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To improve the performance and lifetime of the low teragure polymer electrolyte membrane fuel cell
(PEMFC) stack, water management is an important isEhis. paper aims at developing an online
diagnostic methodology with the capability of discriating different degrees of flooding/drying inside the
fuel cell stack. Electrochemical impedance spectros(B[S) is utilized as a basis tool and a doubleyuzz
method consisting of fuzzy clustering and fuzzy logicdeveloped to mine diagnostic rules from the
experimental data automatically. Through online expemtal verification, a high interpretability and
computational efficiency of the proposed methodolaay loe achieved.
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Features such as high efficiency, environmental frieads and high availability rating make fuel cell (FC)
an attractive power converter for a wide variety gflecations ranging from portable and transportat®mn t
large-scale stationary applications [1]. Among thestaxg FC technologies, polymer electrolyte membrane
fuel cell (PEMFC) is considered as a lead candidatéhie next generation power sources, considering its
noteworthy characteristics like low operating tempeeaf{60-100°C), high power density, low weight and
compactness, fast start-up and suitability for disoanus operations [1-3]. Invented in the early 1980s
Thomas Grubb and Leonard Niedrach from General Ede&EMFC has not received much attention until
a couple of decades ago. During this period, renméeklreakthroughs including the introduction of the
Nafion membrane, platinum-loading improvement andalgst-ink technique for electrodes have been

achieved and have promoted its further applicatiohs [3

Nevertheless, before its full commercialization, thrémary barriers need to be overcome: large supply of
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high-purity hydrogen, cost reduction and increasethldlity [1,3]. The traditional way of producing

hydrogen is still by reforming oil or natural gas todahich causes inevitable greenhouse-gas emissions.

Water electrolysis using electricity is thus also a aede focus. Recent developments include producing

hydrogen using electricity supplied by wind turbilmegphotovoltaic panels [1]. For the second barriex, th

cost of the PEMFC system can be generally dividemtimo parts: FC cost and auxiliaries cost. According

to the US Department of Energy (DoE) 2012 reportcB&t has been declined more than 83% since 2002

and 36% since 2008. In 2012, a cost oftdAV was estimated for 80-kW net PEMFC systems gitian t

500,000 units/year are produced [4]. However, coegbawith traditional internal combustion engine

systems, the cost is still more than twice even in thisréble estimation [3]. As for the durability,

although remarkable progresses have been made dhengecent years, compared with the DoE 2010

targets (5,000h for the transportation and 40,000tstfationary power generation), substantial technical

gaps still exist [5]. A lifetime of 2500h for transpetion PEMFC stack was reported in [3].

In the scope of this study, the last barrier, i.e.ability of the FC system, is the focus. Herein, water

management inside the PEMFC stack is an important issaréler to improve its performance and lifetime.

On one hand, proper membrane humidity should be niaéatdo guarantee gogaoton conductivity. On

the other hand, excessive liquid water may blockptires in the catalyst layer or gas diffusion layer and

lead to a difficult mass transfer process [6].

Various methods have been proposed in the literatudetect water behavior inside the FC. One category

is model-based method, which involves both analyticad black-box models [7]. Hernandez et al. [8]

developed an electrical equivalent circuit of a PEM&tem based on charge, matter and energy

conservation laws. A global model was built takingpiaccount of both FC stack and ancillary circuits

including hydrogen, air, cooling and humidification aits. The developed model allows the detection of



flooding, drying and membrane deterioration throulgbeoving the variations of several crucial parameters
in the circuit. Although a high interpretability anergerality can be achieved by this kind of method,
extensive assumptions, complicated parameter idetitiittsaand a high computational cost are required,
which have limited its further applicability for onéindiagnosis [9]. In addition, a master of the system
physical and operational knowledge is essential C{mpared with analytical models, black-box ones
provide an interesting alternative especially in theecaf modeling uncertainty or the presence of
incomplete knowledge in the system [10]. An examglelack-box model based on neural network was
developed in [11]. Two individual EIman recurrent reguretworks (ENN) composed of three layers were
constructed with four inputs (stack current, air inletvfrate, stack temperature and dew point tempenature
and two outputs (stack voltage and the cathode peesbop). Stack voltage was used as the diagnosis
basis while the pressure drop was employed as drdigating parameter. Despite the fewer requirements
of system physical knowledge and higher computatiefii@iency compared with analytical method, a big
inconvenience of black-box one exists in its low trangpcy and poor interpretability for human users.
Another category for water behavior detection is km@s a non-model based method, which is also called
pattern recognition method in some literature [2}mpared with model-based one, it is quite promising
for online applications due to its simplicity and congtiginal efficiency. In [13], the dominant frequency
of the pressure drop signal was utilized as a diagntsti of water behavior in PEMFC. In [14], wavelet
transform analysis of stack voltage was used farmnating flooding and non-flooding. However, torou
best knowledge most of the non-model based methoplsrteel in literature are limited to offline
application.

In this paper, a double-fuzzy diagnostic methodoleggdmbination with EIS measurements is proposed

to monitor water behavior in the PEMFC stack onlirtebdlongs to the category of non-model based



method. The meaning of double-fuzzy consists in ayfeizstering method for forming data clusters and a
fuzzy logic approach for decision-making basedhtendlustering results. To our best knowledge, thikwo
is a first attempt to apply a combination of fuzzyitognd fuzzy clustering in the domain of FC online
diagnosis. The reasons why fuzzy methods are utilized include:

(1) The high uncertainty contained in the target problehe ferms such as “severe drying (flooding)”,
“medium drying (flooding)” and “slight drying (flood@)” are more fuzzy than crisp; In addition, it is
usually hard to determine the precise boundaries betdiferent classes especially when transitory
states exist.

(2) Incomplete human knowledge. Despite the increasirensfic evolution of the FC technology, their
inherent complexity makes its fault diagnosis a rath#ficult task. Indeed, FC systems combine
knowledge in different areas, such as electrochemitsteymodynamics, fluid dynamics , electricity,
etc [8]. To establish a reasonable analytical maddéhe system, a high degree of knowledge in the
above areas is required, which makes the task quitglicated. Fuzzy methods provide an interesting
alternative in the presence of incomplete or amhigumowledge about a system.

(3) The requirement of high interpretability. Interpretapjlite., easy to read and be understandable by
human, is a fundamental factor determining the acbéipyaand the usability of a diagnostic
methodology for online applications [15]. Fuzzy logigmits human’s way of reasoning. The use of
linguistic variables and fuzzy if-then rules greatlgilitates the process of decision making.

Introduced in 1965 by Pr. Zadeh, fuzzy logic prosidequalitative way to describe system behavior and

performance using linguistic rather than numericalaldes [16]. The use of fuzzy logic greatly improves

the interpretability of results and facilitates thecision-making process [17]. Existing applicatioris o

fuzzy logic in FC domain includes system control [18ergy management of hybrid sources [19,20],



modeling [10], etc. To construct a fuzzy logic syst@ncombination of membership functions, fuzzy rules
and logical operators i.e., AND and OR are employéainerical data are converted into linguistic ones
using membership functions. Then, these membershidifuns are combined, using rules, to obtain output
values. Generally, there are two ways to developyfumies: expert knowledge and automatic learning
from data [21,22]. The weaknesses of the first kindscst in the limitation of human knowledge in
complex systems and its disability to discover undieglyprocess phenomena. Inconvenience of the later is
the large number of rules that may be induced for cexngystem with a large number of variables. The
selection of the most influential variables is thusaal to achieve a better interpretability of the rul2s][

In this paper, FC diagnosis is treated as a pattergmémmn problem. Diagnostic rules are designed by a
combination of the incomplete human knowledge and autortearning from experimental data. The
proposed method has the capabilities of: (1) autonfigdimire selection, which plays the role of selecting
the most valuable and discriminant features regarthiegtarget faults; (2) automatic discovery of the
underlying data structure, which is achieved by wrsupervised classification method (e.g. fuzzy
clustering); (3) decision-making ability, which reli@s the diagnostic rules designed by fuzzy logic.

The paper is organized as follows: section 2 deals thi¢ description of the experiment platform and the
configuration of operating conditions. The principle the double-fuzzy diagnostic methodology is
introduced in section 3. In the following section, expental results and corresponding analysis are given.

Finally, discussions and conclusions are provided.

A 2kW test bench was built in our laboratory which aanfigure different operating conditions of a
PEMFC stack [23]. The system studied in this papasists in a 20-cell stack with an active surfaca are

of 100 cmi. Graphite bipolar plates and a commercial membed@etrode assembly (MEA)-Gore Primea
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series 5510 are utilized to assemble the PEMFC stdek characterization of the stack performance was
done by EIS measurements which were performed throaghomemade high-voltage impedance
spectrometer with a high compliance voltage of £ 7@0d maximal current of 450A. Further details about
the test bench are available in [23].

Considering the water management issue, at a certeient level (current density=0.2A/cnf), the
influence of five operating factors were investaghtincluding anodic relative humidityj, cathodic
relative humidity f;), hydrogen stoichiometrysd), air stoichiometry¢) and the stack temperaturg).(A
fractional experimental design has been employed §2dl] the configuration of operating conditions is
shown in Table 1. As can be observed in the tableaat two operating factors are changed simultaheous
between two adjacent points. Among the sixteen dipgraonditions, point 6 is set as the reference point
(healthy, corresponding to nominal operating condijionéth anodic and cathodic humidity of 35% and

75% respectively, hydrogen and air stoichiometry.8fdhd 3 respectively, and stack temperature of 80°C.

Table 1 Configuration of 16 operating conditions (Were point 6 is the reference point)

This part deals with two points: a brief overview of E#Shnique and related fault types in this study.

A. EIS technique

EIS technique is proved to be a suitable and powtrfliffor PEMFC characterization and diagnosis [5,25].
It allows measuring the stack impedance by applyingal simusoidal current (or potential) signal on the

stack and measuring the corresponding stack voltageurent) over a wide frequency range. Impedance
is thus obtained by dividing the alternating compdsenf the stack voltage and current. It can be
represented either in the form of real and imagipanys (Nyquist plot) or in the form of its magnitudelan

phase angle changing along with frequencies (Bods)plyquist plot is the most utilized representation



form, while Bode plots provide additional usefularhation (explicitly the frequency) which cannot be

readily obtained from the Nyquist plot [25].

As a non-destructive diagnostic tool, EIS applies allsAC signal to the constant stack current or voltage

without perturbing the system from equilibrium [2B]provides rich information about the processes and

mechanisms occurring within the FC. Its capability dfedéntiating influences of various processes, such

as charge transfer and mass transport processess afbetter understanding of the physical phenomena

occurring inside the FC. Electrochemical parameters s@gchnternal resistance (the high frequency

intercept of the impedance arc on real axis) and igaliwn resistance (the low frequency intercept) aan b

directly extracted from EIS and further utilized as Ithedndicators. All these characteristics make it

promising in FC diagnosis domain.

Typical applications of EIS in FC domain includes thé&rojzation of the membrane electrode assembly

(MEA) structure or the optimization of the operating ditions, diagnosis purposes and aging [5,25,26],

etc. It can also be noticed that EIS can be performdestacks using the power converter, thus requiring

no additional sensors [27].
B. Validity conditions

Before performing further analysis based on EIS mmessent, its validity should be verified at first.

According to the literature, four mathematical cider.e., linearity, causality, stability and finitenesgst

be met for a valid EIS measurement [28]. Herein, liteand stability are highlighted considering their

importance for EIS implementation.

(1) Linearity. To respect the linearity condition, the R&ck should work in a linear or quasi-linear

region. In regard of this, the polarization curveswaeasured before the implementation of EIS in

order to determine the linear operating region ofstlaek. In terms of the impedance, the acquired

impedance should be irrelevant to the amplitudehef AC perturbation signal. Nevertheless,
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certain constraints should be met [29,30]. Firstly,ahelitude of the AC signal should be larger
than the system intrinsic noises to guarantee a goodlgigrnoise ratio. Secondly, the amplitude
should not be so large to disturb the system from ibguin. Numerous research has been carried
out to investigate the influence of AC signal’s amplkwh the impedance measurement [29,31]. A
suggested range for its amplitude in Galvanostaticeni®8%-10% of the stack DC current.
Stability. The stability condition requires that thetsys works in the same stable state before and
after each EIS measurement. To respect this conditierk-C stack should be brought to a stable
operating state before starting each measuremenmallgr at least 30 minutes are needed to
achieve a stable operating state. The EIS measurestentkl also be stationary, which means it is
time-independent [28]. This condition can be easdyified by repeating the measurements and
checking the consistency of the Nyquist plot or Bod&splin regard of this, each impedance
measurement under each operating condition in ody stas repeated three times. As illustrated
in Fig.1, good consistencies can be observed oEltBeneasurements obtained under both normal

operating condition (pt6) and an abnormal operatimglition (pt1).

Fig.1. Three EIS measurements under (a) normal opetimg condition pt6 and (b) abnormal

operating condition ptl, where “Mesn” represents the nth repetition

C. Considered fault types

Concerning the water management issue, FC destjtharchoice of materials play a crucial role [32,33].
However, these factors are not in the scope of shisly. Considering a given FC stack, operating
conditions are an important factor which influence=agly the water behavior inside the stack. In thisspap
five parameters: anodic/cathodic relative humiditgckttemperature and air/hydrogen stoichiometry rates
are configured with the purpose of introducing flogdand drying out operating conditions into the stack.

The influence of each parameter and their combinatifects have been much studied in the literature
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[6,33,34]. Table 2 summarizes briefly five possibluses of drying out and flooding. Corresponding
reflections on the EIS spectrum are also demondtrétteshould be underlined that the influence of each
operating parameter is often interacting and alscemigp on the configuration of the other operating

parameters.

Table 2 Influences of the operating parameters
In this study, the considered faults involve différelegrees of flooding and drying, including severe,
medium and slight ones. In order to test the Wglidf the developed algorithm, experimental data aequi

at a low current density of 0.2A/érare utilized in section 4 and drying phenomenaniphasized on.
3. Fuzzy-rule based classification methodology

3.1 The proposed diagnostic methodology
Fig.2 illustrates the main idea of the developed metlogy (an example of two-dimensional feature space
is applied). A fuzzy clustering algorithm is applital classify inputs and explore the underlying data
structure, while fuzzy logic is further utilized towadop the diagnostic rules based on the labeled dhts.
also explains the meaning of “double-fuzzy”. The g diagnostic methodology initially extracts and
selects the most valuable features from EIS measurentadture space is further constructed where fuzzy
clustering is performed to obtain different clustershiatext step, fuzzy rules are then designed based on
the clustering results with each rule correspondirmmn®cluster.

Fig.2. lllustration of the double-fuzzy diagnostic nethodology
Three aspects are concerned herein: (1) how tocexdnad select features; (2) which kind of fuzzy
clustering algorithm should be utilized; (3) how to degigagnostic rules based on the labeled clusters. In

the following subsections, the above aspects are atress



Feature extraction and selection are performed inséision with the objectives of: (1) representing the
original data with a much lower dimensionality; (2)esing the most relevant and informative features to
improve the interpretability of the results; (3) redgcthe time and space complexity of the developed
algorithm.
A. Feature extraction
Based on EIS measurements, feature extraction caeri@med by building an equivalent circuit model
with its critical parameters as useful features [3%],by establishing a mathematical model which
approximates the spectrum [12], or directly based apemtise knowledge. Considering online
implementation, the last method is adopted regardingsgsdemputational effort and high efficiency.
A typical spectrum consisting of a charge transfer medhigh frequency loop) and a mass transport
process (low frequency loop) is shown in Fig.3.

Fig.3. Typical spectrum with two frequency loops

According to the literature, relevant features in thecspim characterizing health status of the FC stack

include: (1)_Internal resistancB{), which indicates the total Ohmic resistances of thestaCk, especially

the membrane resistance [32,33] and reflects thebmaama humidification level; (2) Polarization resistance

(Roolad, Which is a reflection of the global performancetioé FC stack [12,26]; (3) Difference of the

polarization and internal resistand®;{), which corresponds to the width of the spectrurthenreal axis

and is believed to be subjected to the degradatisnlting from a loss in the mass transport rate of

reactants [36]; (4) Maximal absolute phase vaigg @nd (5) its occurring frequenca), with the former

related to the degradation of the electrolyte men#[a6] and the occurring frequency proportional to the

inverse of the time constant of the correspondinggs® [25]; (6) Maximal magnitudenfn), which is also

10



included considering the case of incomplete spectrumarevpolarization resistance is not given or is

difficult to measure [37].

B. Feature selection

Features selected according to expertise knowledgecordain high irrelevant and redundant information.

More specifically, certain features may be irrelevantess irrelevant to the target faults comparing with

others; also there may be a high amount of redundémtmation contained inside the features which

reduces the algorithm efficiency.

A main consideration about feature selection iseterve the physical meaning of each feature in order to

guarantee the interpretability. Hence, some well-knalvnension-reduction methods such as principle

component analysis (PCA), fisher discriminant analfSi3A), and independent component analysis (ICA)

are not applied here [38]. An automatic feature-sieleenethod based on a two-step analysis, i.elanes

and correlative coefficient (CC) analysis is thereforeettped [39]. Through this step, the dimension of

the feature space can be determined with a gooddealzetween the informative feature number and the

computing effort for real-time implementation.

To design fuzzy rules by automatic learning fromagatfast, efficient and accurate partitioning algarith

is essential. Clustering algorithms provide intergssplution as they can easily discover the underlying

phenomena of the data in the form of clusters. Mlelyi used Fuzzy c-means (FCM) algorithm is

considered here and further improvements are maskziban it.

According to the literature, the performance of thditi@nal FCM can be greatly influenced by two factors:

initial cluster centers or the initial membership ueal and the number of clusters. Typically, the

initialization of the centers is set randomly whiohy increase the times of iterations and convergénce.
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addition, as FCM depends strongly on initial conditidhe, algorithm is easy to trap into local optima and

may lead to wrong and unstable classification refltgt1]. As for the number of clusters, it can be eithe

given by the user according to expertise knowledge ocdbeulated by validity criteria, like partition

coefficient PC), Xie and Beni XB) (more details in subsection 3.3.3), etc. In systarhere expertise

knowledge is incomplete, the determination of optimal remalh clusters should be done automatically.

An initialized FCM method utilizing subtractive algorithim developed here with the purposes of

approximating the initial centers and determining auwtiically the number of clusters. The first subsection

gives a brief introduction of the traditional FCM, ilehthe second and the third subsections are devoted

the introduction of subtractive algorithm and validitdexes respectively. A diagram is depicted in Fig.4 to

illustrate the main idea of the initialized FCM algorithm.

Fig.4. Initialized FCM with subtractive algorithm

3.3.1. Traditional FCM

Fuzzy c-means (FCM) clustering is one popular unsiget algorithm which can be used to organize data

into different groups based on similarities amongdat points. The potential of revealing the underlying

data structures makes it suitable for applicatioks pattern recognition, machine learning and image

processing [42]. Compared with hard clustering meth&CM allows the data points to belong to several

clusters simultaneously with membership degrees bet®eand 1, which is more naturdllore details

about the traditional FCM are referred4@].

3.3.2. Subtractive algorithm

Proposed by Chiu 1994 [44], subtractive algorithmvigles an efficient solution to locate initial cluster

centers that approximate the actual ones. In the fagt sach data point is considered as a potential center

with a potential measure given by:
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Where P; is the potential valuer, is a radius defining a neighborhood and ||.|| snthe standard
Euclidean distance norm. The influence of a data mtEnays exponentially with the square of the distance.
Obviously, the more neighboring data points insigertidius a data point has, the bigger potential value i
will have. After each point’'s potential value is edéted, data point with the highest value will be chosen
as the first cluster center.

In the second step, potential values of other daitatpare revised according to their distances to tise fir
cluster center. Let;* be the first chosen center aRgt be the corresponding potential value. The revised

formula is defined as:

2
—4xi—xll

P,«P,—Pie b )

With r, a penalty radius which avoids closely spaced dlgssters. If a data point is near the first cluster
center, its potential value will be punished and its ibdigg to be chosen as the second center will be
greatly reduced. A typical choice ofis 1.5, Among all the revised potential values the data point with
the biggest potential value will be chosen as the secluster center. The same process continues until the
following criteria are satisfied:

if P; > & Pf,the kth center is accepted,;

if Py < &Pf,the kth center is rejected.
WherePy* represents th& th data point to be selected, is the acceptance ratio arg is the rejection
ratio. For determining the number of clusters, thpagameters may have influences and need to be
specified:r,, & and &,. In light of this, validity indexes are introduceéd provide some criteria for
determining the optimal values of these parameters.
3.3.3. Validity indexes
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Generally, two categories of validity indexes can be sarin®d: those considering only the compactness
of each cluster and those taking into account baghcttimpactness and separation of the clusters. Four
validity indexes are considered in this subsectiariuding two indexes belonging to the first categasy, i
partition coefficient ¥,c) [34] and modified PC\(npd [45], and two others related to the second one, i.e.,
Xie and Beni XB) [46] and partition indexSC) [47]. For V,c and Vimpe @ larger value of the measure
indicates compacter clusters. Meanwhile, for XB & an optimal clustering result is obtained when the
smallest value is reached.

For the case of fault diagnosis, a good separatitwelea-class and a high similarity within-class is highly
desired. As mentioned above, the last two indexesXB andSC) consider both the separation among the
clusters and the compactness of each cluster. Themathestics correspond well to the context of fault
diagnosis, and they can be utilized as primary critsviaanwhile, the first two indexes focus on the

compactness of each cluster. They can also be apglieddiprovide some supplementary references.

As shown in Fig.4, the last phase of the diagnostithou®logy deals with mining interpretable fuzzy rules
based on the clustering results. Generally, a fuzgig Isystem consists in four fundamental components
[48]:

(1) Arule base of fuzzy rules which describe relatiopdigtween inputs and outputs;

(2) A database defines membership functions for both sngiodl outputs;

(3) Afuzzy inference system which performs inferenaecpdure;

(4) The fuzzification and defuzzification processes.
As mentioned in subsection 3.1, fuzzy rules will beiglesd by automatic learning from data. Through

performing unsupervised clustering in the formersggkion, underlying data structure is discovered and

14



represented in the form of clusters. Each clustafterwards labeled as a certain health status of Ghe F
stack, according to operating condition and expekimowledge. In the fuzzy logic system, each fuzis ru
is designed corresponding to a cluster. Thus the auoftrules equals the number of clusters.

As for the membership function, a Gaussian functionsed for the input variables supposing that data
points inside each cluster satisfy statistic charactefs]. Multidimensional cluster centeVs= [vy, vy, ...,

v¢] are projected along each dimensian= 1, 2, ...,n) of the feature space with theth center fuzzified

as:

(x— wk

® _
Ak (x) =exp[— 6“))2

9, k=1,2,. 3)
Wherew is the center of th& th membership functionyy is the corresponding variance, ands the
numbers of clusters. In order to determine the vabfieg andoy, a cut-point method in [15] is adopted

here with cut pointscg1 for each dimension) defined as:

@, O
+v"+1 for0<k<c (4)

k 2Mi - tgl_)l,fork =c

((2m; —t® fork =0
L ® !

Wherem andM; are the minimum and maximum values of ittie dimension respectively, atd”, ..., t”
are the cut points of theth dimension.w, andoy are furthercalculated according to the following

relationships:

w = @, +tPy)/2 (5)
. O, ,0
@) _ tp ttly
6" 2\ -2Ilne (6)

Where ¢ is the maximum overlap of two adjacent fuzzy set2 (n our case).

As for the fuzzy inference system, there are genetaib types: the Mamdani type and the Sugeno type

[48]. The fundamental difference exists in the waythef outputs’ generation, the former using a given

defuzzification technique while the latter uses diyethe weighted average of the output membership
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functions (chosen as being singletons) as the déftation technique. A zero-order Sugeno model is
adopted herein considering its easiness and commahééiciency, with the form of:

If input 1 isA and input 2 i8, then output #
WhereA andB are fuzzy set® is a crisp constant (also called singleton).
To summarize, mining diagnostic rules consists of tleexpiential steps: firstly, multidimensional cluster
centersV = [vy, V» ..., V] are projected along each dimensio( = 1, 2, ...,n) of the feature space.
Gaussian membership function is applied to perfore ftiezification of the input variables of each
dimension. Secondly, crisp outputs are defined byideriag Sugeno inference system. Finally, fuzzy

rules are designed which map the inputs to the aaitpuidombination with former clustering results.

A. EIS measurements

Eight representative stack spectra acquired at alovent density of 0.2 A/ch(ls,= 20A) are shown in
Fig.5 in the form of Nyquist plots. The frequency garof EIS goes from 5 kHz to 0.05Hz with the
amplitude of the AC signal equal to 7.5% of the stB¢k current. The spectra plotted in the figures are
normalized by dividing the number of cells (20) and threritiplied by the active surface area (100°cm

A low current density is prone to the occurrencergirg) out due to the insufficient water generatedhsy
oxygen reduction reaction (ORR) process. In this cigtante, operating conditions play a crucial role on
the hydration state of the FC stack in order to peedlifferent degrees of drying out.

From an initial observation of Fig.5, there is an obsidifference on the sizes of the two frequency loops
under sixteen operating conditions. In some spetttealow frequency loop prevails which corresponds to

a more difficult mass transport process, e.g. pt®, and pt9, while in some other spectra the high
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frequency loop related to the charge transfer m®deminates, e.g. pt4, pt10 and pt12.

Furthermore, an obvious variation on the polarizatEsistances can be observed in Fig.5, which reveals
the distinct global performances of the FC stack. i ahlarged region, evident differences among the
internal resistances can be conceived. This is dnéhe principle consequences of the drying-out
phenomenon. Normally, a higher degree of drying caadddo a larger value of internal resistance. Another
consequence of drying out is reflected on the augnientaf the high frequency loop (from 5 kHz to 10
Hz), which corresponds to the deceleration of thargdh transfer process. Another consequence of the
drying out is the augmentation of the low frequencyl¢mom 10 Hz to 0.05 Hz), which is caused by the
decrease of oxygen reduction kinetics.

Additionally, certain spectra exhibit high irregulaegi(e.g. ptl and 12), particularly at low frequengie$

Hz) and at high frequencies (between 5 kHz and 2 KH®. artefacts at the high frequencies are possibly
caused by the inductive disturbances of the dyn#maid [31]. The low-frequency artefacts, howevee ar

due to the system short-time instability caused byctirrent perturbation.

Fig.5. Nyquist plots under eight representative opeting conditions (e.g. ptl indicates stack spectrum
under operating condition 1)

Bode plot provides additional information in frequen@méin which cannot be easily red from Nyquist
plot. Fig.6 shows the corresponding Magnitude and @ pésts. An obvious discrimination of maximal
magnitudes appears in Fig.6 (a), while the occurrieguencies of the maximal phasef)(are mainly
divided into two groups with one group between 20 aéhdH4 and the other between 100 and 300 Hz, as
shown in the Phase plots of Fig.6 (b). Generatfyis acquired at high frequencies (between 20 HZ388d
Hz) in our spectra, meaning that it’s a reflectionhaf rate of charge transfer process.

Fig.6. Magnitude and phase plots under eight represtative operating conditions

B. Feature extraction and selection
17



In subsection 3.2, according to the literature, six featuglased to the health status of the stack are listed
and in this part they are extracted from the abovetspeBefore the two-step analysis, all the features are
normalized into the range of [0, 1], consideringtiifferent units and variation ranges.

Table 3 shows variance analysis results of eachrieafine feature with the maximum variance value is
considered as the reference feature, . |f the variance value is inferior to 50% of theximaum value,

the corresponding feature is discarded, imp.jn our case. The consideration is that representétaerre
under different operating conditions should show sigfficvariances; otherwise it could be considered as

less relevant to the target faults.

Table 3 Variance value of each feature vector (arragied from largest to smallest)

Afterwards, CCs among all the features are calculateghown in Table 4 to reflect the redundancy
contained in the features. As in the first st@pijs chosen as reference feature, its CCs with thestre
calculated successively. One principle should beofi@d when performing CC analysis: If CC value
among two features is higher than a threshold vau@ i6 our case), such a¥ and R, feature with
smaller variance value will be eliminated, iR, in the examplemm andRy; are also eliminated as they

have high relevancies witR,a, 1.0 and 0.9882 respectively.

Table 4 Correlative coefficients among the features

According to the automatic feature selection procediwe, features, i.e.nf and Ry, are selected. It

should be noted th&,.,; andmm can be regarded as equivalent herein since thewali@ equals 1.

Based on the selected features, a feature spacansructed where FCM is performed to obtain the
clusters. As indicated in subsection 3.3, in order tbalire the FCM by subtractive algorithm, three

parameters need to be determineg: e; and &,. The influence of each parameter (with the other
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parameters fixed) on the clustering performanceudiad in this subsection, including (0.1-0.9), &;
(0.4-0.9) ande, (0.15-0.35). An example of studying the influerader, is shown in Table 5 and Fig.7,

where Centem is the corresponding number of clust&fg, Vi, XB andSC are the four validity indexes.

Table 5 Influence ofr, (r,=0.1-0.9,&, = 0.5, £, = 0.15)

Fig.7. Influence ofr, on the validity indexes

As summarized in subsection 3X8 and SC are taken as primary criteria, whit¢. and Vi, provide
supplementary information. It can be discovered thatnafy = 0.4, a local minimum value ofB is
reached which indicates the clusters with both gmodpactness and separati88.presents a monotonous
increasing tendency/,. and Vi, reach local maximum which represents relatively cachgrlusters.
Thereforer, = 0.4 could be considered as an ideal choice cohesponding number of clusters is 4.

The influences ofg; (ra= 0.4, &, = 0.15) andk, (r,= 0.4, &; = 0.5) on the validity indexeXB and SC
are presented in Fig.8. It can be found that theritigo performance is not so critical on the two

parameters, since a wide range of the two paramedergive good clustering results.

Fig.8. Influence of ¢; and €, on the validity indexesXB and SC

Through a detailed study of the three parametersyphimal clustering results can be obtained whgn:
0.4, &; = 0.4-0.9,¢, = 0.05-0.15. In the following part, a combinationrgE 0.4, &; = 0.5 ande, = 0.15

is applied to initialize the FCM algorithm and the clusig results are shown in Fig.9.

Fig.9. Clustering results by initialized FCM (‘+’ indicates the initial cluster centers and filled makers

are final located centers, letters in the rectangle m@esents the corresponding cluster)

As mentioned in section 3.3, the performance of thditional FCM can be greatly influenced by the
random initialization. In order to see its performarependence upon the initialization, the traditional

FCM is executed 100 times successively. During th@ edecutions, three types of clustering results are
19



obtained, named type 1, 2 and 3, as plotted in FigAtibng them, type 1 reaches the global minimum

with an objective function value of 0.177, while tb#her types achieve local minima (0.261 and 0.262

respectively), as listed in Table 7. This implies timagtable and wrong clustering results may be obtained

by the traditional FCM. Hence, it's quite necessarpgddorm the initialization of FCM and in such a way

to ensure the robustness of the algorithm againsstiyis

Fig.10. Three different clustering results obtainedy the traditional FCM (type 1, 2, 3, from left to
right)

As it can be observed in Fig.9, initial centers locdtedubtractive algorithm are quite close to the alctu

ones, which greatly reduce the iteration steps iMF8s shown in Table 6, clustering results and the

computational time are recorded for both the traditidh@M and the initialized version during 100

executions. The percentage in the table represenfsrtiportion of each type of clustering result (iypet

1, 2 and 3) obtained during the 100 executions.rtmobserved that compared with the traditional FCM

algorithm, the initialized version has more stable gremince and always achieves the global minimum.

Additionally, by comparing the average, maximum and imim time consumed, it seems more

computationally efficient.

Table 6 Performance comparison of the traditional F®& and initialized FCM

4.3 Mining interpretable diagnostic rules

Clustering results provide a knowledge base for diagnages’ design. As shown in Fig.9, four clusters

are grouped, with 2, 3, 9 and 11 in clusted and 4 in clustec, 10 and 12 in clusteat and the rest of

operating conditions in clustar To design diagnostic rules, each cluster shouldlmddd in the first step.

Both the clustering result and the incomplete humamiadge can provide useful information.

Part of the operating conditions is emphasized ofabie 7. In section 2.2, the influence of each dpega
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parameter is analyzed, including current density, stiperature, anodic/cathodic relative humidity, and
anodic/cathodic stoichiometry. According to the forraealysis, it could be concluded easily that: 4 > 10;
12 > 9; 3 > 15, where “>" means drier. Combined wlith clustering results, it can be further expressed as:

c(1,4)>d (10, 12) > b (9, 11, 2, 3) > a (15567, 8, 13, 14, 16).

Table 7 Observation on the operating conditions (wher pt6 is the reference point)

Summarizing the above analysis, the four clusters adtany initialized FCM algorithm are labeled as:
a-healthy, b-slight drying, c-severe dryingd-medium drying. This also demonstrates the advantdge
utilizing fuzzy logic in the case of incomplete humanowledge.

In the following step, a fuzzy logic system with twgput variables rff and R,q.) and one output SOH
(state of health) is developed. Membership functiohshe input variables are designed according to
equations (12-15). An example of input membershigtion of mf is shown in Fig.11 (a). For each input
variable, three membership functions are designedireidvalues are fuzzified as “small”, “medium” and
“big”/ “large”.

A Sugeno type inference system is applied for theutudpsign. Five singletons (0, 0.25, 0.5, 0.75r&) a
designated for representing different health stafughe stack, named “Out of range”, “SevereDrying”,
“MediumDrying”, “SlightDrying” and “Healthy”, as illusated in Fig.11(b). A bigger value indicates a
healthier status of the stack. For instance, “Healtlyfesponds to 1 while “SevereDrying” correspomds t

0.25.
Fig.11. Input and output membership functions

Fuzzy rules which are designed according to the ldbgiesters are underlined in Table 8, i.e., rules 8, 2,
and 8. For the region which is not covered by thetetas“Out of range” is assigned as the consequent of

the rule.

Table 8 Fuzzy-rule table
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Based on the designed fuzzy rules, a diagnosticageiris obtained in Fig.12, with yellow region
corresponding to the healthy status (approachingh&)light green region representing slight drying, the
light blue region in the right side representing meddmging and the blue region in the left side on behalf
of severe drying. The left regions of the surfaeeiardeep blue and have a value approaching z&ichw

represents regions out of training range.
Fig.12. Diagnostic surface based on the fuzzy rules

By performing the developed double fuzzy methodglagset of fuzzy rules and corresponding diagnostic
surface can be obtained with a high interpretability.yTr®vide an important knowledge base for further
online implementation. Additionally, they facilitategaod visualization of the stack health status. This is

especially advantageous for online health monitorinh® FC stack.

In order to evaluate the performance of the developethodology, 16 EIS measurements obtained under
different operating conditions are used for off-linaining, and another dataset of 16 measurements for
online testing. A detailed procedure for online testsxgrawn in Fig.13. It consists of two steps: feature

extraction and fuzzy-rule table checking.
Fig.13. Online testing procedure

As for the 16-point test, a classification rate of 203 achieved. Considering the online computational
efficiency, the consumed time is proportional to theber of rules compared before fitting a rule ()),(
which is quite computationally efficient.

Portability of the method is verified based on anotheéas# acquired from a different type of PEMFC
stack called NEXA" system. Air stoichiometry which may influence the/gen availability as well as
membrane humidity was configured with different valuéMore details about the stack and the

configuration of operating conditions can be foun{Bir]. The same feature sets: the occurring frequency
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of maximal phase and maximal magnitude (equivalenpdtarization resistance) are used for the
construction of feature space. Finally, three kindsedith states, i.e., “high air flow”, “normal” and “air
starvation”, are classified with success as demdmsitia Fig.14 (a). The corresponding diagnostic surface

is plotted in Fig.14 (b).

Fig.14. Clustering results based on NEXR" system (a) and the corresponding diagnostic surfa¢b)

In this study, the health state of a PEMFC stack wiagndsed based on a non-model diagnostic
methodology in combination with the stack EIS specirhe feasibility and interpretability of the
methodology has been demonstrated. Several briefugians are made as follows:

(1) The proposed double-fuzzy diagnostic methodology istsf fuzzy clustering and fuzzy
state-of-health determination, with the former tocdiger the underlying system phenomena and
the latter to mine diagnostic rules. The whole pracedan be executed automatically.

(2) Two features, i.e., occurring frequency of the makimdasolute phase value and polarization
resistance, are proved to be valuable and benefwoiafurther fault classification. They are
extracted directly from EIS measurements and fureected via a two-step analysis called
variance and correlative coefficient analysis. Feaexieaction and selection are performed in
such a way that the physical meaning of each fedtumeserved in order to guarantee the
interpretability of the later designed fuzzy rules.

(3) An initialized FCM algorithm utilizing subtractive algonith is developed. More stable
performance and higher computational efficiency @@&ched compared with traditionally used

FCM. Furthermore, the optimal number of clusters loa set simultaneously.
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(4) In order to perform fault identification, a two-inpand one-output fuzzy logic system is designed
based on the clustering results. Five health stdtdse stack are discriminated with easiness.

(5) Initial experimental results demonstrated the highuemry rate of the developed methodology.
Additionally, the methodology has high generalizatioilitgbas demonstrated by experimental
results obtained from another type of PEMFC stack.

The developed diagnostic methodology is particuladyantageous in the following contexts: (1) Complex
system with limited human knowledge; (2) A set of belad data or unsupervised classification problem;
(3) Arequirement of high interpretability.

It should be noted that, since the diagnostic methggols performed based on the stack impedance
spectra, it hasn't the ability to locate the faulgfl én the stack. In the near future, the extensiwilisbe
made to cover the other kinds of faults as well, #apding. A more complete diagnostic rule base is
expected to be established in order to be more polWerfonline implementation. Additionally, based on
the developed fuzzy rules and diagnostic surfagezyf control can be further added to take different

measures according to the current health status ctéaR.

Experiment data from French ANR DIAPASON 1 projed greatly appreciated. The work performed was
done within the European D-CODE project, funded urgiemt Agreement 256673 of the Fuel Cells and
Hydrogen Joint Technology Initiative. This project heesen performed in cooperation with the Labex

ACTION program (contract ANR-11-LABX-01-01).
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Tablel

Table 1 Configuration of 16 operating conditions (where point 6 is the reference point)

Pointn® | h, (%) | he (%) Sa s | T(°C)
1 35 35 18 | 2 80
2 35 35 18 | 3 60
3 35 35 3 2 60
4 35 35 3 3 80
5 35 75 18 | 2 60
6 35 75 18 | 3 80
7 35 75 3 2 80
8 35 75 3 3 60
9 75 35 18 | 2 60

10 75 35 18 | 3 80
11 75 35 3 2 80
12 75 35 3 3 60
13 75 75 18 | 2 80
14 75 75 18 | 3 60
15 75 75 3 2 60
16 75 75 3 3 80




Table2

Table 2 Influences of the operating parameters

Possible causes | Drying | Flooding | Possible effects on Drying | Flooding
out case | case EIS spectrum out case | case

Current density | | 1 charge/mass transfer 1 !

loop

internal resistance 1 l
Stack 1 ! mass transfer loop ! 1
temperature internal resistance 1 !
Relative ! 1 charge transfer loop ! 1
humidity internal resistance 1 l
Anodic 1 ! charge transfer loop ! 1
stoichiometry internal resistance 1 l
Cathodic 1 ! charge/mass transfer ! 1
stoichiometry loop

internal resistance 1 l




Table3

Table 3 Variance value of each feature vector (arranged from largest to smallest)

mf Rin Rpolar mm Rdif mp
0.1297 | 0.1211 | 0.0941 | 0.0941 | 0.0862 | 0.0610




Table4d

Table 4 Correlative coefficients among the features

CCs mf Rin Rpolar mm Ruif

mf 1 0.9107 0.5475 0.5471 0.4208
Rin 0.9107 |1 0.7965 0.7960 0.6945
Rpotar 0.5475 | 0.7965 1 1.0000 0.9882
mm 0.5471 | 0.7960 1.000 1 0.9883
Ruif 0.4208 | 0.6945 0.9882 0.9883 1




Table5

Table5 Influence of ry (r,=0.1-0.9, &, = 0.5, &, = 0.15)

la 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Center n 9 7 5 4 3 3 2 2 2
Ve 0.9552 | 0.9636 | 0.8897 | 0.9216 | 0.9196 | 0.9196 | 0.9626 | 0.9676 | 0.9676
Vinpe 0.9495 | 09575 | 0.8621 | 0.8955 | 0.8794 | 0.8794 | 0.9252 | 0.9353 | 0.9353
XB 0.0755 | 0.0675 | 0.1356 | 0.0618 | 0.0959 | 0.0959 | 0.0640 | 0.0651 | 0.0651
& 0.0012 | 0.0104 | 0.0261 | 0.0337 | 0.0502 | 0.0850 | 0.1442 | 0.1483 | 0.1483




Table6

Table 6 Performance comparison of the traditional FCM and initialized FCM

Typel | Type2 | Type3 | aveTime(s) | maxTime (s) | minTime (s)
Initialized FCM 100% 0 0 0.0010 0.0018 0.0009
FCM 32% 36% 32% 0.0011 0.0022 0.0008
Obj.Fun 0.177 0.261 0.262




Table7

Table 7 Observation on the operating conditions (where pt6 is the reference point)

Point n° h, (%) h_ (%) S, S, T (°C) Human knowledge

4 35 35 3 3 80 4 is more drying than 10
10 75 35 1.8 3 80

6 35 75 1.8 3 80 Normal condition

15 75 75 3 2 60 3 is more drying than 15
3 35 35 3 2 60

9 75 35 1.8 2 60 12 is more drying than 9
12 75 35 3 3 60




Table8

Table 8 Fuzzy-rule table

. If (mf is small) and (mm is small) then (SOH is “healthy™)

. If (mf is small) and (mm is medium) then (SOH is “SlightDrying”)

. If (mf is small) and (mm is large) then (SOH is “Out of range”)

. If (mf is medium) and (mm is small) then (SOH is “Out of range”)

. If (mf is medium) and (mm is medium) then (SOH is “Out of range”)
. If (mf is medium) and (mm is large) then (SOH is “SevereDrying”)

. If (mf is big) and (mm is small) then (SOH is “Out of range”)
. If (mf is big) and (mm is medium) then (SOH is “MediumDrying”)

O N[O 01 &~ W IN |-

. If (mf is big) and (mm is large) then (SOH is “Out of range”)
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Fig.8. Influenceof €; and &, onthevalidity indexes XB and SC
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Fig.9. Clustering results by initialized FCM (‘“+’ indicates the initial cluster centers and filled makers are
final located centers, letters in the rectangle represents the corresponding cluster)
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Fig.10. Three different clustering results obtained by the traditional FCM (type 1, 2, 3, from left to right)
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Fig.11. Input and output membership functions
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Fig.12. Diagnostic surface based on the fuzzy rules
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Fig.13. Online testing procedure
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Fig.14. Clustering results based on NEXA™ system (a) and the corresponding diagnostic surface (b)
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