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eAbstra
tThis paper extends a rewriting approximations-based theoreti
al framework in whi
h the se
urity problem� se
re
y preservation against an a
tive intruder � may be semi-de
ided through a rea
hability veri�
ation.In a re
ent paper, we have shown how to semi-de
ide whether a se
urity proto
ol using algebrai
 propertiesof 
ryptographi
 primitives is safe. In this paper, we investigate the dual - inse
urity - problem: we explainhow to semi-de
ide whether a proto
ol using 
ryptographi
 primitive algebrai
 properties is unsafe. Themain advantage of our work is that the approximation fun
tions make it possible to automati
ally verifyse
urity proto
ols with an arbitrary number of sessions. Furthermore, our approa
h is supported by the toolTA4SP su

essfully applied for analysing the NSPK-xor proto
ol and the Di�e-Hellman proto
ol.Keywords: Se
urity proto
ol, algebrai
 properties, automati
 approximation.1 Introdu
tionSe
urity proto
ols are part of systems for whi
h the se
urity problem is in generalunde
idable. Approximations and abstra
tions represent a well-suited alternative forverifying them in pra
ti
e. A lot of investigations have been 
arried out on this topi
[2,11,6,14,16,19,15,18℄.An often en
ountered di�
ulty is about en
oding with non-atomi
 keys. A non-atomi
 key is a key established in several steps from several data. This topi
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Boichut, Ham and Kouchnarenko.
lose to the handling of operators with algebrai
 properties. On a strongly typedmodel (model in whi
h the stru
ture of a 
ompound key is 
learly spe
i�ed), mostof the developed methods are able to perform a proto
ol analysis. Unfortunately ase
ure strongly typed model is not a se
ure model be
ause of type 
onfusing atta
ks.That is why our previous 
ontribution [4℄ has extended the veri�
ation methodin [3℄ in order to verify � without typing � se
urity proto
ols bringing into playoperators with algebrai
 properties. This improvement has made the 
omputationof sound over-approximations of the intruder knowledge possible. Consequently, thesafety, i.e., the se
re
y preservation on proto
ols using algebrai
 properties of theex
lusive or (xor) operator or the exponential (exp) operator 
an be establishedautomati
ally. However, there is a la
k of the atta
k dete
tion, i.e. of showing thata proto
ol is unsafe.The main 
ontribution of this paper 
onsists of showing the feasibility of theautomati
 unsafety veri�
ation for proto
ols when 1) the number of sessions is un-bounded, and 2) the 
ryptographi
 primitives use algebrai
 operators properties.We propose su�
ient 
onditions on term rewriting systems (TRSs for short), underwhi
h atta
k dete
tion on su
h proto
ols be
omes possible.To illustrate the 
ontributions, experiments on the dete
tion of atta
ks againstproto
ols with the primitives using xor or exp (xored and exped proto
ols, for short),are reported.Stru
ture of the paper The paper is organised as follows. After giving prelim-inary notions on tree automata and TRSs, we introdu
e in Se
tion 2 a substitutiondepending on rules of a TRS, and a notion of 
ompatibility between su
h substitu-tions and �nite tree automata, both suitable for rea
hability analysis in rewritingwith non left-linear TRSs. In Se
tion 3, we present the extension of [4℄ dealingwith under-approximations. Finally, before 
on
luding, we give in Se
tion 4 a briefoverview of related works, and we explain how to apply the obtained new results toanalyse xored or exped proto
ols.2 Ba
kground and NotationsIn this se
tion basi
 notions on �nite tree automata, term rewriting systems andapproximations are re
alled. The reader is referred to [8℄ for more detail.2.1 NotationsGiven the set N of natural integers, N
∗ denotes the �nite strings over N. Let F be a�nite set of symbols with their arities. The set of symbols of F of arity i is denoted

Fi. Let X be a �nite set whose elements are variables. We assume that X ∩ F = ∅.A �nite ordered tree t over a set of labels (F ,X ) is a fun
tion from a pre�x-
losed set
Pos(t) ⊆ N

∗ to F ∪ X . A term t over F ∪ X is a labeled tree whose domain Pos(t)satis�es the following properties: Pos(t) is non-empty and pre�x 
losed, for ea
h
p ∈ Pos(t), if t(p) ∈ Fn (with n 6= 0), then {i | p.i ∈ Pos(t)} = {1, . . . , n} and, forea
h p ∈ Pos(t), if t(p) ∈ X or t(p) ∈ F0, then {i | p.i ∈ Pos(t)} = ∅. Ea
h elementof Pos(t) is 
alled a position of t. For ea
h subset K of X ∪ F and ea
h term t we2



Boichut, Ham and Kouchnarenko.denote by PosK(t) the subset of positions p's of t su
h that t(p) ∈ K. Ea
h position pof t su
h that t(p) ∈ F , is 
alled a fun
tional position. The set of terms over (F ,X )is denoted T (F ,X ). A ground term is a term t su
h that Pos(t) = PosF (t) (i.e.su
h that PosX (t) = ∅). The set of ground terms is denoted T (F). A subterm t|pof t ∈ T (F ,X ) at position p is de�ned by: Pos(t|p) = {i | p.i ∈ Pos(t)} and, For all
j ∈ Pos(t|p), t|p(j) = t(p.j). We denote by t[s]p the term obtained by repla
ing in tthe subterm t|p by s. See Example 6.1.For all sets A and B, we denote by Σ(A,B) the set of fun
tions from A to B. If
σ ∈ Σ(X , B), then for ea
h term t ∈ T (F ,X ), we denote by tσ the term obtainedfrom t by repla
ing for ea
h x ∈ X , the variable x by σ(x). A term rewriting system
R over T (F ,X ) is a �nite set of pairs (l, r) from T (F ,X )× T (F ,X ), denoted l→r,su
h that the set of variables o

urring in r is in
luded in the set of variables of l.A TRS is left-linear if for ea
h rule l→r, every variable o

ur at most on
e in l. Forea
h ground term t, we denote by R(t) the set of ground terms t

′ su
h that thereexist a rule l → r of R, a fun
tion µ ∈ Σ(X ,T (F)) and a position p of t satisfying
t|p = lµ and t

′
= t[rµ]p. The relation {(t, t

′
) | t

′
∈ R(t)} is 
lassi
ally denoted →R.If t→Rt′ for t, t′ ∈ T (F), then t is a rewriting prede
essor of t′ and t′ is rewritingsu

essor of t. For ea
h set of ground terms B we denote by R∗(B) the set of groundterms related to an element of B modulo the re�exive-transitive 
losure of →R.A tree automaton A is a tuple (Q,∆, F ), where Q is the set of states, ∆ theset of transitions, and F the set of �nal states. Transitions are rewriting rules ofthe form f(q1, . . . , qk)→q, where f ∈ Fk and the qi's are in Q. A term t ∈ T (F)is a

epted or re
ognised by A if there exists q ∈ F su
h that t→∗

∆q (we also write
t→∗

Aq). The set of terms a

epted by A is denoted L(A). For ea
h state q ∈ Q, wewrite L(A, q) for the tree language L((Q,∆, {q})). A tree automaton is �nite if itsset of transitions is �nite. See Example 6.2.In [4℄, a new kind of substitution has been introdu
ed. We re
all this de�nitionbelow. Noti
e that the domain of these substitutions is not the set of variablesanymore, but a set of positions. Thus, given a variable, this allows a symboli
representation of its values.De�nition 2.1 Let R be a term rewriting system, Q a set of states and l → r ∈ R.A (l → r)-substitution is an appli
ation from PosX (l) into Q.We then adapt this kind of substitution to the rewriting framework in the fol-lowing way. Let l→r ∈ R and σ be a (l → r)-substitution. We denote by lσ theterm of T (F ,Q) su
h that Pos(lσ) = Pos(l), and for ea
h p ∈ Pos(l), if p ∈ PosX (l)then lσ(p) = σ(l(p)), otherwise lσ(p) = l(p). Similarly, we denote by rσ the termof T (F ,Q) de�ned by: Pos(rσ) = Pos(r) and, for ea
h p ∈ Pos(r), if p /∈ PosX (r)then rσ(p) = r(p) and rσ(p) = σ(l(p
′
)) otherwise, where p

′
= minPosr(p)(l) (posi-tions are lexi
ographi
ally ordered). For a given tree automaton, a parti
ular 
lassof (l → r)-substitution 
an be drawn.De�nition 2.2 Let A be a �nite tree automaton. We say that a (l → r)-substitution

σ is A-
ompatible if for ea
h x ∈ Var(l),
⋂

p∈Pos{x}(l)

L(A, σ(p)) 6= ∅.3



Boichut, Ham and Kouchnarenko.See Example 6.3. Finally, the last notion we introdu
e is the de�nition of anapproximation fun
tion.De�nition 2.3 Let A be a �nite tree automaton. An approximation fun
tion (for
A) is a fun
tion asso
iating with ea
h tuple (l → r, σ, q), where l → r ∈ R, σ is an
A-
ompatible (l → r)-substitution and q a state of A, a mapping from Pos(r) to Q.See Example 6.4. This notion is very useful for rea
hability analysis in rewritingwith non left-linear TRSs as shown in the following se
tion.2.2 Rea
hability Analysis in Rewriting with non Left-linear TRSsThis se
tion re
alls the approximation-based framework we have been developing,and explains our obje
tives from a formal point of view.Given a tree automaton A and a TRS R (for several 
lasses of automata andTRSs), the tree automata 
ompletion [14,13℄ algorithm 
omputes a tree automaton
Ak su
h that L(Ak) = R∗(L(A)) when it is possible (for the 
lasses of TRSs 
overedby this algorithm see [13℄), and su
h that L(Ak) ⊇ R∗(L(A)) otherwise.The tree automata 
ompletion works as follows. From A = A0 
ompletion buildsa sequen
e A0,A1, . . . ,Ak of automata su
h that if s ∈ L(Ai) and s→Rt then t ∈
L(Ai+1). If there is a �x-point automaton Ak su
h that R∗(L(Ak)) = L(Ak), thenone has L(Ak) = R∗(L(A0)) (or L(Ak) ⊇ R∗(L(A)) if R is not in one 
lass of [13℄).In parti
ular, for non left-linear TRSs, the 
ompletion is not sound. Indeed, if the
ompletion 
onverges towards a �x-point automaton Ak, L(Ak) is not ne
essarilyeither R∗(L(A)) or a super set of R∗(L(A)).In [4℄, the 
ompletion pro
edure has been improved so that the method is soundfor non left-linear TRSs. This te
hnique is introdu
ed below. As mentioned previ-ously, the 
ompletion builds a sequen
e A0,A1, . . . ,Ak of tree automata su
h thatthe set of terms rea
hable in one step of rewriting from L(Ai) are in L(Ai+1). Tobuild Ai+1 from Ai, we a
hieve a 
ompletion step whi
h 
onsists of �nding 
riti
alpairs between →R and →Ai

. Formally, for an approximation fun
tion γ, a rule
l→r ∈ R and an Ai-
ompatible (l → r)-substitution σ, a 
riti
al pair is an instan
e
lσ of l su
h that there exists q ∈ Q satisfying lσ→∗

Ai
q and rσ 6 →∗

Ai
q. For every
riti
al pair, su
h that lσ→∗

Ai
q and rσ 6 →∗

Ai
q, dete
ted between R and Ai, Ai+1 isbuilt by adding new transitions to Ai, so that it re
ognizes rσ in q, i.e. rσ→Ai+1

q.
lσ

Ai

R
rσ

q

∗

Ai+1

∗Before giving a de�nition of a 
ompletion step (Def. 2.5), we introdu
e a normalisa-tion step des
ribed in De�nition 2.4 .Let's remark that the transition rσ→q is not ne
essarily a transition of theform f(q1, . . . , qn)→q′ and so has to be normalized �rst. For example, to nor-malize a transition of the form f(g(a), h(q′))→q, we need to �nd some states
q1, q2, q3 and repla
e the previous transition by a set of normalized transitions:
{a→q1, g(q1)→q2, h(q′)→q3, f(q2, q3)→q}. The states used in a normalization step4



Boichut, Ham and Kouchnarenko.do not grow on trees and it is of the approximation fun
tion γ 
on
ern to deliverthem at ea
h 
ompletion step. Formally,De�nition 2.4 Let A = (Q0,∆, F0) be a �nite tree automaton, γ be an approxima-tion fun
tion for A, l → r be a rule of R, σ be an A-
ompatible (l → r)-substitution,and q be a state of A. We denote by Normγ(l → r, σ, q) the following set of transi-tions, 
alled normalization of (l → r, σ, q):
{f(q1, . . . , qk)→q

′
|p ∈ PosF (r), r(p) = f,

q
′
= q if p = ε otherwise q

′
= γ(l → r, σ, q)(p)

qi = γ(l → r, σ, q)(p.i) if p.i /∈ PosX (r),

qi = σ(min{p
′
∈ PosX (l) | l(p

′
) = r(p.i)})otherwise}The min is 
omputed for the lexi
al order.Noti
e that the set {p

′
∈ PosX (l) | l(p

′
) = r(p.i)} used in the above de�nitionis not empty. Indeed, in a TRS, variables o

urring in the right-hand side must, byde�nition, o

ur in the left-hand side too.De�nition 2.5 Let R be a TRS. Let A0 = (Q0,∆0, F0) be a �nite tree automatonand γ an approximation fun
tion for A0. The automaton Cγ(A0) = (Q1,∆1, F1) isde�ned by:

∆1 = ∆0 ∪
⋃

Normγ(l → r, σ, q)where the union involves all rules l → r ∈ R, all states q ∈ Q0, all A0-
ompatible
(l → r)-substitutions σ su
h that lσ→∗

A0
q and rσ 6 →∗

A0
q, F1 = F0 and Q1 =

Q0 ∪ Q2, where Q2 denotes the set of states o

urring in left/right-hand sides oftransitions of ∆1.See Example 6.5 for an example of a 
ompletion step. Following theorem wasproved in [4℄.Theorem 2.6 Let (An) and (γn) be respe
tively a sequen
e of �nite tree automataand a sequen
e of approximation fun
tions su
h that for ea
h integer n, γn is anapproximation fun
tion for An and An+1 = Cγn(An). If there exists a positive integer
N , su
h that for every n ≥ N , An = AN , then R∗(L(A0)) ⊆ L(AN ).From a veri�
ation point of view, this te
hnique is very helpful. Indeed, for asystem Σ whose transition relation is ∆, one spe
i�es the initial 
on�guration of
Σ by a tree language E, and ∆ by a TRS R. With a well-suited approximationfun
tion γ, an over-approximation of rea
hable 
on�gurations of Σ, denoted Eγ

R, 
anbe 
omputed. Finally, a set of bad 
on�gurations, denoted EBad, 
an be en
oded witha tree language and if Eγ
R ∩ EBad is empty, then no bad 
on�guration is rea
hable.In parti
ular, in [4℄, we have used this te
hnique for verifying se
urity proto
olsbringing into play the xor operator (⊕). Note that the nilpoten
e property of ⊕ isspe
i�ed with a non left-linear rule, i.e., x ⊕ x→0. The tree languages spe
ify theintruder knowledge and the 
on�gurations of the network. The TRS spe
i�es theproto
ol and the intruder abilities for de
oding, 
oding, depairing messages. Thus,5



Boichut, Ham and Kouchnarenko.if a se
ret term t does not belong to an over-approximation of the knowledge thatthe intruder might have, then t is a
tually se
ret.3 Under-Approximations for non Left-linear TRSsThe over-approximation results in [4℄ do not provide a way to prove that a parti
ularterm is rea
hable: the method is not 
omplete. This se
tion adapts the means andextends the results in [4℄ to under-approximations 
omputations. In the se
urityproto
ol framework, 
omputing under-approximations allows an under-estimation ofthe intruder knowledge, and thus se
re
y �aws dete
tion. Indeed, if a se
ret datumis in the intruder knowledge under-estimation, then the intruder a
tually knows thisse
ret.The main idea (and problem) behind the under-approximations is that one wantsthe languages of 
omputed tree automata to be in the set of terms rea
hable byrewriting . Having some 
onditions on the TRS makes it possible to 
ontrol the
ompletion, and proving that a term is a
tually rea
hable is then possible.We de�ne here γ to be an inje
tive approximation fun
tion from R × (N∗ 7→
Q)×N

∗ ×Q into Q. Theorem 3.2 shows that with su
h an approximation fun
tion,an under-approximation of the set of rea
hable terms is possible. Before, Lemma3.1 presents an intermediary result useful for proving Theorem 3.2: this result re-veals some features of terms re
ognised by Cγ(A) for whi
h there exists a rewritingprede
essor re
ognised by A.In the following, we introdu
e the notation NLV (t) whi
h for a term t of T (F ,X ),denotes the set of non-linear variables of t, i.e., the set of variables o

urring at leasttwi
e within t.Lemma 3.1 Let R be a right-linear TRS for whi
h NLV (l) ∩ Var(r) = ∅ for all
l→r ∈ R. Let A be the 
urrent tree automaton and Cγ(A) be the tree automatonobtained after one 
ompletion step with R and γ. If there exist a ground term t over
F , a state q of A and a fun
tion τ from Pos(t) to Q su
h that t ∈ L(Cγ(A), q), t 6∈
L(A, q) and τ satis�es the following 
onditions: (i) τ(ε) = q; (ii) for all p ∈ Pos(t),
t|p ∈ L(Cγ(A), τ(p)) and, (iii) for all p ∈ Pos(t) \ {ε}, if τ(p) is a state of A, then
t|p ∈ L(A, τ(p)). Then there exists t0 ∈ T (F) su
h that t0 ∈ L(A, q) and t0→Rt.The proof of Lemma 3.1 is in Appendix 8.1.The following result shows that ea
h term of the language Cγ(A0) is rea
hable byrewriting from A0 and using R.Theorem 3.2 Let A0 = (Q0,∆0, F0) be a �nite tree automaton. Let R be a right-linear TRS. Given the approximation fun
tion γ de�ned at the beginning of Se
tion3, if for all l→r ∈ R, Var(r) ∩ NLV (l) = ∅ then L(Cγ(A0)) ⊆ R∗(L(A0)).The proof of Theorem 3.1 
an be found in Appendix 8.2. Let C

(n)
γ (A0) be thetree automaton obtained after n 
ompletion steps performed from A0 by using theTRS R and the approximation fun
tion γ. Finally, Proposition 3.3 shows that theapproximation fun
tion γ provides a sound under-approximation of rea
hable terms(see Appendix 8.3 for the proof). 6



Boichut, Ham and Kouchnarenko.Proposition 3.3 If R is right-linear and for all l→r ∈ R, NLV (l) ∩ Var(r) = ∅then for all n ≤ 0, L(C
(n)
γ (A0)) ⊆ R∗(L(A0)), L(C

(n)
γ (A0)) ⊆ L(C

(n+1)
γ (A0)) and⋃

n≥0 L(C
(n)
γ (A0)) = R∗(L(A0)).At this point, we have developed theoreti
al frameworks whi
h lead either toover-approximations of the set of rea
hable terms in general, or to its under-approximations under additional 
onditions on TRSs. The obtained results allowus to apply the approximation-based methods to system veri�
ation as presented inthe next se
tion.4 Experiments and Related WorksWith the extension brought for the under-approximations 
omputation, we are nowable to dete
t whether a proto
ol using algebrai
 properties of 
ryptographi
 primi-tives is �awed or not. In this se
tion, we present some experimental results obtainedon two proto
ols, well-known to be �awed, whi
h are NSPK-xor and the key estab-lishment à la Di�e-Helmann proto
ol. The te
hnique presented in this paper hasbeen implemented in the tool TA4SP (a des
ription of the tool is given in Appendix 9).4.1 TA4SP for Atta
k Dete
tionThis se
tion details two proto
ols, well-known to be �awed, whi
h are NSPK-xorand the key establishment à la Di�e-Helmann proto
ol in its simplest form. Thenotations used are the following: X -> Y: Z spe
i�es that X sends the message Z toY, X.Y is the 
on
atenation of data X and Y, and {X}Y (or {X}_Y) is the en
oding ofthe message X by the message Y. Moreover, data Na, Nb, ni(Na) and ni(Nb) with ibeing an integer, are fresh random numbers, also 
alled a non
es. Finally, the last
on
ept to know 
on
erns the keys, whi
h 
an be publi
, private or symmetri
. Toa publi
 key Pka is asso
iated a private key Prka. A message en
oded by one 
anbe de
oded by the other: {{M}Pka}Prka = {{M}Prka}Pka = M. A symmetri
 key K 
ande
ode a message en
oded by itself: {{M}K}K = M.The NSPK-xor Proto
ol is 
omposed of three steps so that ea
h parti
ipant
an authenti
ate the other. First, the agent A sends the message {Na.A}KB

to theagent B. Se
ond, B sends {Nb.Na ⊕ B}KA
to A. Finally, A sends {Nb}KB

to Bas a 
on�rmation. Using TA4SP, we obtain in 71.03 se
onds that the proto
ol doesnot preserve the se
re
y of the data Nb against an intruder. Thanks to the AVISPAtoolset, one 
an use one of three other tools (in this 
ase CL-AtSe [20℄) for exhibitingthe following atta
k tra
e.1. i -> (a,6): start2. (a,6) -> i: {n9(Na).a}_ki3. i -> (a,3): start4. (a,3) -> i: {n1(Na).a}_kb5. i -> (b,4): {xor(i,xor(b,n9(Na))).a}_kb6. (b,4) -> i: {n5(Nb).xor(i,n9(Na))}_ka& Se
ret(n5(Nb),set_62);& Add a to set_62; Add b to set_62;7. i -> (a,6): {n5(Nb).xor(i,n9(Na))}_ka8. (a,6) -> i: {n5(Nb)}_ki 7



Boichut, Ham and Kouchnarenko.At steps 1. and 2. of the atta
k, the agent a initiates a session with the in-truder by sending the message {n9(Na).a}_ki to the intruder where n9(Na) is anon
e generated by a and ki is the publi
 key of the intruder. At steps 3. and4., the agent a initiates a session with the agent b. The intruder 
omposes at step5. the message xor(i,xor(b,n9(Na))).a and sends it to b after having en
odedit with the publi
 key of the agent b. The agent b dedu
es at step 6. that thismessage 
omes from the agent a thanks to the identity o

urring in the re
eivedmessage. Moreover, b 
onsiders the message xor(i,xor(b,n9(Na)))' as the non
e gen-erated by a. Consequently, b performs the se
ond step of the proto
ol. At step6. of the atta
k tra
e, b 
omposes n5(Nb).xor(b,xor(i,xor(b,n9(Na)))) whi
his equivalent to n5(Nb).xor(i,n9(Na)) after 
onsidering the algebrai
 properties of
⊕ (xor operator). Then, he sends it to a after having en
oded it with the publi
key of a. The agent b de
lares also the non
e n5(Nb) as a se
ret shared betweenhimself and the agent a. But, a

ording to the point of view of the agent a, themessage {n5(Nb).xor(i,n9(Na))}_ka should 
ome from i (the intruder) be
ausen5(Nb) identi�es the agent i for a. A

ording to his dedu
tion, the agent a sends{n5(Nb)}_ki to the intruder. Finally, the latter 
an dedu
e n5(Nb) whi
h is a se
retsupposed to be shared between b and a.The Di�e-Helmann Proto
ol is a key establishment proto
ol between twoagents A and B. The simplest version of this proto
ol is 
omposed of three steps.At step 1, A generates the non
e Na and 
omputes exp(G,Na) (standing for GNa)where G is a number known by every agents. Thus A sends the message exp(G,Na)to the agent B. At step 2, the agent B generates also a number Nb and 
omputeson the one hand exp(G,Nb) and on the other hand K = exp(X,Nb) where X isthe message re
eived i.e. exp(G,Na). The former is sent to A and the latter standsfor the symmetri
 key shared between A and B. As soon as B re
eives the message
exp(G,Nb) from A, (s)he then 
omputes exp(exp(G,Nb), Na) and thus 
onsiders itas the symmetri
 key shared with A. Indeed, a

ording to the algebrai
 propertiesof the exponentiation, K = exp(exp(G,Na), Nb) = exp(exp(G,Nb), Na). Finally,the message {secret}K is sent by A to B in whi
h secret is a datum initially knownuniquely by A and B. Using TA4SP this proto
ol has been shown as being �awed in24.73 se
onds. For this proto
ol, a MIM (Man in the Middle) atta
k is known andis detailed below with the atta
k tra
e outputted with the AVISPA tool-set.1. i -> (a,3): start2. (a,3) -> i: exp(g,n1(Na))3. i -> (b,4): g4. (b,4) -> i: exp(g,n5(Nb))5. i -> (a,3): g6. (a,3) -> i: {se
ab}_(exp(g,n1(Na)))7. i -> (b,4): {se
ab}_(exp(g,n5(Nb)))8. (b,4) -> i: ()& Se
ret(exp(g,n5(Nb)),set_65); Add a to set_65;& Add b to set_65;Roughly, the intruder establishes two keys: exp(exp(g,n1(Na)),g) with a atsteps 2 and 5 and exp(exp(g,n5(Nb)),g) with b at steps 3 and 4. At step 6,the agent a sends the se
ret data to b with the key unfortunately shared with the8



Boichut, Ham and Kouchnarenko.intruder. The intruder then extra
ts the se
ret data and forwards it to b with theother key. Finally, b is persuaded that this message 
omes from a.4.2 Related WorkIn [17℄ it has been shown that using equational tree automata under asso
iativityand/or 
ommutativity is relevant for se
urity problems of 
ryptographi
 proto
olswith an equational property. For proto
ols modeled by asso
iative-
ommutativeTRSs, the authors announ
e the possibility for the analysis to be done automati
allythanks to the tool ACTAS manipulating asso
iative-
ommutative tree automata andusing approximation algorithms. However, the engine has still room to be modi�edand optimised to support an automated veri�
ation.In [10℄, the authors study the IBM 4758 CCA (Common Cryptographi
 Ar
hite
-ture) API whi
h has been shown as �awed in [5℄. In response to this �aw, IBM thenhas proposed three re
ommendations designed to prevent it. The formalisation ofthese re
ommendations leads Cortier et al. to draw up a parti
ular 
lass of se
urityproto
ols using the operator ⊕ for whi
h the se
re
y problem is de
idable with anunbounded number of sessions. They have then shown that any one of the threere
ommendations is su�
ient to se
ure the API against a Dolev-Yao intruder [12℄.In the re
ent survey [9℄, the authors give an overview of the existing methodsin formal approa
hes to analyse 
ryptographi
 proto
ols. In the same work, a listof some relevant algebrai
 properties of 
ryptographi
 operators is established, andfor ea
h of them, the authors provide examples of proto
ols or atta
ks using theseproperties. This survey lists two drawba
ks with the re
ent results aiming at theanalysis of proto
ols with algebrai
 properties. First, in most of the papers a par-ti
ular de
ision pro
edure is proposed for a parti
ular property. Se
ond, the authorsemphasise the fa
t that the results remain theoreti
al, and very few implementationsautomati
ally verify proto
ols with algebrai
 properties.5 Con
lusionThe main purpose of this paper is to show that the symboli
 approximation-basedapproa
h we have been developing is well-adapted for dete
ting atta
ks on proto-
ols using algebrai
 properties while 
onsidering an unbounded number of sessions.Indeed, the automati
ally generated symboli
 under-approximation fun
tion enablesus 1) an automated normalisation of transitions, and 2) an automated 
ompletionpro
edure within the set of rea
hable terms.With this extension our approximation-based framework proposes veri�
ationmethods using either over-approximations of the set of rea
hable terms in general, orits under-approximations under additional 
onditions on TRSs. The 
ontributionsof the paper have been integrated into the push-button tool TA4SP [1℄ su

essfullyapplied for analysing the NSPK-xor proto
ol and the Di�e-Hellman proto
ol. Letus remark that TA4SP is used for proto
ols spe
i�ed in the standard High LevelProto
ol Spe
i�
ation Language (HLPSL) [7℄. This language is known to be suitablefor industrial users. 9
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on
erns implementation optimisation. We intend to investi-gate further algebrai
 properties that 
an be handled in pra
ti
e. In this dire
tion, weproje
t to develop a theoreti
al framework in order to 
ompute under-approximationswithout the right-linearity 
ondition required Theorem 3.2. This may for exampleprovide an approximation-based approa
h for dete
ting atta
ks on se
urity proto
olswith 
ryptographi
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Boichut, Ham and Kouchnarenko.Appendix6 Basi
 ExamplesExample 6.1 Let f, g, a ∈ F be fun
tional symbols su
h that f ∈ F2, g ∈ F1 and
a ∈ F0. Let x ∈ X be a variable. Let t be a term of T (F ,X ) su
h that t = f(a, g(x)),thus Pos(t) = {ǫ, 1, 2, 2.1}, PosF (t) = {ǫ, 1, 2}, t(1) = a, t(2) = g, t(ǫ) = f , t|1 = a,
t|2 = g(x), t|2.1 = x, Pos{x}(t) = {2.1} and t[a]2 = f(a, a).Example 6.2 Let A = (Q,∆, F ) be a tree automaton su
h that F = {f, g, a}with f ∈ F2, g ∈ F1 and a ∈ F0, Q = {qf , q1}, F = {qf} and ∆ =

{f(q1, q1)→qf , a→q1, g(q1)→q1}. Then, L(A, q1) = {g∗(a)} and L(A, qf ) = L(A) =

{f(g∗(a), g∗(a))}.Example 6.3 Let Aexe = ({q0, qf},∆exe, {qf}) with the set of transitions ∆exe =

{A→q0, A→qf ,f(qf , q0)→qf , h(q0, q0)→q0}. Let Rexe = {f(x, h(x, y))→h(A,x)}.The automaton Aexe re
ognizes the set of trees su
h that every path from the rootto a leaf is of the form f∗h∗A. Let us 
onsider the substitution σexe de�ned by
σexe(1) = qf , σexe(2.1) = q0 and σexe(2.2) = q0. The tree t = A 
an be redu
ed to qfand belongs to L(A, σexe(1)). Furthermore t→q0, so t ∈ L(A, σexe(2.1)). Therefore
σexe is A-
ompatible.Example 6.4 Consider the automaton Aexe, the term rewriting system Rexe andthe substitution σexe de�ned in Example 6.3. For σexe, an approximation fun
tion
γexe may be de�ned by:
γexe(l→r, σexe, qf )(ε) = q1, γexe(l→r, σexe, qf )(1) = q0, γexe(l→r, σexe, qf )(2) = q1.To totally de�ne γexe, the other (�nitely many) Aexe-
ompatible substitutions shouldbe 
onsidered too.Example 6.5 [A 
ompletion step℄ Following Example 6.4, ε and 1 are the fun
-tional positions of r = h(A, y). We set q

′ of the de�nition to be equal to qf . Thus
Normγexe

(l → r, σexe, qf ) is of the form {A→q?, h(q?, q??)→qf}. Sin
e for r, the posi-tion 1 is a fun
tional position and 2 is in PosX (r), we use the last line of the de�nitionto 
ompute q?? and q? is de�ned by the approximation fun
tion γexe. Finally weobtain:
Normγexe

(l → r, σexe, qf ) = {r(1)→γexe(1), r(ε)(γexe(1), σexe(1))→qf}

= {A→q0, h(q0, qf )→qf}.Consequently, the tree automaton resulting from a 
ompletion step on Aexe with
γexe and Rexe is Cγ(Aexe) = ({q0, qf},∆exe ∪ {A→q0, h(q0, qf )→qf}, {qf}).Noti
e that a new 
ompletion step 
ould be performed on Cγ(Aexe). However, notransition would be added sin
e no new 
riti
al pair would be dete
ted. So, Cγ(Aexe)is the �x-point automaton. A

ording to Theorem 2.6, every term rea
hable byrewriting from L(Aexe) are in the language of the �x-point automaton.11



Boichut, Ham and Kouchnarenko.7 Example of a Completion Pro
edureIn this se
tion we explain how our approa
h works on a toy example . We do notgive the details of a proto
ol study sin
e involving term rewriting systems are toohuge to be readable.We 
onsider terms de�ned by
• F0 = {0},
• F1 = {Inv, s},
• F2 = {+} and
• Fk≥3 = ∅.In this formalism, the symbol s denotes the su

essor fun
tion. For instan
e,
s(s(s(0))) is the su

essor of the su

essor of the su

essor of 0 and denotes theinteger 3. The operator Inv denotes the inverse (for the addition). For example,
Inv(s(0)) is the inverse of the su

essor of 0 and denotes the integer −1.We use the following term rewriting system to en
ode addition and subtra
tionover Z. To simplify notations, we write (x + y) or x + y for +(x, y).

R = {Inv(Inv(x))→x (1)
x→Inv(Inv(x)) (2)
x + Inv(x)→0 (3)
x + y→y + x (4)
x + (y + z)→(x + y) + z (5)
x + 0→x (6)
x + s(0)→s(x) (7)
s(x)→x + s(0) (8)
Inv(s(x))→Inv(s(s(x))) + s(0)} (9)Noti
e that this term rewriting system is not left-linear (Rule (7)).We are interested in the following problem: given three integers a, b and c, arethere integers λ and µ su
h that

λa + µb = c?A basi
 number theory result states that the answer the previous question is yes ifand only if c is a multiple of the greatest 
ommon divisor of a and b.For instan
e, it is possible for a = 7, b = 3 and c = 15 (sin
e gcd(a, b) = 1). Wemay prove it using the above term rewriting system. Indeed, from s7(0) and s3(0)one 
an rea
h s15(0) using +, Inv and rewriting rules. For example:
s3(0)→12s

2(0) + s(0)→12(s(0) + s(0)) + s(0)12



Boichut, Ham and Kouchnarenko.Consequently
s3(0) + s3(0)→∗

12((s(0) + s(0)) + s(0)) + s3(0)→∗
12,9s

6(0) (10)Similarly one has
(((s7(0) + s7(0)) + s7(0))→12,9s

21(0) (11)Moreover, from (10) one has
Inv(s3(0) + s3(0))→∗

12,9Inv(s6(0))→∗
9,8Inv(s21(0)) + s15(0)Therefore, by (11), one has

(((s7(0)+s7(0))+s7(0))+Inv(s3(0)+s3(0))→∗
8,12,9(s

21(0)+Inv(s21(0)))+s15(0)→7,10s
15(0).Now we prove that the problem has no solution for a = 2, b = 4 and c = 5(this is mathemati
ally trivial, the goal is just to illustrate that it 
an be provedautomati
ally by our over-approximation approa
h).We 
onsider for initial terms the language a

epted by the following tree automa-ton A:

• States are q0, q1, q2, q3, q4, q−2 q−4 and qf ,
• Final states are q2,q−2, q−4, q4, and qf ,
• Transitions are
· 0→q0, s(q0)→q1, s(q1)→q2, s(q2)→q3, s(q3)→q4 (en
odes that s2(0) and s4(0)are initially known),
· Inv(q4)→q−4 (en
odes that one 
an 
ompute the inverse of 4),
· Inv(q2)→q−2 (en
odes that one 
an 
ompute the inverse of 2),
· qf1

+ qf2
→qf for all �nal states qf1

, qf2
, (en
odes that one 
an do the additionof two 
omputed integers terms).We want to prove that s5(0) /∈ R∗(L(A)).We give some details on the �rst 
ompletion step.Rule (5) This rule doesn't provide new transition. Indeed, there is no state q in A su
hthat Inv(Inv(q)) 
an be derived in A to a state.Rule (6) For ea
h state q one has to add the normalisation of the transition Inv(Inv(q))→q.Assume that

γ(Rule(6), {e 7→ q1}, q1)(1) = q3. Then during the 
ompletion step, the normalisation of Inv(Inv(q1))→q1 ensuresthat we add the transitions Inv(q1)→q3 and Inv(q3)→q1. With similar assumptionson γ one adds during the �rst 
ompletion step Inv(q0)→q0, Inv(q−4→q4) and
Inv(q−2)→q2.Rule (7) Sin
e q4 + Inv(q4)→

∗
Aqf , one has to add the transition 0→qf .Rule (8) This rule doesn't provide new transition.13



Boichut, Ham and Kouchnarenko.Rule (9) This rule doesn't provide new transition.Rule (10) This rule doesn't provide new transition.Rule (11) This rule doesn't provide new transition.Rule (12) Sin
e s(q0)→Aq1 and q0 + s(0) 6 →∗
Aq1, one has to add the following transitions(with 
orre
t assumptions on γ) 0→q0, s(q0)→q1 (these two transitions are alreadyin A) and q0+q1→q1. Similarly, one has to add transitions q0+q2→q2, q0+q3→q3,

q0 + q4→q4.Rule (12) Sin
e Inv(s(q1))→
∗
Aq−2 and Inv(s(s(q1))+ s(0)) 6 →∗

Aq−2, one has to add the tran-sitions (with 
orre
t assumption on γ), s(0)→q1, s(q1)→q2, s(q2)→q3, Inv(q3)→q1,
q1 + q1→q2 and Inv(q2)→q−2.Similar 
ompletion steps lead to the following tree automaton B:

• States of B are q−4, q−2, q1, q2, q3, q4 and qf .
• Final states are q2, q4, q−2, q−4 and qf .
• Transitions on 
onstants are 0→q0 and 0→qf .
• Transitions with symbol s are given by the following table:

q0 q1 q2 q3 q4

s q1 q2 q3 q4 q1For instan
e, s(q−2)→q3 is a transition.
• Transitions with symbol Inv are given by the following table:

q−4 q−2 q0 q1 q2 q3 q4 qf

Inv q4 q2 q0 q3 q−2 q1 q−4 qf

• Transitions with symbol + are given by the following table:
+ q−4 q−2 q0 q1 q2 q3 q4 qf

q−4 q−4, qf q−2, qf q−4 q1 q2, qf q3 q0, q4, qf qf

q−2 q−2, qf q0, qf q−2, qf q3 q0, q4, qf q1 q2, qf qf

q0 q−4, qf q−2, qf q0 q1 q2, qf q3 q4, qf ∅

q1 q1 q3 q1 q2, qf q3 q4, q0, qf qf ∅

q2 q2, qf q0, q4, qf q2, qf q3 q4, qf , q0 q1 q2, qf qf

q3 q3 q1 q3 q4, q0, qf q1 q2, qf q3 ∅

q4 q0, q4, qf q2, qf q4, q0, qf q1 q2, qf q3 q4, qf , q0 qf

qf qf qf ∅ ∅ qf ∅ qf qf14



Boichut, Ham and Kouchnarenko.The automaton B is stable by the Cγ 
ompletion. Consequently, it a

epts anover-approximation of rea
hable terms of A by R. Sin
e s5(0) /∈ L(B), its provedthat we may not have λ.2 + µ.4 = 5 with λ, µ ∈ Z.8 Omitted Proof Details8.1 Proof of Lemma 3.1To simplify the notation we denote by ∆1 the set of transitions of the automaton
Cγ(A), ∆0 the set of transitions of A and Q0 the set of states of A.The proof 
onsists of 1) the 
onstru
tion of a term s1 ∈ T (F ,Q) su
h that

t→∗
∆1

s1→Normγ(l→r,σ,q)q, (12)2) the 
onstru
tion, by iterating a ba
kward pro
ess, of a term s ∈ T (F ,Q) su
hthat
t→∗

∆1
s→∗

Normγ(l→r,σ,q)q, and (13)3) the proof that
t→∗

∆0
rσ→∗

Normγ(l→r,σ,q)q. (14)First, using (ii) at the position ε gives
t|ε→

∗
∆1

τ(ε).Sin
e t = t|ε and sin
e τ(ε) = q (by (i)), one has
t→∗

∆1
q.Sin
e t ∈ T (F) one has t 6= q, and every derivation t→∗

∆1
q has the length one, atleast. Consequently, there exists s1 ∈ T (F ,Q) su
h that

t→∗
∆1

s1→∆1
q.We now show by 
ontradi
tion that the transition s1→q /∈ ∆0. Suppose that

s1→q is a transition of ∆0. Then s1 ∈ T (F ,Q0). Thus, using (iii), t→∗
∆0

s1→∆0
q, a
ontradi
tion ( t 6 →∗

∆0
q).Therefore, the transition s1→q is in ∆1 \ ∆0. By de�nition of ∆1 (see De�ni-tion 2.5), there exist q
′ , σ : PosX(l)∗ 7→ Q and l→r ∈ R su
h that s1→Cγ(A)q ∈

Normγ(rσ→q
′
, l→r) and

lσ→∗
∆0

q
′
. (15)Now by de�nitions of Normγ(rσ→q

′
, l→r) and γ, ea
h sour
e state or targetstate of a transition in Normγ(rσ→q

′
, l→r) is either Q \Q0, or is equal to q

′ . Sin
e
s1→Cγ (A)q ∈ Normγ(rσ→q

′
, l→r), either q ∈ Q\Q0, or q = q

′ . Be
ause q ∈ Q0, onehas q = q
′ and

t→∗
∆1

s1→Normγ(l→r,σ,q)q.15



Boichut, Ham and Kouchnarenko.We are done for (12). We now perform an iterative 
onstru
tion. If s1 /∈
T (F ,Q0), then there exists a position p of s1 su
h that s1(p) ∈ Q \ Q0. Thus
s1(p) is of the form s1(p) = γ(l→r, σ, q)(p). Sin
e γ is inje
tive, the only transitionof ∆1 leading to s1(p) is

r(p)(γ(l→r, σ, q)(p.1), . . . , γ(l→r, σ, q)(p.ℓ))→s1(p).Consequently, the derivation t→∗
∆1

s1 has to 
on
lude by
t→∗

∆1
s2→s1where

s2 = s1[r(p)(γ(l→r, σ, q)(p.1), . . . , γ(l→r, σ, q)(p.ℓ))]p.So, one has
t→∗

∆1
s2→Normγ(l→r,σ,q)s1→Normγ(l→r,σ,q)q.Now, if s2 /∈ T (F ,Q0), the same 
onstru
tion 
an be iteratively applied to s2 andso on. Consequently, one 
an build a term s ∈ T (F,Q0) su
h that Pos(s) = Pos(r)and

t→∗
∆1

s→∗
Normγ(l→r,σ,q)q, (16)and for ea
h position p of s su
h that s(p) /∈ Q,

s(p) = r(p). (17)We are done for (13) .We 
an begin the last part of the proof. Let q1, . . . , qn be the states o

urring in
s by reading s from the left to the right. Let p1, . . . , pn be respe
tively the positionsin s of states q1, . . . , qn. Noti
e that the ba
kward 
onstru
tion of s is deterministi
.Indeed every derivation from t to q 
an be split up to

t→∗
∆1

s→∗
Normγ(l→r,σ,q)q.It implies that for ea
h qi, with i = 1, . . . , n, one has

qi = τ(pi). (18)At this stage, s is of the form rσ sin
e γ is de�ned for every position of r.Now using (18) and the hypothesis iii), one has
t→∆0

rσ→∗
Normγ(l→r,σ,q)q.The TRS R being right-linear with NLV (l)∩Var(r) = ∅ for ea
h rule l→r of R,one 
an built a substitution µ : PosX (l) 7→ T (F) su
h that:

• For p ∈ PosVar(r)(l), one 
an set µ(p) = t′ and t′ = t|p′ with p′ ∈ Pos{l|p}(r).Moreover, sin
e l|p /∈ NLV (l), one obtains µ(p) = t′→∗
∆0

σ(p).
• For p ∈ PosVar(l)\Var(r)(l), one 
an pro
eed in the following way:16
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· if l(p) ∈ NLV (l) then one 
an set µ(p′1), . . . , µ(p′1) to t′ where t′ ∈ L(A0, σ(p′1))∩
... ∩ L(A0, σ(p′n)) with {p′1, . . . , p

′
n} = Pos{l(p)}(l).

· Otherwise, one 
an set µ(p) to a term t′ ∈ L(A0, σ(p)).By this way, there exists t0 = lµ ∈ T (F) su
h that t0→
∗
A0

q and t0→Rt, provingthe lemma.8.2 Proof of Theorem 3.2Let Pn be the following proposition:For all t ∈ L(Cγ(A0)), if there exists a fun
tion τ from Pos(t) to Q su
h that τ(ε) =

qf and for all p ∈ Pos(t),
t|p→

∗
Cγ(A0)τ(p) and t[τ(p)]p→

∗
Cγ(A0)qfand su
h that

|{p ∈ Pos(t) | τ(p) ∈ Q0 ∧ t|p 6 →∗
A0

τ(p)}| = n,then t ∈ R∗(L(A0)).We prove that Pn is true for all n ≥ 0 by indu
tion on n. To simplify notations,let
NR(t, τ) = {p ∈ Pos(t) | τ(p) ∈ Q0 and t|p 6 →∗

A0
τ(p)}.

P0 : Assume that t and τ satisfy the hypothesis on P0. We have |NR(t, τ)| = 0. Inparti
ular, ε 6∈ NR(t, τ). So, t = t|ε→A0
τ(ε) = qf . Sin
e A0 and Cγ(A0) have thesame set of �nal states, t ∈ L(A0).

Pn =⇒ Pn+1: Assume that Pn is true for n ≥ 0 and that t and τ satisfy the hypothesis on
Pn+1. Sin
e NR(t, τ) is non-empty, let p be a maximal element of NR(t, τ) (forthe lexi
ographi
al order). Then, by maximality of p, one 
an apply Lemma 3.1to t|p. Thus, there exists t0 ∈ T (F) su
h that t0→

∗
A0

τ(p) and t0→Rtp. Therefore,there exists a fun
tion τ1 from Pos(t0) into Q0 su
h that for all p
′ , t0→

∗
A0

τ1(p
′
),

t[τ1(p
′
)]p′→

∗
Cγ (A0)τ(p). We de�ne the fun
tion τ2 from Pos(t[t0]p) to Q as follows.

· If p is not a pre�x of p
′ , then τ2(p

′
) = τ(p

′
),

· Otherwise, if p
′ is of the form p.u, then τ2(p

′
) = τ1(u).By 
onstru
tion, t[t0]p→Rt and |NR(t[t0]p, τ2)| = n − 1. Thus, by indu
tion,

t ∈ R∗(L(A0)).8.3 Proof of Proposition 3.3By de�nition C
(n+1)
γ (A0) = gγ(C

(n)
γ (A0))). Consequently, the set of transitionsof C(n)

γ (A0) is in
luded in the transitions set of C(n+1)
γ (A0). Thus L(C

(n)
γ (A0)) ⊆

L(C
(n+1)
γ (A0)).Now, using a Lemma 2 of [4℄ leading to Theorem 2.6, one has for all n ≥ 1,

R(L(C(n)
γ (A0))) ⊆ L(C(n+1)

γ (A0)).17



Boichut, Ham and Kouchnarenko.Consequently, by a dire
t indu
tion,
R≤n(L(A0)) ⊆ L(C(n+1)

γ (A0)).It implies that
R∗(L(A0)) ⊆

⋃

n≥0

L(C(n)
γ (A0)).One 
an prove that for all n ∈ N, L(C

(n)
γ (A0)) ⊆ R∗(L(A0)) by a dire
t indu
tionon n using Theorem 3.2, and we are done.9 TA4SP Des
riptionThe TA4SP 4 tool, whose method is detailed in [3℄, is one of the four o�
ial tools of theAVISPA tool-set [1℄. A version of TA4SP without xored extensions is freely availablewithin the AVISPA toolset at http://www.avispa-proje
t.org. The main parti
-ularity of this tool is the ability for verifying se
re
y properties for an unboundednumber of sessions.The stru
ture of the TA4SP tool is detailed in Fig. 1.TA4SP

TIMBUK
IF2TIF

SAFE / FLAWED / DON'T KNOW

IF Spe
i�
ation
tree automaton + se
ret terms+ approximation fun
tion

Figure 1. TA4SP toolThe language IF is a low level spe
i�
ation language automati
ally generated fromthe HLPSL (High Level Proto
ol Spe
i�
ation Language) [7℄ in the AVISPA toolset.The TA4SP tool is made up of:
• IF2TIF, a translator from IF to a spe
i�
ation well-adapted to TIMBUK+, and
• TIMBUK+, 5 a 
olle
tion of tools for a
hieving proofs of rea
hability over term rewrit-ing systems and for manipulating tree automata. This tool has been initially de-
4 A distribution of the TA4SP tool will be soon available at http://www.irisa.fr/lande/boi
hut/ta4sp.html.
5 Timbuk is available at http://www.irisa.fr/lande/genet/timbuk/.18



Boichut, Ham and Kouchnarenko.veloped by Th. Genet (IRISA/ INRIA-Rennes, FRANCE) and enhan
ed in orderto handle our approximation fun
tions.Note that the tool TA4SP may also answer �FLAWED� while performing under-approximations.
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