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Abstract:  

To improve the performance and lifetime of the low temperature polymer electrolyte membrane fuel cell 

(PEMFC) stack, water management is an important issue. This paper aims at developing an online 

diagnostic methodology with the capability of discriminating different degrees of flooding/drying inside the 

fuel cell stack. Electrochemical impedance spectroscopy (EIS) is utilized as a basis tool and a double-fuzzy 

method consisting of fuzzy clustering and fuzzy logic is developed to mine diagnostic rules from the 

experimental data automatically. Through online experimental verification, a high interpretability and 

computational efficiency of the proposed methodology can be achieved. 
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1. Introduction 

Features such as high efficiency, environmental friendliness and high availability rating make fuel cell (FC) 

an attractive power converter for a wide variety of applications ranging from portable and transportation to 

large-scale stationary applications [1]. Among the existing FC technologies, polymer electrolyte membrane 

fuel cell (PEMFC) is considered as a lead candidate for the next generation power sources, considering its 

noteworthy characteristics like low operating temperature (50-100°C), high power density, low weight and 

compactness, fast start-up and suitability for discontinuous operations [1–3]. Invented in the early 1960s by 

Thomas Grubb and Leonard Niedrach from General Electric, PEMFC has not received much attention until 

a couple of decades ago. During this period, remarkable breakthroughs including the introduction of the 

Nafion membrane, platinum-loading improvement and catalyst-ink technique for electrodes have been 

achieved and have promoted its further applications [3]. 

Nevertheless, before its full commercialization, three primary barriers need to be overcome: large supply of 
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high-purity hydrogen, cost reduction and increased durability [1,3]. The traditional way of producing 

hydrogen is still by reforming oil or natural gas today, which causes inevitable greenhouse-gas emissions. 

Water electrolysis using electricity is thus also a research focus. Recent developments include producing 

hydrogen using electricity supplied by wind turbines or photovoltaic panels [1]. For the second barrier, the 

cost of the PEMFC system can be generally divided into two parts: FC cost and auxiliaries cost. According 

to the US Department of Energy (DoE) 2012 report, FC cost has been declined more than 83% since 2002 

and 36% since 2008. In 2012, a cost of 47 $/kW was estimated for 80-kW net PEMFC systems given that 

500,000 units/year are produced [4]. However, compared with traditional internal combustion engine 

systems, the cost is still more than twice even in this favorable estimation [3]. As for the durability, 

although remarkable progresses have been made during the recent years, compared with the DoE 2010 

targets (5,000h for the transportation and 40,000h for stationary power generation), substantial technical 

gaps still exist [5]. A lifetime of 2500h for transportation PEMFC stack was reported in [3].  

In the scope of this study, the last barrier, i.e., durability of the FC system, is the focus. Herein, water 

management inside the PEMFC stack is an important issue in order to improve its performance and lifetime. 

On one hand, proper membrane humidity should be maintained to guarantee good proton conductivity. On 

the other hand, excessive liquid water may block the pores in the catalyst layer or gas diffusion layer and 

lead to a difficult mass transfer process [6]. 

Various methods have been proposed in the literature to detect water behavior inside the FC. One category 

is model-based method, which involves both analytical and black-box models [7]. Hernandez et al. [8] 

developed an electrical equivalent circuit of a PEMFC system based on charge, matter and energy 

conservation laws. A global model was built taking into account of both FC stack and ancillary circuits 

including hydrogen, air, cooling and humidification circuits. The developed model allows the detection of 
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flooding, drying and membrane deterioration through observing the variations of several crucial parameters 

in the circuit. Although a high interpretability and generality can be achieved by this kind of method, 

extensive assumptions, complicated parameter identifications and a high computational cost are required, 

which have limited its further applicability for online diagnosis [9]. In addition, a master of the system 

physical and operational knowledge is essential [7]. Compared with analytical models, black-box ones 

provide an interesting alternative especially in the case of modeling uncertainty or the presence of 

incomplete knowledge in the system [10]. An example of black-box model based on neural network was 

developed in [11]. Two individual Elman recurrent neural networks (ENN) composed of three layers were 

constructed with four inputs (stack current, air inlet flow rate, stack temperature and dew point temperature) 

and two outputs (stack voltage and the cathode pressure drop). Stack voltage was used as the diagnosis 

basis while the pressure drop was employed as a discriminating parameter. Despite the fewer requirements 

of system physical knowledge and higher computational efficiency compared with analytical method, a big 

inconvenience of black-box one exists in its low transparency and poor interpretability for human users. 

Another category for water behavior detection is known as a non-model based method, which is also called 

pattern recognition method in some literature [12]. Compared with model-based one, it is quite promising 

for online applications due to its simplicity and computational efficiency. In [13], the dominant frequency 

of the pressure drop signal was utilized as a diagnostic tool of water behavior in PEMFC. In [14], wavelet 

transform analysis of stack voltage was used for discriminating flooding and non-flooding. However, to our 

best knowledge most of the non-model based methods reported in literature are limited to offline 

application.  

In this paper, a double-fuzzy diagnostic methodology in combination with EIS measurements is proposed 

to monitor water behavior in the PEMFC stack online. It belongs to the category of non-model based 
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method. The meaning of double-fuzzy consists in a fuzzy clustering method for forming data clusters and a 

fuzzy logic approach for decision-making based on the clustering results. To our best knowledge, this work 

is a first attempt to apply a combination of fuzzy logic and fuzzy clustering in the domain of FC online 

diagnosis. The reasons why fuzzy methods are utilized here include: 

(1) The high uncertainty contained in the target problem. The terms such as “severe drying (flooding)”, 

“medium drying (flooding)” and “slight drying (flooding)” are more fuzzy than crisp; In addition, it is 

usually hard to determine the precise boundaries between different classes especially when transitory 

states exist. 

(2) Incomplete human knowledge. Despite the increasing scientific evolution of the FC technology, their 

inherent complexity makes its fault diagnosis a rather difficult task. Indeed, FC systems combine 

knowledge in different areas, such as electrochemistry, thermodynamics, fluid dynamics , electricity, 

etc [8]. To establish a reasonable analytical model of the system, a high degree of knowledge in the 

above areas is required, which makes the task quite complicated. Fuzzy methods provide an interesting 

alternative in the presence of incomplete or ambiguous knowledge about a system. 

(3) The requirement of high interpretability. Interpretability, i.e., easy to read and be understandable by 

human, is a fundamental factor determining the acceptability and the usability of a diagnostic 

methodology for online applications [15]. Fuzzy logic mimics human’s way of reasoning. The use of 

linguistic variables and fuzzy if-then rules greatly facilitates the process of decision making.  

Introduced in 1965 by Pr. Zadeh, fuzzy logic provides a qualitative way to describe system behavior and 

performance using linguistic rather than numerical variables [16]. The use of fuzzy logic greatly improves 

the interpretability of results and facilitates the decision-making process [17]. Existing applications of 

fuzzy logic in FC domain includes system control [18], energy management of hybrid sources [19,20], 
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modeling [10], etc. To construct a fuzzy logic system, a combination of membership functions, fuzzy rules 

and logical operators i.e., AND and OR are employed. Numerical data are converted into linguistic ones 

using membership functions. Then, these membership functions are combined, using rules, to obtain output 

values. Generally, there are two ways to develop fuzzy rules: expert knowledge and automatic learning 

from data [21,22]. The weaknesses of the first kind consist in the limitation of human knowledge in 

complex systems and its disability to discover underlying process phenomena. Inconvenience of the later is 

the large number of rules that may be induced for complex system with a large number of variables. The 

selection of the most influential variables is thus critical to achieve a better interpretability of the rules [21]. 

In this paper, FC diagnosis is treated as a pattern recognition problem. Diagnostic rules are designed by a 

combination of the incomplete human knowledge and automatic learning from experimental data. The 

proposed method has the capabilities of: (1) automatic feature selection, which plays the role of selecting 

the most valuable and discriminant features regarding the target faults; (2) automatic discovery of the 

underlying data structure, which is achieved by an unsupervised classification method (e.g. fuzzy 

clustering); (3) decision-making ability, which relies on the diagnostic rules designed by fuzzy logic. 

The paper is organized as follows: section 2 deals with the description of the experiment platform and the 

configuration of operating conditions. The principle of the double-fuzzy diagnostic methodology is 

introduced in section 3. In the following section, experimental results and corresponding analysis are given. 

Finally, discussions and conclusions are provided. 

2. Experiment description  

2.1 PEMFC system 

A 2kW test bench was built in our laboratory which can configure different operating conditions of a 

PEMFC stack [23]. The system studied in this paper consists in a 20-cell stack with an active surface area 

of 100 cm2. Graphite bipolar plates and a commercial membrane electrode assembly (MEA)-Gore Primea 
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series 5510 are utilized to assemble the PEMFC stack. The characterization of the stack performance was 

done by EIS measurements which were performed through a homemade high-voltage impedance 

spectrometer with a high compliance voltage of ± 700V and maximal current of 450A. Further details about 

the test bench are available in [23]. 

Considering the water management issue, at a certain current level (current density J=0.2A/cm2), the 

influence of five operating factors were investigated, including anodic relative humidity (ha), cathodic 

relative humidity (hc), hydrogen stoichiometry (sc), air stoichiometry (sa) and the stack temperature (T). A 

fractional experimental design has been employed [24] and the configuration of operating conditions is 

shown in Table 1. As can be observed in the table, at least two operating factors are changed simultaneously 

between two adjacent points. Among the sixteen operating conditions, point 6 is set as the reference point 

(healthy, corresponding to nominal operating conditions), with anodic and cathodic humidity of 35% and 

75% respectively, hydrogen and air stoichiometry of 1.8 and 3 respectively, and stack temperature of 80°C. 

Table 1 Configuration of 16 operating conditions (where point 6 is the reference point) 

2.2 EIS technique and considered faults 

This part deals with two points: a brief overview of EIS technique and related fault types in this study.  

A. EIS technique 

EIS technique is proved to be a suitable and powerful tool for PEMFC characterization and diagnosis [5,25]. 

It allows measuring the stack impedance by applying a small sinusoidal current (or potential) signal on the 

stack and measuring the corresponding stack voltage (or current) over a wide frequency range. Impedance 

is thus obtained by dividing the alternating components of the stack voltage and current. It can be 

represented either in the form of real and imaginary parts (Nyquist plot) or in the form of its magnitude and 

phase angle changing along with frequencies (Bode plots). Nyquist plot is the most utilized representation 



7 
 

form, while Bode plots provide additional useful information (explicitly the frequency) which cannot be 

readily obtained from the Nyquist plot [25]. 

As a non-destructive diagnostic tool, EIS applies a small AC signal to the constant stack current or voltage 

without perturbing the system from equilibrium [26]. It provides rich information about the processes and 

mechanisms occurring within the FC. Its capability of differentiating influences of various processes, such 

as charge transfer and mass transport processes, offers a better understanding of the physical phenomena 

occurring inside the FC. Electrochemical parameters such as internal resistance (the high frequency 

intercept of the impedance arc on real axis) and polarization resistance (the low frequency intercept) can be 

directly extracted from EIS and further utilized as health indicators. All these characteristics make it 

promising in FC diagnosis domain. 

Typical applications of EIS in FC domain includes the optimization of the membrane electrode assembly 

(MEA) structure or the optimization of the operating conditions, diagnosis purposes and aging [5,25,26], 

etc. It can also be noticed that EIS can be performed on FC stacks using the power converter, thus requiring 

no additional sensors [27]. 

B. Validity conditions 

Before performing further analysis based on EIS measurement, its validity should be verified at first. 

According to the literature, four mathematical criteria, i.e., linearity, causality, stability and finiteness, must 

be met for a valid EIS measurement [28]. Herein, linearity and stability are highlighted considering their 

importance for EIS implementation. 

(1) Linearity. To respect the linearity condition, the FC stack should work in a linear or quasi-linear 

region. In regard of this, the polarization curve was measured before the implementation of EIS in 

order to determine the linear operating region of the stack. In terms of the impedance, the acquired 

impedance should be irrelevant to the amplitude of the AC perturbation signal. Nevertheless, 
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certain constraints should be met [29,30]. Firstly, the amplitude of the AC signal should be larger 

than the system intrinsic noises to guarantee a good signal-to-noise ratio. Secondly, the amplitude 

should not be so large to disturb the system from equilibrium. Numerous research has been carried 

out to investigate the influence of AC signal’s amplitude on the impedance measurement [29,31]. A 

suggested range for its amplitude in Galvanostatic mode is 5%-10% of the stack DC current. 

(2) Stability. The stability condition requires that the system works in the same stable state before and 

after each EIS measurement. To respect this condition, the FC stack should be brought to a stable 

operating state before starting each measurement. Normally, at least 30 minutes are needed to 

achieve a stable operating state. The EIS measurements should also be stationary, which means it is 

time-independent [28]. This condition can be easily verified by repeating the measurements and 

checking the consistency of the Nyquist plot or Bode plots. In regard of this, each impedance 

measurement under each operating condition in our study was repeated three times. As illustrated 

in Fig.1, good consistencies can be observed on the EIS measurements obtained under both normal 

operating condition (pt6) and an abnormal operating condition (pt1). 

Fig.1. Three EIS measurements under (a) normal operating condition pt6 and (b) abnormal 

operating condition pt1, where “Mes n” represents the nth repetition 

 

C. Considered fault types  

Concerning the water management issue, FC design and the choice of materials play a crucial role [32,33]. 

However, these factors are not in the scope of this study. Considering a given FC stack, operating 

conditions are an important factor which influences greatly the water behavior inside the stack. In this paper, 

five parameters: anodic/cathodic relative humidity, stack temperature and air/hydrogen stoichiometry rates 

are configured with the purpose of introducing flooding and drying out operating conditions into the stack. 

The influence of each parameter and their combination effects have been much studied in the literature 
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[6,33,34]. Table 2 summarizes briefly five possible causes of drying out and flooding. Corresponding 

reflections on the EIS spectrum are also demonstrated. It should be underlined that the influence of each 

operating parameter is often interacting and also depends on the configuration of the other operating 

parameters. 

Table 2 Influences of the operating parameters 

In this study, the considered faults involve different degrees of flooding and drying, including severe, 

medium and slight ones. In order to test the validity of the developed algorithm, experimental data acquired 

at a low current density of 0.2A/cm2 are utilized in section 4 and drying phenomenon is emphasized on. 

3. Fuzzy-rule based classification methodology  

3.1 The proposed diagnostic methodology 

Fig.2 illustrates the main idea of the developed methodology (an example of two-dimensional feature space 

is applied). A fuzzy clustering algorithm is applied to classify inputs and explore the underlying data 

structure, while fuzzy logic is further utilized to develop the diagnostic rules based on the labeled data. This 

also explains the meaning of “double-fuzzy”. The proposed diagnostic methodology initially extracts and 

selects the most valuable features from EIS measurements. Feature space is further constructed where fuzzy 

clustering is performed to obtain different clusters. In the next step, fuzzy rules are then designed based on 

the clustering results with each rule corresponding to one cluster.  

Fig.2. Illustration of the double-fuzzy diagnostic methodology 

Three aspects are concerned herein: (1) how to extract and select features; (2) which kind of fuzzy 

clustering algorithm should be utilized; (3) how to design diagnostic rules based on the labeled clusters. In 

the following subsections, the above aspects are stressed on. 
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3.2 Feature extraction and selection 

Feature extraction and selection are performed in this section with the objectives of: (1) representing the 

original data with a much lower dimensionality; (2) selecting the most relevant and informative features to 

improve the interpretability of the results; (3) reducing the time and space complexity of the developed 

algorithm. 

A. Feature extraction 

Based on EIS measurements, feature extraction can be performed by building an equivalent circuit model 

with its critical parameters as useful features [35], or by establishing a mathematical model which 

approximates the spectrum [12], or directly based on expertise knowledge. Considering online 

implementation, the last method is adopted regarding its less computational effort and high efficiency. 

A typical spectrum consisting of a charge transfer process (high frequency loop) and a mass transport 

process (low frequency loop) is shown in Fig.3. 

Fig.3. Typical spectrum with two frequency loops 

According to the literature, relevant features in the spectrum characterizing health status of the FC stack 

include: (1) Internal resistance (Rin), which indicates the total Ohmic resistances of the FC stack, especially 

the membrane resistance [32,33] and reflects the membrane humidification level; (2) Polarization resistance 

(Rpolar), which is a reflection of the global performance of the FC stack [12,26]; (3) Difference of the 

polarization and internal resistance (Rdif), which corresponds to the width of the spectrum in the real axis 

and is believed to be subjected to the degradation resulting from a loss in the mass transport rate of 

reactants [36]; (4) Maximal absolute phase value (mp) and (5) its occurring frequency (mf), with the former 

related to the degradation of the electrolyte membrane [36] and the occurring frequency proportional to the 

inverse of the time constant of the corresponding process [25]; (6) Maximal magnitude (mm), which is also 
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included considering the case of incomplete spectrum where polarization resistance is not given or is 

difficult to measure [37].  

B. Feature selection 

Features selected according to expertise knowledge may contain high irrelevant and redundant information. 

More specifically, certain features may be irrelevant or less irrelevant to the target faults comparing with 

others; also there may be a high amount of redundant information contained inside the features which 

reduces the algorithm efficiency. 

A main consideration about feature selection is to reserve the physical meaning of each feature in order to 

guarantee the interpretability. Hence, some well-known dimension-reduction methods such as principle 

component analysis (PCA), fisher discriminant analysis (FDA), and independent component analysis (ICA) 

are not applied here [38]. An automatic feature-selection method based on a two-step analysis, i.e., variance 

and correlative coefficient (CC) analysis is therefore developed [39]. Through this step, the dimension of 

the feature space can be determined with a good balance between the informative feature number and the 

computing effort for real-time implementation. 

3.3 FCM initialized by subtractive algorithm 

To design fuzzy rules by automatic learning from data, a fast, efficient and accurate partitioning algorithm 

is essential. Clustering algorithms provide interesting solution as they can easily discover the underlying 

phenomena of the data in the form of clusters. A widely used Fuzzy c-means (FCM) algorithm is 

considered here and further improvements are made based on it. 

According to the literature, the performance of the traditional FCM can be greatly influenced by two factors: 

initial cluster centers or the initial membership values and the number of clusters. Typically, the 

initialization of the centers is set randomly which may increase the times of iterations and convergence. In 
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addition, as FCM depends strongly on initial conditions, the algorithm is easy to trap into local optima and 

may lead to wrong and unstable classification results [40,41]. As for the number of clusters, it can be either 

given by the user according to expertise knowledge or be calculated by validity criteria, like partition 

coefficient (PC), Xie and Beni (XB) (more details in subsection 3.3.3), etc. In systems where expertise 

knowledge is incomplete, the determination of optimal number of clusters should be done automatically. 

An initialized FCM method utilizing subtractive algorithm is developed here with the purposes of 

approximating the initial centers and determining automatically the number of clusters. The first subsection 

gives a brief introduction of the traditional FCM, while the second and the third subsections are devoted to 

the introduction of subtractive algorithm and validity indexes respectively. A diagram is depicted in Fig.4 to 

illustrate the main idea of the initialized FCM algorithm. 

Fig.4. Initialized FCM with subtractive algorithm 

3.3.1. Traditional FCM 

Fuzzy c-means (FCM) clustering is one popular unsupervised algorithm which can be used to organize data 

into different groups based on similarities among the data points. The potential of revealing the underlying 

data structures makes it suitable for applications like pattern recognition, machine learning and image 

processing [42]. Compared with hard clustering methods, FCM allows the data points to belong to several 

clusters simultaneously with membership degrees between 0 and 1, which is more natural. More details 

about the traditional FCM are referred to [43]. 

3.3.2. Subtractive algorithm 

Proposed by Chiu 1994 [44], subtractive algorithm provides an efficient solution to locate initial cluster 

centers that approximate the actual ones. In the first step, each data point is considered as a potential center 

with a potential measure given by: 
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Where Pi is the potential value, ra is a radius defining a neighborhood and ||.|| denotes the standard 

Euclidean distance norm. The influence of a data point decays exponentially with the square of the distance. 

Obviously, the more neighboring data points inside the radius a data point has, the bigger potential value it 

will have. After each point’s potential value is calculated, data point with the highest value will be chosen 

as the first cluster center. 

In the second step, potential values of other data points are revised according to their distances to the first 

cluster center. Let x1* be the first chosen center and P1* be the corresponding potential value. The revised 

formula is defined as: 

�� ← �� � ��∗�
���	
�	�∗��


��                             (2) 

With rb a penalty radius which avoids closely spaced cluster centers. If a data point is near the first cluster 

center, its potential value will be punished and its possibility to be chosen as the second center will be 

greatly reduced. A typical choice of rb is 1.5ra. Among all the revised potential values the data point with 

the biggest potential value will be chosen as the second cluster center. The same process continues until the 

following criteria are satisfied: 

��	��∗ � ����∗,  !�	" !	#�$ �%	�&	'##�( �); 
��	��∗ + �,��∗,  !�	" !	#�$ �%	�&	%�-�# �). 

Where Pk* represents the k th data point to be selected, �� is the acceptance ratio and �, is the rejection 

ratio. For determining the number of clusters, three parameters may have influences and need to be 

specified: ra, �� and �,. In light of this, validity indexes are introduced to provide some criteria for 

determining the optimal values of these parameters. 

3.3.3. Validity indexes 
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Generally, two categories of validity indexes can be summarized: those considering only the compactness 

of each cluster and those taking into account both the compactness and separation of the clusters. Four 

validity indexes are considered in this subsection, including two indexes belonging to the first category, i.e., 

partition coefficient (Vpc) [34] and modified PC (Vmpc) [45], and two others related to the second one, i.e., 

Xie and Beni (XB) [46] and partition index (SC) [47]. For Vpc and Vmpc, a larger value of the measure 

indicates compacter clusters. Meanwhile, for XB and SC, an optimal clustering result is obtained when the 

smallest value is reached. 

For the case of fault diagnosis, a good separation between-class and a high similarity within-class is highly 

desired. As mentioned above, the last two indexes (i.e., XB and SC) consider both the separation among the 

clusters and the compactness of each cluster. Their characteristics correspond well to the context of fault 

diagnosis, and they can be utilized as primary criteria. Meanwhile, the first two indexes focus on the 

compactness of each cluster. They can also be applied here to provide some supplementary references. 

3.4 Mining interpretable diagnostic rules 

As shown in Fig.4, the last phase of the diagnostic methodology deals with mining interpretable fuzzy rules 

based on the clustering results. Generally, a fuzzy logic system consists in four fundamental components 

[48]: 

(1) A rule base of fuzzy rules which describe relationship between inputs and outputs;  

(2) A database defines membership functions for both inputs and outputs; 

(3) A fuzzy inference system which performs inference procedure;  

(4) The fuzzification and defuzzification processes. 

As mentioned in subsection 3.1, fuzzy rules will be designed by automatic learning from data. Through 

performing unsupervised clustering in the former subsection, underlying data structure is discovered and 
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represented in the form of clusters. Each cluster is afterwards labeled as a certain health status of the FC 

stack, according to operating condition and expertise knowledge. In the fuzzy logic system, each fuzzy rule 

is designed corresponding to a cluster. Thus the number of rules equals the number of clusters. 

As for the membership function, a Gaussian function is used for the input variables supposing that data 

points inside each cluster satisfy statistic characteristic [15]. Multidimensional cluster centers V = [v1, v2, …, 

vc] are projected along each dimension i (i = 1, 2, …, n) of the feature space with the k th center fuzzified 

as: 

/�0�1021 � exp	6� 0789:0
11�,0;:0
11� <, k=1,2,…,c                     (3) 

Where wk is the center of the k th membership function, ơk is the corresponding variance, and c is the 

numbers of clusters. In order to determine the values of wk and ơk, a cut-point method in [15] is adopted 

here with cut points (c+1 for each dimension) defined as: 

 �0�1 �
=>
?
>@ 2B� �  �0�1, �C%	" � 0

E:0
1FE:G�0
1
, , �C%	0 + " + #

2H� �  I8�0�1 , �C%	" � #
J                          (4) 

Where mi and Mi are the minimum and maximum values of the i th dimension respectively, and t1
 (i), …, tk 

(i) 

are the cut points of the i th dimension. wk and ơk are further calculated according to the following 

relationships: 

		K�0�1 � 0 �8�0�1 L  �0�11/2                             (5) 

N�0�1 � O:0
1FO:��0
1
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Where � is the maximum overlap of two adjacent fuzzy sets (0.2 in our case). 

As for the fuzzy inference system, there are generally two types: the Mamdani type and the Sugeno type 

[48]. The fundamental difference exists in the way of the outputs’ generation, the former using a given 

defuzzification technique while the latter uses directly the weighted average of the output membership 
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functions (chosen as being singletons) as the defuzzification technique. A zero-order Sugeno model is 

adopted herein considering its easiness and computational efficiency, with the form of: 

If input 1 is A and input 2 is B, then output = P 

Where A and B are fuzzy sets, P is a crisp constant (also called singleton). 

To summarize, mining diagnostic rules consists of three sequential steps: firstly, multidimensional cluster 

centers V = [v1, v2, …, vc] are projected along each dimension i (i = 1, 2, …, n) of the feature space. 

Gaussian membership function is applied to perform the fuzzification of the input variables of each 

dimension. Secondly, crisp outputs are defined by considering Sugeno inference system. Finally, fuzzy 

rules are designed which map the inputs to the outputs in combination with former clustering results. 

4. Experimental description of the methodology and obtained results 

4.1 Feature extraction and selection based on EIS measurements 

A. EIS measurements 

Eight representative stack spectra acquired at a low current density of 0.2 A/cm2 (Istk = 20A) are shown in 

Fig.5 in the form of Nyquist plots. The frequency range of EIS goes from 5 kHz to 0.05Hz with the 

amplitude of the AC signal equal to 7.5% of the stack DC current. The spectra plotted in the figures are 

normalized by dividing the number of cells (20) and then multiplied by the active surface area (100 cm2). 

A low current density is prone to the occurrence of drying out due to the insufficient water generated by the 

oxygen reduction reaction (ORR) process. In this circumstance, operating conditions play a crucial role on 

the hydration state of the FC stack in order to produce different degrees of drying out. 

From an initial observation of Fig.5, there is an obvious difference on the sizes of the two frequency loops 

under sixteen operating conditions. In some spectra, the low frequency loop prevails which corresponds to 

a more difficult mass transport process, e.g. pt1, pt3 and pt9, while in some other spectra the high 
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frequency loop related to the charge transfer process dominates, e.g. pt4, pt10 and pt12.  

Furthermore, an obvious variation on the polarization resistances can be observed in Fig.5, which reveals 

the distinct global performances of the FC stack. In the enlarged region, evident differences among the 

internal resistances can be conceived. This is one of the principle consequences of the drying-out 

phenomenon. Normally, a higher degree of drying out leads to a larger value of internal resistance. Another 

consequence of drying out is reflected on the augmentation of the high frequency loop (from 5 kHz to 10 

Hz), which corresponds to the deceleration of the charge transfer process. Another consequence of the 

drying out is the augmentation of the low frequency loop (from 10 Hz to 0.05 Hz), which is caused by the 

decrease of oxygen reduction kinetics. 

Additionally, certain spectra exhibit high irregularities (e.g. pt1 and 12), particularly at low frequencies (< 1 

Hz) and at high frequencies (between 5 kHz and 2 kHz). The artefacts at the high frequencies are possibly 

caused by the inductive disturbances of the dynamic load [31]. The low-frequency artefacts, however, are 

due to the system short-time instability caused by the current perturbation. 

Fig.5. Nyquist plots under eight representative operating conditions (e.g. pt1 indicates stack spectrum 

under operating condition 1) 

 

Bode plot provides additional information in frequency domain which cannot be easily red from Nyquist 

plot. Fig.6 shows the corresponding Magnitude and Phase plots. An obvious discrimination of maximal 

magnitudes appears in Fig.6 (a), while the occurring frequencies of the maximal phase (mf) are mainly 

divided into two groups with one group between 20 and 40 Hz and the other between 100 and 300 Hz, as 

shown in the Phase plots of Fig.6 (b). Generally, mf is acquired at high frequencies (between 20 Hz and 300 

Hz) in our spectra, meaning that it’s a reflection of the rate of charge transfer process. 

Fig.6. Magnitude and phase plots under eight representative operating conditions 

B. Feature extraction and selection 
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In subsection 3.2, according to the literature, six features related to the health status of the stack are listed 

and in this part they are extracted from the above spectra. Before the two-step analysis, all the features are 

normalized into the range of [0, 1], considering their different units and variation ranges. 

Table 3 shows variance analysis results of each feature. The feature with the maximum variance value is 

considered as the reference feature, i.e., mf. If the variance value is inferior to 50% of the maximum value, 

the corresponding feature is discarded, i.e., mp in our case. The consideration is that representative feature 

under different operating conditions should show sufficient variances; otherwise it could be considered as 

less relevant to the target faults. 

Table 3 Variance value of each feature vector (arranged from largest to smallest) 

 

Afterwards, CCs among all the features are calculated as shown in Table 4 to reflect the redundancy 

contained in the features. As in the first step, mf is chosen as reference feature, its CCs with the others are 

calculated successively. One principle should be followed when performing CC analysis: If CC value 

among two features is higher than a threshold value (0.9 in our case), such as mf and Rin, feature with 

smaller variance value will be eliminated, i.e., Rin in the example. mm and Rdif are also eliminated as they 

have high relevancies with Rpolar, 1.0 and 0.9882 respectively. 

Table 4 Correlative coefficients among the features 

 

According to the automatic feature selection procedure, two features, i.e., mf and Rpolar, are selected. It 

should be noted that Rpolar and mm can be regarded as equivalent herein since their CC value equals 1. 

4.2 Initialized FCM results 

Based on the selected features, a feature space is constructed where FCM is performed to obtain the 

clusters. As indicated in subsection 3.3, in order to initialize the FCM by subtractive algorithm, three 

parameters need to be determined: ra, ��	and �, . The influence of each parameter (with the other 
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parameters fixed) on the clustering performance is studied in this subsection, including ra (0.1-0.9), �� 

(0.4-0.9) and �, (0.15-0.35). An example of studying the influence of ra is shown in Table 5 and Fig.7, 

where Center_n is the corresponding number of clusters, Vpc, Vmpc, XB and SC are the four validity indexes. 

Table 5 Influence of ra ( ra = 0.1-0.9, TU	= 0.5, TV	= 0.15) 

 

 

Fig.7. Influence of ra on the validity indexes 

As summarized in subsection 3.3, XB and SC are taken as primary criteria, while Vpc and Vmpc provide 

supplementary information. It can be discovered that when ra = 0.4, a local minimum value of XB is 

reached which indicates the clusters with both good compactness and separation. SC presents a monotonous 

increasing tendency. Vpc and Vmpc reach local maximum which represents relatively compact clusters. 

Therefore, ra = 0.4 could be considered as an ideal choice. The corresponding number of clusters is 4. 

The influences of �� (ra = 0.4, �, = 0.15) and �, (ra = 0.4, ��	= 0.5) on the validity indexes XB and SC 

are presented in Fig.8. It can be found that the algorithm performance is not so critical on the two 

parameters, since a wide range of the two parameters can give good clustering results. 

 

Fig.8. Influence of WU and WV on the validity indexes XB and SC 

 

Through a detailed study of the three parameters, the optimal clustering results can be obtained when: ra = 

0.4, �� = 0.4-0.9, �,	= 0.05-0.15. In the following part, a combination of ra = 0.4, ��	= 0.5 and �,	= 0.15 

is applied to initialize the FCM algorithm and the clustering results are shown in Fig.9. 

 

Fig.9. Clustering results by initialized FCM (‘+’ indicates the initial cluster centers and filled makers 

are final located centers, letters in the rectangle represents the corresponding cluster) 

As mentioned in section 3.3, the performance of the traditional FCM can be greatly influenced by the 

random initialization. In order to see its performance dependence upon the initialization, the traditional 

FCM is executed 100 times successively. During the 100 executions, three types of clustering results are 
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obtained, named type 1, 2 and 3, as plotted in Fig.10. Among them, type 1 reaches the global minimum 

with an objective function value of 0.177, while the other types achieve local minima (0.261 and 0.262 

respectively), as listed in Table 7. This implies that unstable and wrong clustering results may be obtained 

by the traditional FCM. Hence, it’s quite necessary to perform the initialization of FCM and in such a way 

to ensure the robustness of the algorithm against this step. 

 

Fig.10. Three different clustering results obtained by the traditional FCM (type 1, 2, 3, from left to 

right) 

As it can be observed in Fig.9, initial centers located by subtractive algorithm are quite close to the actual 

ones, which greatly reduce the iteration steps in FCM. As shown in Table 6, clustering results and the 

computational time are recorded for both the traditional FCM and the initialized version during 100 

executions. The percentage in the table represents the proportion of each type of clustering result (i.e., type 

1, 2 and 3) obtained during the 100 executions. It can be observed that compared with the traditional FCM 

algorithm, the initialized version has more stable performance and always achieves the global minimum. 

Additionally, by comparing the average, maximum and minimum time consumed, it seems more 

computationally efficient. 

Table 6 Performance comparison of the traditional FCM and initialized FCM 

 

4.3 Mining interpretable diagnostic rules 

Clustering results provide a knowledge base for diagnostic rules’ design. As shown in Fig.9, four clusters 

are grouped, with 2, 3, 9 and 11 in cluster b, 1 and 4 in cluster c, 10 and 12 in cluster d and the rest of 

operating conditions in cluster a. To design diagnostic rules, each cluster should be labeled in the first step. 

Both the clustering result and the incomplete human knowledge can provide useful information. 

Part of the operating conditions is emphasized on in Table 7. In section 2.2, the influence of each operating 
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parameter is analyzed, including current density, stack temperature, anodic/cathodic relative humidity, and 

anodic/cathodic stoichiometry. According to the former analysis, it could be concluded easily that: 4 > 10; 

12 > 9; 3 > 15, where “>” means drier. Combined with the clustering results, it can be further expressed as: 

c (1, 4) > d (10, 12) > b (9, 11, 2, 3) > a (15, 6, 5, 7, 8, 13, 14, 16).  

Table 7 Observation on the operating conditions (where pt6 is the reference point) 

 

Summarizing the above analysis, the four clusters obtained by initialized FCM algorithm are labeled as: 

a-healthy, b-slight drying, c-severe drying, d-medium drying. This also demonstrates the advantage of 

utilizing fuzzy logic in the case of incomplete human knowledge.  

In the following step, a fuzzy logic system with two input variables (mf and Rpolar) and one output SOH 

(state of health) is developed. Membership functions of the input variables are designed according to 

equations (12-15). An example of input membership function of mf is shown in Fig.11 (a). For each input 

variable, three membership functions are designed, and their values are fuzzified as “small”, “medium” and 

“big”/ “large”. 

A Sugeno type inference system is applied for the output design. Five singletons (0, 0.25, 0.5, 0.75,1) are 

designated for representing different health status of the stack, named “Out of range”, “SevereDrying”, 

“MediumDrying”, “SlightDrying” and “Healthy”, as illustrated in Fig.11(b). A bigger value indicates a 

healthier status of the stack. For instance, “Healthy” corresponds to 1 while “SevereDrying” corresponds to 

0.25. 

Fig.11. Input and output membership functions 

Fuzzy rules which are designed according to the labeled clusters are underlined in Table 8, i.e., rules 1, 2, 6 

and 8. For the region which is not covered by the clusters, “Out of range” is assigned as the consequent of 

the rule. 

Table 8 Fuzzy-rule table 
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Based on the designed fuzzy rules, a diagnostic surface is obtained in Fig.12, with yellow region 

corresponding to the healthy status (approaching 1), the light green region representing slight drying, the 

light blue region in the right side representing medium drying and the blue region in the left side on behalf 

of severe drying. The left regions of the surface are in deep blue and have a value approaching zero, which 

represents regions out of training range. 

Fig.12. Diagnostic surface based on the fuzzy rules 

By performing the developed double fuzzy methodology, a set of fuzzy rules and corresponding diagnostic 

surface can be obtained with a high interpretability. They provide an important knowledge base for further 

online implementation. Additionally, they facilitate a good visualization of the stack health status. This is 

especially advantageous for online health monitoring of the FC stack. 

4.4 Performance evaluation 

In order to evaluate the performance of the developed methodology, 16 EIS measurements obtained under 

different operating conditions are used for off-line training, and another dataset of 16 measurements for 

online testing. A detailed procedure for online testing is drawn in Fig.13. It consists of two steps: feature 

extraction and fuzzy-rule table checking. 

Fig.13. Online testing procedure 

As for the 16-point test, a classification rate of 100% is achieved. Considering the online computational 

efficiency, the consumed time is proportional to the number of rules compared before fitting a rule (O (n)), 

which is quite computationally efficient. 

Portability of the method is verified based on another dataset acquired from a different type of PEMFC 

stack called NEXATM system. Air stoichiometry which may influence the oxygen availability as well as 

membrane humidity was configured with different values. More details about the stack and the 

configuration of operating conditions can be found in [37]. The same feature sets: the occurring frequency 
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of maximal phase and maximal magnitude (equivalent to polarization resistance) are used for the 

construction of feature space. Finally, three kinds of health states, i.e., “high air flow”, “normal” and “air 

starvation”, are classified with success as demonstrated in Fig.14 (a). The corresponding diagnostic surface 

is plotted in Fig.14 (b). 

 

Fig.14. Clustering results based on NEXATM  system (a) and the corresponding diagnostic surface (b) 

 

Conclusions 

In this study, the health state of a PEMFC stack was diagnosed based on a non-model diagnostic 

methodology in combination with the stack EIS spectra. The feasibility and interpretability of the 

methodology has been demonstrated. Several brief conclusions are made as follows: 

(1) The proposed double-fuzzy diagnostic methodology consists of fuzzy clustering and fuzzy 

state-of-health determination, with the former to discover the underlying system phenomena and 

the latter to mine diagnostic rules. The whole procedure can be executed automatically. 

(2) Two features, i.e., occurring frequency of the maximal absolute phase value and polarization 

resistance, are proved to be valuable and beneficial for further fault classification. They are 

extracted directly from EIS measurements and further selected via a two-step analysis called 

variance and correlative coefficient analysis. Feature extraction and selection are performed in 

such a way that the physical meaning of each feature is reserved in order to guarantee the 

interpretability of the later designed fuzzy rules.  

(3) An initialized FCM algorithm utilizing subtractive algorithm is developed. More stable 

performance and higher computational efficiency are reached compared with traditionally used 

FCM. Furthermore, the optimal number of clusters can be set simultaneously. 
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(4) In order to perform fault identification, a two-input and one-output fuzzy logic system is designed 

based on the clustering results. Five health states of the stack are discriminated with easiness. 

(5) Initial experimental results demonstrated the high accuracy rate of the developed methodology. 

Additionally, the methodology has high generalization ability as demonstrated by experimental 

results obtained from another type of PEMFC stack. 

The developed diagnostic methodology is particularly advantageous in the following contexts: (1) Complex 

system with limited human knowledge; (2) A set of unlabeled data or unsupervised classification problem; 

(3) A requirement of high interpretability. 

It should be noted that, since the diagnostic methodology is performed based on the stack impedance 

spectra, it hasn’t the ability to locate the faulty cell in the stack. In the near future, the extensions will be 

made to cover the other kinds of faults as well, e.g. flooding. A more complete diagnostic rule base is 

expected to be established in order to be more powerful for online implementation. Additionally, based on 

the developed fuzzy rules and diagnostic surface, fuzzy control can be further added to take different 

measures according to the current health status of FC stack. 
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Table 1 Configuration of 16 operating conditions (where point 6 is the reference point) 

Point n° ha (%) hc (%) sa sc T (°C) 

1  35 35 1.8 2 80 

2  35 35 1.8 3 60 

3  35 35 3 2 60 

4 35 35 3 3 80 

5 35 75 1.8 2 60 

6 35 75 1.8 3 80 

7 35 75 3 2 80 

8 35 75 3 3 60 

9 75 35 1.8 2 60 

10  75  35  1.8  3  80  

11  75  35  3  2  80  

12  75  35  3  3  60  

13 75 75 1.8 2 80 

14 75 75 1.8 3 60 

15 75 75 3 2 60 

16 75 75 3 3 80 
 

Table1



Table 2 Influences of the operating parameters 

 Possible causes  Drying 

out case 

Flooding 

case 

Possible effects on 

EIS spectrum 

Drying 

out case 

Flooding 

case 

Current density  ↓ ↑ charge/mass transfer 

loop  

↑ ↓ 

internal resistance ↑ ↓ 

Stack 

temperature 

↑ ↓ mass transfer loop ↓ ↑ 

internal resistance ↑ ↓ 

Relative 

humidity 

↓ ↑ charge transfer loop ↓ ↑ 

internal resistance ↑ ↓ 

Anodic 

stoichiometry 

↑ ↓ charge transfer loop ↓ ↑ 

internal resistance ↑ ↓ 

Cathodic 

stoichiometry  

↑ ↓ charge/mass transfer 

loop  

↓ ↑ 

internal resistance ↑ ↓ 

Table2



Table 3 Variance value of each feature vector (arranged from largest to smallest) 

mf Rin Rpolar mm Rdif mp 

0.1297 0.1211 0.0941 0.0941 0.0862 0.0610 

 

Table3



Table 4 Correlative coefficients among the features 

CCs mf Rin Rpolar mm Rdif 

mf 1 0.9107 0.5475 0.5471 0.4208 

Rin 0.9107 1 0.7965 0.7960 0.6945 

Rpolar 0.5475 0.7965 1 1.0000 0.9882 

mm 0.5471 0.7960 1.000 1 0.9883 

Rdif 0.4208 0.6945 0.9882 0.9883 1 

 

Table4



Table 5 Influence of ra ( ra = 0.1-0.9, ��	= 0.5, ��	= 0.15) 

ra 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
Center_n 9 7 5 4 3 3 2 2 2 

Vpc 0.9552 0.9636 0.8897 0.9216 0.9196 0.9196 0.9626 0.9676 0.9676 
Vmpc 0.9495 0.9575 0.8621 0.8955 0.8794 0.8794 0.9252 0.9353 0.9353 
XB 0.0755 0.0675 0.1356 0.0618 0.0959 0.0959 0.0640 0.0651 0.0651 
SC 0.0012 0.0104 0.0261 0.0337 0.0502 0.0850 0.1442 0.1483 0.1483 

 

Table5



Table 6 Performance comparison of the traditional FCM and initialized FCM 

 Type 1 Type 2 Type 3 aveTime (s) maxTime (s) minTime (s) 

Initialized FCM 100% 0 0 0.0010 0.0018 0.0009 

FCM 32% 36% 32% 0.0011 0.0022 0.0008 

Obj.Fun 0.177 0.261 0.262    

 

Table6



Table 7 Observation on the operating conditions (where pt6 is the reference point) 

Point n° h
a
 (%) h

c
 (%) s

a
 s

c
 T (°C) Human knowledge 

4 35 35 3 3 80 4 is more drying than 10 

10 75 35 1.8 3 80 

6 35 75 1.8 3 80 Normal condition 

15 75 75 3 2 60 3 is more drying than 15 

3  35 35 3 2 60 

9 75 35 1.8 2 60 12 is more drying than 9 

12 75 35 3 3 60 

 

Table7



Table 8 Fuzzy-rule table 

1. If (mf is small) and (mm is small) then (SOH is “healthy”) 

2. If (mf is small) and (mm is medium) then (SOH is “SlightDrying”) 

3. If (mf is small) and (mm is large) then (SOH is “Out of range”) 

4. If (mf is medium) and (mm is small) then (SOH is “Out of range”) 

5. If (mf is medium) and (mm is medium) then (SOH is “Out of range”) 

6. If (mf is medium) and (mm is large) then (SOH is “SevereDrying”) 

7. If (mf is big) and (mm is small) then (SOH is “Out of range”) 

8. If (mf is big) and (mm is medium) then (SOH is “MediumDrying”) 

9. If (mf is big) and (mm is large) then (SOH is “Out of range”) 

 

 

Table8



 

Fig.1. Three EIS measurements under (a) normal operating condition pt6 and (b) abnormal operating 

condition pt1, where “Mes n” represents the nth repetition 
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Fig.2. Illustration of the double-fuzzy diagnostic methodology 
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Fig.3. Typical spectrum with two frequency loops 
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Fig.4. Initialized FCM with subtractive algorithm 
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Fig.5. Nyquist plots under eight representative operating conditions (e.g. pt1 indicates stack spectrum 

under operating condition 1) 
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(a) Magnitude plots 

 

(b) Phase plots 

 

Fig.6. Magnitude and phase plots under eight representative operating conditions 
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Fig.7. Influence of ra on the validity indexes  
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Fig.8. Influence of �� and �� on the validity indexes XB and SC 
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Fig.9. Clustering results by initialized FCM (‘+’ indicates the initial cluster centers and filled makers are 

final located centers, letters in the rectangle represents the corresponding cluster) 

 

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
1

2

3

4

5
6

7

8

9

1011

12

13

14

15

16

Frequency of maximal phase (normalized)

P
o
la

ri
za

ti
o
n
 r

es
is

ta
n
ce

 (
n
o
rm

al
iz

ed
)

Initilzed FCM results

 

 

a

b

c

d

Figure9
Click here to download Figure(s): Figure 9_new.docx

http://ees.elsevier.com/power/download.aspx?id=1406509&guid=4172fa72-0193-452f-8e4e-9c246c0d5c19&scheme=1


 

Fig.10. Three different clustering results obtained by the traditional FCM (type 1, 2, 3, from left to right) 
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Fig.11. Input and output membership functions 
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Fig.12. Diagnostic surface based on the fuzzy rules 
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Fig.13. Online testing procedure 
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Fig.14. Clustering results based on NEXA
TM

 system (a) and the corresponding diagnostic surface (b) 
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