds to direct inclusion of constant
vector p0 in the fluid basis and also to projection using the (u, p, pS) formulation. In the
last part of the talk, it will be shown that using alternative bases enrichment strategies
can save a lot of computation time.
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