
Component Simulation-based Substitutivity

Managing QoS and Composition Issues

Pierre-Cyrille Héama,b

Olga Kouchnarenkob

Jérôme Voinotb

a LSV CNRS/INRIA b INRIA/CASSIS and LIFC
ENS Cachan University of Franche-Comté
61 av. du Président Wilson 16 route de Gray
F-94235 Cachan Cedex F-25030 Besançon Cedex
pcheam@lsv.ens-cachan.fr {okouchnarenko,jvoinot}@lifc.univ-fcomte.fr

Abstract

Several scienti�c bottlenecks have been identi�ed in existing component-based approaches.
Among them, we focus on the identi�cation of a relevant abstraction for the component
expression and veri�cation of properties like substitutivity: When is it possible to formally
accept or reject the substitution of a component in a composition? This paper suggests
integer weighted automata to tackle this problem when considering a new factor � Qual-
ity of Service (QoS). Four notions of simulation-based substitutivity managing QoS aspects
are proposed, and related complexity issues on integer weighted automata are investigated.
Furthermore, the paper de�nes composition operators: sequential, strict-sequential and par-
allel compositions, bringing path costs into the analysis. New results on the compatibility
of proposed substitutivity notions w.r.t. sequential and parallel composition operators are
established.

Key words: Substitutivity, Component, Simulation, weighted automata, Quality of
Service1

1. Introduction

This paper is dedicated to the veri�cation of substitutivity of components modelled by
integer weighted automata while considering a new factor � Quality of Service (QoS). In this
context modelling and verifying both functional and non-functional properties is possible.
For these veri�cation problems, we provide new theoretical decidability results. Further-
more, the paper de�nes composition operators: sequential, strict-sequential and parallel
compositions, bringing path costs into the analysis. We point out how compatible proposed
substitutivity notions and sequential and parallel composition operators really are.

Component-based development provides signi�cant advantages � portability, adaptabil-
ity, re-usability, etc. � when developing, e.g., Java Card smart card applications or when
composing Web services within Service Component Architecture (SCA). Several scienti�c
bottlenecks have been identi�ed in existing component-based approaches. Among them,

1This work is partially funded by the French ANR projects ARA COPS and ACI TACOS.

Preprint submitted to Science of Computer Programming March 5, 2010

we focus on the identi�cation of a relevant abstraction for the component expression and
veri�cation. When is it possible to accept or reject the substitution of a component in a
composition? Moreover, with the increasing importance of QoS in the design of component-
oriented applications, like Web services, it is of great interest for users and developers to
be able to determine, possibly dynamically, that a Web service performs the same tasks as
another possibly failing service, with comparable/higher quality.

1.1. Contributions

Most of prior and current works on component and service composition focus on either
the functional aspect or the QoS aspect alone, it is very di�cult to address both. This
paper takes an approach of modelling components and services and QoS descriptions by
integer weighted �nite state automata, and studies the complexity of substitutivity of one
such automaton by another.

More precisely, the present paper makes the following contributions: The �rst contribu-
tion is formal de�nitions of four � (partial) substitutivity and (partial) strong substitutivity
� problems based on a simulation of automata taking path costs into account. For these sub-
stitutivity problems new decision/complexity results for di�erent classes of integer weighted
automata are presented.

The second contribution is formal de�nitions of composition operators: sequential, strict-
sequential and parallel compositions, bringing path costs into the analysis. New results on
the compatibility of proposed substitutivity notions with relation to sequential and parallel
composition operators are established.

The third contribution concerns some practical issues on service and component sub-
stitutivity. We brie�y situate component substitutivity w.r.t. various compositions in the
context of a new type of urban, possibly driverless, vehicles. These examples illustrate
why the topic is very important in practice, especially given the need to bring costs into
consideration.

Notice that the �rst contribution was presented in [HKV08]. The second contribution is
completely new. The third contribution follows and develops the examples in [HKV08].

1.2. Related Work

Weighted automata, trace-equivalence, simulations. Weighted automata � an extension of in-
teger weighted automata � is a formalism widely used in computer science for applications in
images compression [IvR99, KMT04], speech-to-text processing [MPR02, MPR05, BGW01]
or discrete event systems [Gau95]. These large application areas make them intensively
studied from the theoretical point of view [Kro94, Web94, HIJ02, KLMP04]. See [BR88] for
more detail on weighted automata.

To compare processes or components, trace equivalences are in general not expressive
enough and there are stronger equivalence relations permitting to consider deadlocks, live-
locks, branching behaviours, causality, etc. Among them, the strong bisimulation equiva-
lence by Milner [Mil80] and Park [Par81] is widely used in computer science because of its
numerous advantages: It preserves branching behaviours and, consequently, most of the dy-
namic properties; there is a link between the strong bisimulation and modal logics [HM85];
this is a congruence for a number of composition operators, e.g. parallel composition, pre-
�xing by an action, etc. The reader is referred to the survey [vG01] on simulation-preorder
relations.

Bisimulation relations over weighted automata were investigated in [BK03]. In that
paper authors consider that a max/plus automaton simulates another one if it can perform
at the same moment the same action with the same weight. Our main purpose is to handle
QoS aspects which are global notions over components. This is why in our paper, unlike
[BK03], weights are related to successful paths of automata.

2

In the recent survey [tBBG07], the authors pointed out that, let us quote, �automata-
based models are increasingly being used to formally describe, compose, and verify service
compositions�. The role of automata-based analysis is also emphasised in [BABC+09] for
distributed components (Fractal, GCM and ProActive components). The main advantage
of numerous works on component/service composition based on the use of automata or
Labeled Transition Systems (LTSs) (see for instance [FUMK07, MR08]) is that their formal
basis allows automatic tool support. However, extending automata (�nite state automata,
timed automata, I/O automata, team automata, etc.) with costs makes various veri�cation
problems undecidable in general [BBBR07]. In this framework, the present work de�nes four
component/service substitutivity notions based on simulation relations of integer weighted
automata, and provides constructive proofs for deciding substitutivity veri�cation problems
over those automata. Moreover, the article shows that the proposed notions are compatible
with sequential and parallel composition operators which are essential for building new
applications.
Modelling of QoS and of non functional properties of systems. The term non-functional
requirement has been in use for more than 20 years, but there is still no consensus in the
software engineering community on what non-functional requirements are, and on how we
should elicit, document, and validate them [Gli07]. On the other hand, there is a unanimous
consensus that non-functional requirements and properties are important and are critical for
the success of a software development project. Hundreds of works exist based on the well-
known quality models in [MRW77, BBK+78] and those developed since 1977. In all these
works, non-functional requirements and properties are a signi�cant part of the software
quality. A synthesis and a classi�cation of existing requirements for the description of a
component in order to use it in a component-based approach is in [CCH+07].

Within the SCA initiative2, a recent set of speci�cations describes a language-neutral
model for building applications and systems using a Service-Oriented Architecture. SCA is
claimed to be extendable and user friendly with:

• multiple implementation types including Java, C++, BPEL, PHP, Spring, etc.

• multiple bindings including Webservice, JMS, EJB, JSON RPC, etc.

• multiple hosting environments such as Tomcat, Jetty, Geronimo, OSGI, etc.

The policy framework provided with SCA supports speci�cations of constraints, capabilities
and QoS expectations, from component design to concrete deployment.

Recently, minimum-cost delegation in service composition through the integration of
existing services was studied in [GIRS08]. In this work, services are modelled as �nite
state machines augmented with linear counters, and service requirements are speci�ed in
a sequence form. Activity processing costs are integrated into the delegation computation,
and promising polynomial time delegation techniques are developed. The main di�erence
between this study and ours is that our goal is to verify if a service/component can be substi-
tuted by another one w.r.t. sequential and parallel compositions, while theirs is to compute a
way to delegate desired actions to available services. Their automated composition synthesis
task is closely related to planning.
Verifying the substitutivity of components and Web services. There are numerous works
dealing with component substitutivity or interoperability [SCHS07, CVZ07, CHS06, BV06,
Bra03]. Our work is close to that in [CVZ07], where the authors addressed component sub-
stitutability using equivalences between component-interaction automata, which are de�ned

2The �rst o�cial speci�cation of SCA providing hierarchical components is the 1.0 version, published in
march 2007.

3

with respect to a given set of observable labels. In the present work, in addition to a set of
labels, path costs are taken into account when comparing integer weighted automata.

In [BCH05, BCHS07], the authors de�ned three substitutivity notions over interface
automata modelling Web services. First two notions deal with signatures and propositional
constraints on the consistency between various method calls and return values. They are
stateless and cannot be handled in our framework. The third substitutivity notion on
protocol interfaces is based on a simulation relation over labelled transition systems like in
the present paper. It is shown to be polynomial time decidable but it does not manage costs.

Di�erent solutions have been proposed to allow taking QoS into account while specifying
Web services and their compositions [LKD+03, Tia05, d'A06, BRL07, HKV07]. In [HKV07]
the substitutivity problem has been investigated for the trace equivalence over integer
weighted automata.

In [LMW07, SW09] the authors studied the correct interaction between services modelled
by open nets (uncoloured Petri nets with interfaces). The behaviour semantics of a set of
open nets is given by annotated automata. These works on the correct interaction between
services have been mainly inspired by the notion of soundness for work�ow nets [vdA98]. Ex-
tending an annotated automaton with global constraints over its states proposed in [SW09]
gives an operating guideline to characterise all correctly interacting partners of a service.
Then simulation relations are used for deciding service composition and substitutability.

In [LVOS09] the authors compared and evaluated two di�erent Petri net semantics for
BPEL. Both implemented semantics abstract from data (messages and the content of vari-
ables). The properties that can be veri�ed on the resulting models are (based on) sound-
ness [vdA98], relaxed soundness [DvdA04], and also temporal logic properties.

The recent work in [CCSS08] is dedicated to the veri�cation of a dynamic substitutability
problem: can a component replace another component during an execution? The veri�ca-
tion approach is based on recent model-checking techniques. Notice that action costs are
not taken into account in [CCSS08]. In that setting, i.e. without considering costs, their
substitutivity notion is stronger than the notion de�ned in the present paper.

The integration of (abstractions of) QoS properties into component models is sup-
ported several component-based approaches and tools, such as KLAPER [GMRS07], Pal-
ladio [BKR07] and RoboCop [FEHC02]. As these component models do not de�ne any
re�nement notion, they are clearly distinguishable form our work. However, these models
already provide very well validated abstractions on performance. Let us notice that the pro-
tocol for using a component is often context-dependent. It is due to automated component
adaptation and architectural dependency analysis. Parametric contracts [Reu03, RHH05] for
software components allow addressing this aspect and were successfully used for automated
protocol adaptation and quality of service prediction.

Finally, in [MSK05, FM07] authors show how to use automata and concurrent logic to
model component-based systems. In these works, �nite automata are derived from UML
descriptions and synchronisations are performed using interface constraints.

1.3. Layout of the paper

The remainder of the paper is organised as follows. A motivating example is given in
Sect. 2. Section 3 recalls integer weighted automata and de�nes four simulation-oriented
substitutivity notions based on them. The veri�cation issues on components substitutivity
are presented in Sect. 4 and 5. Section 6 puts the substitutivity problems in the composition
context. Section 7 exposes how the theoretical results would be exploited in practice. Finally,
Section 8 concludes and gives some prospectives.

4

start

a b1

b2c

c

start

b1, b2

a

b1c

Figure 1: Components C1 and C2

2. Motivating Example: Localisation Component

This section quickly presents the substitutivity problem on a characteristic example. It
is inspired from a real case study in the land transportation domain.

Context. The TACOS project3 concerns the development of a new type of urban vehicles
with new functionalities and services. The project follows the Cybercar concept, a public
transport system with fully or partially automated driving capabilities, aimed at replacing
the private car. One of the major cornerstones is the development, the validation and the
certi�cation of vehicles, like Cristal or Cycab.

A positioning system is a critical part of a land transportation system. Many position-
ing systems have been proposed over the past few years. Among them, let's quote GPS,
GALILEO or GLONASS positioning systems which belong to the Global Navigation Satel-
lite Systems (GNSS, for short). However, currently only some mobile terminals (laptops,
PDAs, cell phones, etc.) are embedded with GNSS receivers. In addition, positioning sys-
tems are often dedicated to a particular environment; e.g., the GNSS systems generally
do not work indoors. To solve these problems, numerous alternatives relying on di�erent
technologies, have arisen (see [SE06, EFPC04, HNS03, RMG05, OG00] for more details on
issues related to positioning systems).

The present section and Section 7 brie�y describe how such heterogeneous positioning
systems, encapsulated as components, called localisation components, are used together to
provide positioning data satisfying some non functional requirements. Note that positioning
data can be given in di�erent formats. The most used format is the geographic one, like that
usually obtained from a GPS positioning system. But other systems give semantic location
data, like 'You are near the station Place Stanislas'.

In this framework, let us consider the two following positioning components where Wire-
less networks are exploited to extend the use of the GNSS. Their abstract representations
are given by �nite automata in Fig. 1. The question, the positioning component user is
interested in, is: 'When is it possible to accept or reject the substitution of a component by
another component?'

• Component C1 works as follows. Action a encodes that C1 receives a positioning
request; at this stage, C1 performs either only action b1 or both b1 and b2 depending
on the (abstracted) value passed through the a request. The action b1 corresponds to
a geographic location computing where as b2 encodes a semantic location computing.

3The French National Research Agency TACOS project, ANR-06-SETI-017 (http://tacos.loria.fr).

5

start

a|1 b1|2

b2|2c|3
c|3

start

b2|4, b1|1

a|1

b1|1
c|3

Figure 2: Components C3 and C4 with costs

The abstracted value may depend on an environment where the available power or
the power consumption must be taken into account/reduced. For example, once the
geographic location obtained, a vehicle whose available power is not enough to reach
the next station because of a critical environment, must compute semantic location
data to o�er to its passengers. Then C1 performs the action c to acknowledge that its
positioning task is successfully executed.

• Component C2 works similarly but after having done �rst b1, it can perform actions
b1 or b2 as many times as it is required. For example, depending on the speed of the
vehicle, the localisation system must give the position more or less frequently.

Obviously, the C1 component can be functionally substituted by C2. Furthermore, when
considering, e.g., energy costs over components represented by �nite automata C3 and C4
in Fig. 2, the cost of each action is put on each transition.

For both C3 and C4, receiving a positioning request a costs 1 energy unit and performing
c costs 3 energy units. However, for C3 each action b1 and b2 costs 2 energy units. For C4,
performing the b1 action costs only 1 energy unit but all b2 actions cost 4 energy units.
The intuition behind this modelling is as follows. C3 has a low-cache memory allowing it
to locally compute actions b1 and b2. C4 has a high performance low-cache memory that
allows it to locally compute action b1 with a cost of 1 energy unit. C4 also has a local hard
drive that makes b2 computations possible. However, reading and writing on hard drives
has a high energy cost of 4 energy units. In this situation, we do not want to say that C4
can substitute C3 since performing ab1b2c on C3 has the cost of 8 energy units whereas the
same sequence of actions costs 9 energy units on C4.

3. Simulation-based Component Substitutivity

3.1. Theoretical Background

In this paper, Σ denotes a �nite set of actions. We �rst introduce the notion of integer
weighted automata. To simplify the presentation the results are given for integer weighted
automata but can be easily extended to any weights in a semi-ring.

De�nition 1. A �nite integer weighted automaton A over Σ is a quintuplet

A = (Q,Σ, E, I, F)

where Q is the �nite set of states, E ⊆ Q×Σ×Z×Q is the set of transitions, I ⊆ Q is the
set of initial states, and F ⊆ Q is the set of �nal states. Finite integer weighted automata
are often simply called automata in the sequel.

6

1start 2

b, 1

a, 2

a, 1a, 0

3start 5

4start

a, 3
b, 3

b, 4

a, 1

a, 1

Figure 3: Automata Aexe1 and Aexe2

Figure 3 gives two examples of �nite integer weighted automata. Initial states are rep-
resented with an input arrows and �nal states with a double circle.

Notice that there is a restriction on E: for every action a, every pair of states p, q, there

exists in E at most one transition of the form (p, a, c, q), also written p
a,c−→A q. Now we

formally de�ne an execution of a integer weighted automaton and related notions.
A partial execution or a path of a �nite integer weighted automaton A is a sequence

π = (p0, a0, c0, q0), (p1, a1, c1, q1), . . . , (pn, an, cn, qn) of transitions of A such that for every
0 ≤ i < n, qi = pi+1. If we add the conditions: p0 is an initial state, qn is a �nal state, then
we call π an execution or a successful path. The trace/label tr(π) of the (partial) execution
π is the word a0a1 . . . an, and the cost of the (partial) execution π is the sum of the ci's:
costA(π) =

∑n
i=0 ci. For instance, (1, a, 0, 1), (1, a, 0, 1), (1, b, 1, 2), (2, a, 2, 1) is a successful

path of Aexe1, whose trace is aaba and whose weight is 0 + 0 + 1 + 2 = 3.
A state p of a integer weighted automaton is accessible/reachable (resp. co-accessible/co-

reachable) if there exists a path from an initial state to p (resp. from p to a �nal state). For
instance, in the automaton depicted in Fig. 10, the state 2, 3 is not accessible. Basically,
given A, L(A) denotes its set of execution traces.

An automaton is trim if its states are all both accessible and co-accessible. It is well
known that for every automaton A, there exists a trim automaton with the same set of
successful executions. Moreover, computing this trim automaton can be done in polynomial
time. For instance, the trim automaton in Fig. 11 is obtained from the automaton in Fig. 10.

An automaton A is �nitely ambiguous if there exists a positive integer k such that for
every word w there exists at most k successful paths in A labelled by w. For example, the
automaton Aexe2 is �nitely ambiguous whereas the automaton Aexe1 is not: the word banb
is accepted by n di�erent successful paths, depending when the transition from 2 to 1 is
�red.

De�nition 2. Let A1 = (Q1, A,E1, I1, F1) and A2 = (Q2, A,E2, I2, F2) be two automata.
A binary relation �A1,A2⊆ Q1 ×Q2 is a simulation if (p1, p2) ∈�A1,A2 implies, for all a in
A and all c1 in Q,

i) for every q1 ∈ Q1, if (p1, a, c1, q1) ∈ E1 then there exist q2 ∈ Q2 and c2 ∈ Q such that
(p2, a, c2, q2) ∈ E2 and (q1, q2) ∈�A1,A2 , and

ii) if p1 is �nal, then p2 is �nal too.

If there is no ambiguity on A1 and A2, we just say that p2 �- simulates p1, written
p1 � p2, when there is a simulation containing (p1, p2). It is easy to see that the largest
simulation on Q1 ×Q2 exists. To simplify the notations, the largest simulation on Q1 ×Q2

is also denoted by �A1,A2 .

7

The above relation is extended to paths of A1 and A2 in the following way: an execution
π2 of A2 �- simulates an execution π1 of A1 if and only if they have the same label (and
consequently the same length) and for every i, π1[i] � π2[i]. Finally, we write A1 � A2 if
for every co-accessible initial state i1 of A1 there exists an initial state i2 of A2 such that
i1 � i2. For our example in Sect. 2, it is easy to see that C3 � C4.

3.2. Modelling Substitutivity

A problem occurring while managing components/services is to determine that a compo-
nent/service performs the same tasks as another possibly failing service, with comparable or
higher quality. More formally, for two Web services modelled by their integer weighted au-
tomata A1 and A2, the problem is to decide whether A2 can have the same behaviour as A1

with a similar or higher quality. To address this problem, four notions of simulation-based
substitutivity managing QoS aspects are proposed in this section.

The notion of substitutivity means that a service S1 can be substituted by a service S2

if S2 has a way to act as S1 and the cost of this way is comparable or better that the cost in
S1. Intuitively, the substitutivity is an existential notion: for each sequence of actions that
can be done by S1, there exists in S2 an equivalent sequence of actions with a smaller cost.
The notion of strong substitutivity means that a service S1 can be substituted by a service
S2 if S2 has a way to act as S1, and whatever the way chosen by S2 to act as S1 is, its
quality is similar or higher. Intuitively, the strong substitutivity notion requires a stronger
universal quanti�cation ensuring that not only S2 can do better that S1, but that it will
always do better.

Substitutivity Problem
Input: Two automata A1 and A2.
Output: True if for every successful path π1 of A1 there exists a successful path π2 of A2

such that π1 � π2 and costA2(π2) ≤ costA1(π1), false otherwise.

We write A1 v A2 when A1 and A2 satisfy the substitutivity problem.

Strong Substitutivity Problem
Input: Two automata A1 and A2.
Output: True if for every successful path π1 of A1 there exists a successful path π2 of A2

such that π1 � π2 and for every π′2 of A2 such that π1 � π′2, costA2(π′2) ≤ costA1(π1), false
otherwise.

We write A1 vst A2 when A1 and A2 satisfy the strong substitutivity problem.
It is sometime fruitful to compare successful executions costs only on subtraces. This

leads to the following partial substitutivity problems that are similar to the ones above. For
these problems, we want to compare parts of executions, not paths that cannot be related
to a successful path. Consequently, automata are required to be trim, and comparisons are
done for all paths, not only for successful paths.

Partial Substitutivity Problem
Input: Two trim automata A1 and A2.
Output: True if for every path π1 of A1 there exists a path π2 of A2 such that π1 � π2 and
costA2(π2) ≤ costA1(π1), false otherwise.

We note A1 vp A2 when A1 and A2 satisfy the partial substitutivity problem.

8

Partial Strong Substitutivity Problem
Input: Two trim automata A1 and A2.
Output: True if for every path π1 of A1 there exists a path π2 of A2 such that π1 � π2 and
for every π′2 of A2 such that π1 � π′2, costA2(π′2) ≤ costA1(π1), false otherwise.

We write A1 vst
p A2 when A1 and A2 satisfy the partial strong substitutivity problem.

Notice that in the above de�nitions we choose that cost(π2) ≤ cost(π1) modelling that
the lower is the cost the better is the service, what is intuitive for connection time or �nancial
cost. One can give a dual de�nition if the lower is the cost the worse is the service by changing
cost(π2) ≤ cost(π1) into cost(π2) ≥ cost(π1). All notions, algorithms, etc. described in this
paper may be trivially adapted to this dual de�nition. In order to not overload the reader,
we do not consider that case.

We end this section by recalling some results on decision procedures for �nite integer
weighted automata.

Theorem 3. Given two integer weighted automata A1 and A2, it is

• undecidable to test whether for every u ∈ L(A1), costA1(u) ≤ costA2(u) [Kro94]; the
same problem is decidable if A1 and A2 are both �nitely ambiguous [HIJ02, Web94],

• undecidable to test whether for every u ∈ L(A1), there exists an execution π of label u
in A1 such that costA1(π) ≥ 0 (resp. costA1(π) ≤ 0) [Kro94],

• decidable in polynomial time to test whether for every u ∈ L(A1), costA1(u) ≤ costA2(u)
if A1 and A2 are both �nitely ambiguous [HIJ02, Web94],

• decidable in polynomial time to test whether A1 is �nitely ambiguous [WS91].

• PSPACE-complete to decide whether L(A1) ⊆ L(A2) [AHU74, BJ06].

4. Strong Substitutivity Problems

This section provides decidability results for the strong substitutivity and the partial
strong substitutivity problems.

Lemma 4. One has A1 � A2 if and only if for every successful path π1 of A1 there exists
a successful path π2 of A2 such that π1 � π2.

Proof. Assume �rst that for every successful path π1 of A1 there exists a successful
path π2 of A2 such that π1 � π2. Let i1 be a co-accessible state of A1. By de�nition of
co-accessibility, there exists a successful path π1 in A1 starting from i1. By hypothesis, there
exists a successful path π2 of A2 such that π1 � π2. Therefore, π1[1] � π2[1]. But π1[1] = i1
and since π2 is a successful path, π2[1] is an initial state of A2. Consequently, A1 � A2.

Assume now that A1 � A2. Let π1 be a successful path of A1. Since π1[1] is an
initial state and since A1 � A2, there exists an initial state q1 in A2 such that π1[1] � q1.
Therefore, if we denote by (π1[1], a1, c1, π1[2]) the �rst transition of π1, there exists a state
q2 in A2 and d1 ∈ Z, such that (q1, a1, d1, q2) is a transition of A2 and π1[2] � q2. Iterating
this construction, one can, by a direct induction, build a successful path π2 of A2 such that
π1 � π2, which concludes the proof. 2

Theorem 5. The strong substitutivity problem is P-complete.

Proof. Let A1 = (Q1, A,E1, I1, F1) and A2 = (Q2, A,E2, I2, F2) be two automata. We
denote by B the automaton (Q,A,E, I, F) where

9

- Q = {(q1, q2) ∈ Q1 ×Q2 | q1 � q2},

- E = {((p1, p2), a, c, (q1, q2)) | (p1, a, c1, q1) ∈ E1, (p2, a, c2, q2) ∈ E2, c = c1 − c2, a ∈
A},

- I = (I1 × I2) ∩Q and F = (F1 × F2) ∩Q.

We claim that A1 vst A2 if and only if A1 � A2 and for every successful path π of B,
costB(π) ≥ 0.

(⇒) Assume that A1 vst A2. By Lemma 4, for every successful path of A1 there exists an
�-related path in A2. Thus A1 � A2. Consider now a successful path π in B,

π = (p0, a1, α1, p1), (p1, a2, α2, p2) . . . (pn−1, an, αn, pn).

By de�nition of B, there exist p0, p1, . . . , pn states of A1, q0, q1, . . . , qn states of A2,
integers c1, c2, . . . , cn, d1, d2, . . . , dn such that

� π1 = (p0, a1, c1, p1), (p1, a2, c2, p2), . . . , (pn−1, an, cn, pn) is a successful path in
A1,

� π2 = (q0, a1, d1, q1), (q1, a2, d2, q2), . . . , (qn−1, an, dn, qn) is a successful path inA2,

� for every 1 ≤ i ≤ n, αi = ci − di,

� for every 0 ≤ i ≤ n, pi = (pi, qi) and pi � qi.

Thus, one has π1 � π2. Therefore, since A1 and A2 satisfy the strong substitutivity
problem, the following inequality holds:

n∑
i=1

di ≤
n∑

i=1

ci.

Consequently, costB(π) =
n∑

i=1

αi ≥ 0.

(⇐) Assume now that A1 and A2 satisfy A1 � A2 and for every successful path π of B,
costB(π) ≥ 0.

Since A1 � A2, by Lemma 4, for every successful path in A1 there exists a �-related
successful path in A2.

Finally, consider two successful paths

π1 = (p0, a1, c1, p1), (p1, a2, c2, p2), . . . , (pn−1, an, cn, pn)

in A1 and
π2 = (q0, a1, d1, q1), (q1, a2, d2, q2), . . . , (qn−1, an, dn, qn)

in A2 such that π1 � π2.

By de�nition there exists an successful path π in B,

π = (p0, a1, α1, p1), (p1, a2, α2, p2) . . . (pn−1, an, αn, pn).

such that

� for every 1 ≤ i ≤ n, αi = ci − di,

� for every 0 ≤ i ≤ n, pi = (pi, qi) and pi � qi.

10

Moreover, by hypotheses, one has costB(π) ≥ 0:

cost(π) =
n∑

i=1

αi ≥ 0.

Consequently,

n∑
i=1

di ≤
n∑

i=1

ci.

It follows that costA2(π2) ≤ costA1(π1), proving the claim.

Deciding whether A1 � A2 is known to be P-complete [SJ01, SJ05]. Now deciding
whether for every successful path π of B, costB(π) ≥ 0 is a basic polynomial problem on
weighted graphs which can be solved for instance by Bellman-Ford's algorithm.

The P-completeness is trivially obtained using the claim on automata with nil weights
and the P-completeness of testing whether A1 � A2.

2

Theorem 6. The partial strong substitutivity problem is P-complete.

Proof. Let A1 and A2 be two trim automata. Let B be the automaton constructed as
in the proof of Theorem 5. We claim that A1 vst

p A2 if and only if A1 � A2 and if every
transition of B has a positive weight.

The proof is quite similar to the one of Theorem 5: if A1 and A2 satisfy the partial
strong substitutivity problem, then using the property on paths of length 1, each transition
of B has to be positively weighted. Conversely, if every transition of B has a positive weight,
it is clear by a direct induction on paths lengths, that A1 and A2 satisfy the partial strong
substitutivity problem.

The P-completeness is also trivially obtained using the claim on automata with nil
weights and the P-completeness of testing whether A1 � A2.

2

5. Substitutivity Problems

This section provides decidability results for the substitutivity and the partial substitu-
tivity problems.

Theorem 7. The substitutivity problem is polynomial time decidable if A2 is �nitely am-
biguous.

Proof. Let A2 = (Q2,Σ, E2, I2, F2) a �nitely ambiguous integer weighted automaton
and A1 = (Q1,Σ, E1, I1, F1) be a integer weighted automaton. Set A3 = (Q1,Σ × Q1 ×
Q1, E3, I1, F1) and A4 = (Q2,Σ×Q1 ×Q1, E4, I2, F2) where:

• E3 = {(p, [a, p, q], c, q) | (p, a, c, q) ∈ E1},

• E4 = {(p, [a, r, s], c, q) | (p, a, c, q) ∈ E2, ∃x ∈ Z, (r, a, x, s) ∈ E1 , r, s ∈ Q1and r �
p and s � q}.

11

Notice that A3 is unambiguous and that A4 is �nitely ambiguous. Indeed, if u =
[a1, q1, q2][a2, q2, q3] . . . [an, qn, qn+1] is accepted by A3, then there is a unique execution
(q1, a1, c1, q2) . . . (qn, an, cn, qn+1) labelled by u because of restriction on E in Sect. 3. Now
assume that A2 is `-ambiguous and that the word u = [a1, q1, q2][a2, q2, q3] . . . [an, qn, qn+1]
is accepted by A4. Since there are at most ` executions in A2 accepting a1a2 . . . an, there is
at most ` executions in A4 accepting u. Thus A4 is �nitely ambiguous.

Let B = A3× (−A4), where −A4 is obtained from A4 by multiplying the weight of each
transition by −1.

We claim that A1 v A2 if and only if A1 � A2 and for every u ∈ L(B), there exists an
execution π in B such that costB(π) ≥ 0.

(⇒) Assume �rst that A1 v A2. Then A1 � A2. Now let u ∈ L(B).

By de�nition of the product, one also has u ∈ L(A3). Consequently, there exists an
execution π3 in A3 of label u of the form

π3 = (q1, [a1, q1, q2], c1, q2), (q2, [a2, q2, q3], c2, q3) . . . (qn, [an, qn, qn+1], cn, qn+1).

Consequently, by construction of A3,

π1 = (q1, a1, c1, q2), (q2, a2, c2, q3) . . . (qn, an, cn, qn+1)

is an execution in A1.

Since A1 v A2, there exists an execution π2 in A2 of label a1a2 . . . an such that

costA2(π2) ≤ costA1(π1) and π1 � π2. (1)

Set
π2 = (p1, a1, d1, p2), (p2, a2, d2, p3) . . . (pn, an, dn, pn+1).

Now, by construction of A4,

π4 = (p1, [a1, q1, q2], d1, p2), (p2, [a2, q2, q3], d2, p3) . . . (pn, [an, qn, qn+1], dn, pn+1)

is an execution of A4. Since costA2(π2) = costA4(π4) and costA1(π1) = costA3(π3)
and by (1), the execution π in B corresponding to π3 and π4 has label u and a positive
cost.

(⇐) Let assume now that A1 and A2 satisfy A1 � A2 and for every u ∈ L(B), there exists
an execution π in B such that costB(π) ≥ 0.

Let
π1 = (q1, a1, c1, q2), (q2, a2, c2, q3) . . . (qn, an, cn, qn+1)

be an execution of A1. By construction of A3, one has in A3 the following execution

π3 = (q1, [a1, q1, q2], c1, q2), (q2, [a2, q2, q3], c2, q3) . . . (qn, [an, qn, qn+1], cn, qn+1).

Consequently, since A1 � A2, there exists a successful path π4 in A4 such that π3 � π4.
It follows that u = [a1, q1, q2][a2, q2, q3] . . . [an, qn, qn+1] is in L(B). By hypothesis,
there exists an execution π in B of label u such that

costB(π) ≥ 0. (2)

Let π′3 and π
′
4 be the corresponding executions of respectivelyA3 andA4 corresponding

to π. Using (2), one has:
costA4(π′4) ≤ costA3(π′3).

12

Therefore, since A3 is unambiguous, π3 = π′3 and one has:

costA4(π′4) ≤ costA3(π3). (3)

Set

π4 = (p1, [a1, q1, q2], d1, p2), (p2, [a2, q2, q3], d2, p3) . . . (pn, [an, qn, qn+1], dn, pn+1).

By construction of A4, there exists an execution π2 of A2 of the form:

π2 = (p1, a1, d1, p2), (p2, a2, d2, p3) . . . (pn, an, dn, pn+1).

Since costA4(π4) = costA2(π2) and by (3) one has:

costA2(π2) ≤ costA3(π3).

Since by construction π2 � π1, the proof of the claim is completed.

This �nishes the proof of the theorem, the polynomial time decidability resulting from
Theorem 3. 2

Theorem 8. The partial substitutivity problem is decidable in polynomial time.

Proof. Let A1 and A2 be two trim automata. We claim that automata A1 vp A2 if for
every transition (p1, a, c1, q1) of A1 there exists a transition (p2, a, c2, q2) of A2 such that
c2 ≤ c1, p1 � p2 and q1 � q2. Indeed, if A1 vp A2 then, using the property on paths of
length 1, one has the desired result. Conversely, if for every transition (p1, a, c1, q1) of A1

there exists a transition (p2, a, c2, q2) of A2 such that c2 ≤ c1, p1 � p2 and q1 � q2, a direct
induction on paths lengths shows that A1 vp A2.

Computing relation � can be done in polynomial time. Next, it su�ces to check the
above property by a simple walk of the transitions list. 2

6. Substitutivity and Composition

In this section we put the substitutivity problems introduced in this paper in the compo-
sition context. We de�ne three natural composition operators: sequential, strict-sequential
and parallel compositions. To motivate composition operators, let us mention ATP rules
formalising BPEL in [MR08], in discrete-time. Another example comes from applications
where CSP controllers are used for B machines modelling the components. Indeed, in CSP‖B
approach, the CSP sequential and parallel composition operators are allowed [ET07] to con-
trol B machines. A lot of process algebraic approaches allow such composition operators.
In addition to these well-known operators, we consider the strict sequential composition
operator allowing to observe when the control goes from the �rst component to the second
one. This operator is useful, e.g., for the architectural description of the composite Fractal
components [BABC+09]. Notice also that our parallel composition operator is the same as
the operator studied in [CCSS08], but in addition our operator handles action costs.

We demonstrate that considering path costs when verifying simulation relations in a
composition manner, does have a cost: some (but not all) substitutivity notions introduced in
this paper are not compatible with several composition operators. New positive composition
results are also provided.

13

1, 3start 2, 3

b, 1

a, 2

a, 1a, 0

1, 4start 2, 4

a, 1
b, 1

a, 2

a, 0

3 5

4

a, 3
b, 3

b, 4

a, 1

a, 1

a, 3

b, 3

a, 1
b, 4

Figure 4: Automaton Aexe1.Aexe2

6.1. Substitutivity and Sequential Composition

De�nition 9. Let A1 = (Q1, A1, E1, I1, F1) and A2 = (Q2, A2, E2, I2, F2) be two integer
weighted automata. The sequential composition of A1 and A2, denoted A1.A2, is the au-
tomaton A12 = (Q12, A12, E12, I12, F12) where

• Q12 = {(p1, p2) | p1 ∈ Q1, p2 ∈ I2} ∪Q2,

• A12 = A1 ∪A2,

• I12 = {(p1, p2) | p1 ∈ I1, p2 ∈ I2},

• F12 = F2,

and where the transition relation E12 obeys the following rules:

[SEQ1]
p1

a1,c1−→A1 q1
(p1, p2)

a1,c1−→A1.A2 (q1, p2)
[SEQ2]

p2
a2,c2−→A2 q2

(p1, p2)
a2,c2−→A1.A2 q2

p1 ∈ F1

[SEQ3]
p2

a2,c2−→A2 q2
p2

a2,c2−→A1.A2 q2

States of the form (p1, p2), with p1 ∈ Q1 and p2 ∈ Q2 are called composed states.

This de�nition means that all moves of sequential composition are moves of either A1,
or of A2 if A1 is in a �nal state, or of A2 if the state is a non composed one.

Given the two automata Aexe1 and Aexe2 depicted in Fig. 3, their sequential composition
Aexe1.Aexe2 is given in Fig. 4.

Lemma 10. Let A1,A2,A3,A4 be four automata such that there exist two simulation rela-
tions �1 and �2, and A1 �1 A3 and A2 �2 A4. We de�ne the relation R between the states
of A1.A2 and the states of A3.A4 by

• (p1, p2)R(p3, p4) if and only if (p1 �1 p3) and (p2 �2 p4) and,

• p2Rp4 if and only if p2 �2 p4 and,

• there is neither state of the form (p1, p2) related by R to a state of A4, nor state of
A2 related by R to a state of the form (q3, q4).

14

p1 q1
a1, c1

p3 q3

A3A1

a1, c3

≺ ≺

Figure 5: Proof of Lemma 11.

p2 q2
a2, c2

p4 q4

A4A2

a2, c4

≺ ≺

Figure 6: Proof of Lemma 11.

The relation R is a simulation relation.

Proof. Since �nal states of A1.A2 are �nal states of A2 and �nal states of A3.A4 are �nal
states of A4, and by de�nition of R, the relation R satis�es the condition ii) of De�nition 2.

There are three kinds of transitions obeying either the rule [SEQ1], or [SEQ2], or
[SEQ3].

• For non composed states, since every transition from a non composed state of A1.A2

targets, by the rule [SEQ3], a non composed state of A1.A2, the condition i) of
De�nition 2 is satis�ed for states of A2 and A4.

• For composed states, assume that p1 �1 p3 and p2 �2 p4. Two kinds of transitions
can be �red from (p1, p2).

� If there is a transition (p1, a1, c1, q1) in A1, then by [SEQ1] there is a transition
in A1.A2 of the form ((p1, p2), a1, c1, (q1, p2)) (see Fig. 5). Since p1 �1 p3, by
De�nition 2 there is a transition (p3, a1, c3, q3) in A3 such that q1 �1 q3. Thus
(q1, p2)R(q3, p4).

� If there is a transition (p2, a2, c2, q2) in A2, then by [SEQ2] there is a transition
((p1, p2), a2, c2, q2) in A1.A2 (see Fig. 6). Since p2 �2 p4, by De�nition 2 there
is a transition (p4, a2, c4, q4) in A4 such that q2 �2 q4. Therefore q2Rq4, proving
the lemma.

2

Proposition 11. Let A1,A2,A3,A4 be �nite trim automata. If A1 v A3 and A2 v A4

[resp. A1 vp A3 and A2 vp A4], then the pair A1.A2 v A3.A4 [resp. A1.A2 vp A3.A4].

Proof. Let π be a successful path of A1.A2. By de�nition of the sequential product, π
can be decomposed into π = π1, ((p1, p2), a2, c2, q2), π2, where π1 is a path built up using
only composed states, and (p2, a2, c2, q2), π2 is a successful path of A2. Let ϕ be the pro-
jection that maps each transition ((p1, p2), a, c, (q1, q2)) of A1.A2 between composed states

15

−, p2start p1, p2
π1 q2

a2, c2

A2�A1 × {p2}�

π2

p2start p2
ϕ(π1)

q2
a2, c2

A2A1

π2

Figure 7: Proof of Proposition 11.

to (p1, a, c, q1). The function ϕ can be naturally extended to paths. Decompositions are
illustrated in Fig. 7: the �rst line represents the decomposition of π and the second line the
decomposition using ϕ.

By [SEQ1], ϕ(π1) is a successful path of A1. Since A1 v A3, there exists a path π3 of
A3 such that π1 �1 π3 and cost(π3) ≤ cost(π3). Similarly, since A2 v A4, there exists a
path π4 such that ((p2, a2, c2, q2), π2) �2 π4 and cost((p2, a2, c2, q2), π2) ≤ cost(π4). Let q4
be the starting state of π4, pf be the ending state of π3, and k be the length of π3 (which
is also the length of π1). The sequence π

′ of transitions of A3.A4 de�ned by: if i is smaller
than or equal to k, and if the i-th transition of π3 is (ri, ai, ci, ri+1), then the i-th transition
of π′ is ((ri, q4), bi, di, (ri+1, q4)). If i is equal to k + 1, then the i-th transition of π′ is
((pf , q4), a2, c2, q2). For the values of i greater than k + 1, the i-th transition of π′ is the
(i+ k)-th transition of π4. Using [SEQ1], [SEQ2] and [SEQ3], one can easily check that π′

is a successful path of A3.A4 such that that cost(π′) ≤ cost(π). Moreover, by Lemma 10,
π � π′, proving the lemma for the substitutivity problem.

The proof still works for the partial substitutivity problem. 2

Unfortunately, Proposition 11 does not hold for (partial) strong substitutivity problems.
Indeed, let us consider the following four automata:

A1 = ({p1}, {a}, {(p1, a, 1, p1)}, {p1}, {p1}),
A3 = ({q1}, {a}, {(q1, a, 0, q1)}, {q1}, {q1}),
A2 = ({p2}, {a}, {(p2, a, 4, p2)}, {p2}, {p2}),
A4 = ({q2}, {a}, {(q2, a, 3, q2)}, {q2}, {q2}),

Pairs of automata A1,A3 and A2,A4 both trivially satisfy the strong substitutivity
problem and the partial strong substitutivity problems. However, when considering the pair
A1.A2,A3.A4, one has

{((p1, p2), (q1, q2)), ((p1, p2), q2), (p2, q2)} ⊆�A1.A2,A3.A4 .

Consequently,

((p1, p2), a, 1, (p1, p2))((p1, p2), a, 4, p2) � ((q1, q2), a, 3, q2)(q2, a, 3, q2).

But these paths do not satisfy the weight conditions of the strong and the partial strong
substitutivity problems. Intuitively, a sequential composition of automata may create new
ways to perform a sequence of actions: these new ways may have costs that do not ful�l the
universal weight condition required by the strong substitutivity.

16

However, when the automata in the pair have disjoint alphabets, the following composi-
tion result holds.

Proposition 12. Let A1,A2,A3,A4 be �nite trim automata [resp. are �nite trim automata
such that A1.A2 and A3.A4 are both trim] such that A1 and A2 have disjoint alphabets. If
A1 vst A3 and A2 vst A4 [resp. A1 vst

p A3 and A2 vst
p A4], then the pair A1.A2 vst A3.A4

[resp. A1.A2 vst
p A3.A4].

Proof. Assume that A1 vst A3 and A2 vst A4. Let π be a successful path of A1.A2. By
Proposition 11, there exists a successful path of A3.A4 similar to π with a lower cost.

First we claim that the relation R de�ned in Lemma 10 is the largest simulation relation.
Remark that since transitions that can be �red from non composed states of A1.A2 are
exactly the transitions of A2 and since A2 and A1.A2 have the same set of �nal states, if
p2 �A1.A2,A3.A4 p4, then p2 �A2,A4 p4. Now if (p1, p2) �A1.A2,A3.A4 (p3, p4), then p1 �A1,A3

p3 and p2 �A2,A4 p4. For every transition (p2, a3, c3, r2) of A2, there exists a state transition
in A3.A4 from (p3, p4) labelled by a3 to a state related to r2 by �A1.A2,A3.A4 . According to
the assumption on the alphabet, this state, denoted r4, is not a composed state. Therefore
(using the above remark) r2 �A2,A4 r4, proving the claim.

One can now prove the proposition. Consider a path π′ of A3.A4 such that π �
π′. The path π′ can be decomposed into π′ = π3, ((p3, p4), a, c, q4), π4 such that π3 is a
successful path of A3 and ((p3, p4), a, c, q4), π4 is a successfully path of A4. Similarly π
can be decomposed into π = π1, ((p1, p2), b, d, q2), π2 such that π1 is a success-full path
of A1 and ((p1, p2), b, d, q2), π2 is a success-full path of A2. Since π � π′ and by al-
phabet conditions, π1 and π3 have the same length, a = b and, π2 and π4 have the
same length. Now inductively using the claim (resp. the remark) on states of π1 and
π3 (resp. of ((p1, p2), b, d, q2)π2 and ((p3, p4), a, c, q4), π4), one has π1 �A1,A3 π3 (resp.
((p1, p2), b, d, q2), π2 �A2,A4 ((p3, p4), a, c, q4), π4). Since A1 vst A3 and A2 vst A4, one has
cost(π3) ≤ cost(π1) and cost(((p3, p4), a, c, q4), π4) ≤ cost(((p1, p2), b, d, q2), π2). Therefore,
cost(π′) ≤ cost(π), which concludes the proof.

The proof for the strong substitutivity problem is very close to the above proof. 2

Let us consider a variant of the sequential composition of automata, called the strict
sequential product, where additional transitions with a special label are introduced. This
label allows one to identify parts of a path w.r.t. composed automata.

De�nition 13. Let A1 = (Q1, A1, E1, I1, F1) and A2 = (Q2, A2, E2, I2, F2) be two integer
weighted automata. The strict sequential composition of A1 and A2, denoted A1 → A2, is
the automaton A12 = (Q1 ∪Q2, A1 ∪A2 ∪ {δ}, E1 ∪E2 ∪E12, I1, F2) where δ /∈ A1 ∪A2 and
E12 = {(p, δ, 0, q) | p ∈ F1, q ∈ I2}.

For our running automata Aexe1 and Aexe2 in Fig. 3, their strict sequential product
Aexe1 → Aexe2 is depicted in Fig. 8.

Proposition 14. Let A1,A2,A3,A4 be �nite trim automata. If A1 v A3 and A2 v A4

[resp. A1 vp A3 and A2 v A4] [resp. A1 vst A3 and A2 vst A4] [resp. A1 vst
p A3

and A2 vst A4] , then A1 → A2 v A3 → A4 [resp.A1 → A2 vp A3 → A4] [resp.
A1 → A2 vst A3 → A4] [resp. A1 → A2 vst

p A3 → A4] .

Proof. The relation R between states of A1 → A2 and states of A3 → A4 is de�ned as
follows: pRq if and only if either p is a state of A1 and q a state of A3 and p �A1,A3 q, or p
is a state of A2 and q a state of A4 and p �A2,A4 q. One can easily check (as for Lemma 10)
that R is a simulation relation.

The proof is structured as follows: �rstly, (part 1), we prove the proposition for the
substitutivity problem. Secondly, (part 2), we show that R is the largest simulation relation

17

1start 2

b, 1

a, 2

a, 0

3 5

4

a, 3
b, 3

b, 4

a, 1

a, 1

δ, 0

δ, 0

a, 1

Figure 8: Automaton Aexe1 → Aexe2

between A1 → A2 and A3 → A4. This leads to the �nal third step (part 3), where we prove
the proposition for the strong substitutivity problem. Proofs for partial (strong) substitu-
tivity problems are very similar and left to the reader. Notice that since A1,A2,A3,A4 are
�nite trim automata, so are A1 → A2 and A3 → A4.

(Part 1):
Let π be a successful path in A1 → A2. By construction of A1 → A2, π can be decomposed
into π1, (p1, δ, p2), π2, where π1 is a successful path of A1, π2 is a successful path of A2, p1

is a �nal state of A1 and p2 an initial state of A2.
Assume that A1 v A3 and A2 v A4, then there exist successful paths π3 of A3 and π4

of A4 such that π1 �A1,A3 π2, π3 �A3,A4 π4, cost(π3) ≤ cost(π1) and cost(π4) ≤ cost(π2).
Let p3 be the ending state of π3, and p4 the starting state of p4. Since π3 is a success-
ful path in A3, p3 is a �nal state of A3. Similarly, p4 is an initial state of A4. Conse-
quently, π3, (p3, δ, 0, p4), π4 is a successful path of A3 → A4. Moreover, by construction,
πR(π3, (p3, δ, 0, p4), π4). Thus π � π3, (p3, δ, 0, p4), π4. Furthermore, cost(π2) ≤ cost(π1)
and cost(π4) ≤ cost(π3) ensure that cost(π3, (p3, δ, 0, p4), π4) ≤ cost(π), proving the propo-
sition for the substitutivity problem.

(Part 2):
We claim that R =�, i.e. that R is the largest simulation relation between A1 → A2 and
A3 → A4. Indeed, let p be a state of A1 → A2, and q be a state of A3 → A4 such that
p �A1→A2,A3→A4 q. Following cases arise:

(1) Assume that p is a state of A2. Since A2 is trim, there exists a path in A2 from p to
a �nal state of A2. Now, the assumption p �A1→A2,A3→A4 q implies that there is a
similar path in A4. Since δ doesn't occur in the label of this path, q is a state of A4.
Since the restriction of �A1→A2,A3→A4 to states of A2 and states of A4 is a simulation
relation, one has p �A2,A4 q. Therefore pRq.

(2) Assume that p is a state of A1. We will show by contradiction that q is a state of
A3. Assume that q is a state of A4. Since A1 and A3 are trim, there is a path in
A1 → A2 from p to a �nal state. By construction, δ occurs in the label of this path.
Since p �A1→A2,A3→A4 q, there is a similar path in A3 → A4. But q is a state of
A4, thus there is no path from q whose label contains δ, a contradiction. Therefore,
q ∈ A3. As for case (1), this ensures that pRq, proving the claim.

(Part 3):
Assume that A1 vst A3 and A2 vst A4. According to above proof, it remains to show
that for every successful path π of A1 → A2 and every successful path π′ of A3 → A4,
if π � π′, then cost(π′) ≤ cost(π). Assuming that π is a successful path of A1 → A2

18

and that π′ is a successful path of A3 → A4, the path π can be decomposed into π =
π1, (p1, δ, p2), π2 and the path π′ into π′ = π3, (p3, δ, p4), π4. Symbol δ occurs only once in
the label of π and in the label of π′. Thus, by length argument, if π � π′, using the claim
(point 2), one has π1 �A1,A3 π3 and π2 �A2,A4 π4. It follows that cost(π3) ≤ cost(π1)
and cost(π4) ≤ cost(π2). Consequently, cost(π′) ≤ cost(π), proving the proposition for the
strong substitutivity problem.

2

6.2. Substitutivity and Parallel Composition

We now de�ne a parallel composition operator and o�er the positive and negative results
on the compatibility of the substitutivity with relation to the parallel composition.

De�nition 15. Let A1 = (Q1, A1, E1, I1, F1) and A2 = (Q2, A2, E2, I2, F2) be two integer
weighted automata. The parallel product of A1 and A2, denoted A1 ⊗A2, is the automaton
A12 = (Q12, A12, E12, I12, F12) where

• Q12 = {(p1, p2) | p1 ∈ Q1, p2 ∈ Q2},

• A12 = A1 ∪A2,

• I12 = I1 × I2,

• F12 = F1 × F2,

and where the transition relation E12 obeys the following rules:

[SYNC]
p1

a1,c1−→A1 q1, p2
a2,c2−→A2 q2

(p1, p2)
a,c1+c2−→ A1⊗A2 (q1, q2)

a ∈ A1 ∩A2

[PAR1]
p1

a1,c1−→A1 q1
(p1, p2)

a1,c1−→A1⊗A2 (q1, p2)
a1 ∈ A1 \A2

[PAR2]
p2

a2,c2−→A2 q2
(p1, p2)

a2,c2−→A1⊗A2 (p1, q2)
a2 ∈ A2 \ A1

The parallel composition of A1 and A2, denoted A1‖A2, is the automaton obtained by
deleting in A1 ⊗A2 states (and related transitions) that are not co-accessible.

Consider, for instance, the two automata Aexe3 and Aexe4 depicted in Fig. 9. The
automata Aexe3 ⊗Aexe4 and Aexe3‖Aexe4 are respectively displayed in Fig. 10 and Fig. 11.

Proposition 16. Let A1,A2,A3,A4 be �nite trim automata [resp. are �nite trim automata
such that A1‖A2 and A3‖A4 are both trim]. If A1 v A3 and A2 v A4 [resp. A1 vp A3

and A2 vp A4], then A1‖A2 v A3‖A4 satis�es the substitutivity problem [resp. A1‖A2 vp

A3‖A4].

Proof. In this proof A1 is the common alphabet of A1 and A3 and A2 is the common
alphabet of A2 and A4

The relation R between states of A1‖A2 and states of A3‖A4 is de�ned as follows:
(p1, p2)R(p3, p4) if and only if p1 �A1,A3 p3 and p2 �A2,A4 p4. The proof is divided into two

19

1start 2
a, 1

c, 0

a, 2

3start 4

a, 2
b, 5

a, 6

Figure 9: Automata Aexe3 and Aexe4

1, 4

1, 3start 2, 4 2, 3
a, 3

a, 7
b, 5

a, 4

c, 0c, 0

a, 8

Figure 10: Automaton Aexe3 ⊗Aexe4

1, 4

1, 3start 2, 4
a, 3

a, 7
b, 5

c, 0

a, 8

Figure 11: Automaton Aexe3‖Aexe4

20

parts: Firstly, in (Part 1), we prove that R is a simulation relation. Secondly, in (Part 2),
we prove the proposition for the substitutivity problem.
(Part 1):
We �rst prove that relation R is a simulation relation. Indeed, if (p1, p2) is �nal then,
by de�nition of A1 ⊗ A2, p1 and p2 are respectively �nal states of A1 and A2. Then, if
p1 �A1,A3 p3, p3 is �nal, and if p2 �A2,A4 p4, p4 is �nal, proving R satis�es condition ii)
of De�nition 2. Now it remains to prove condition i). Assume that (p1, p2)R(p3, p4). The
following three cases arise:

(1) If there exists a transition ((p1, p2), a1, c1, (q1, p2)) in A1‖A2, with a1 ∈ A1 \ A2, it is
obtained by applying [PAR1]. So, there exist a transition (p1, a1, c1, q1) in A1 and a
state q3 of A3 such that p1 �A1,A3 q3. Since (q1, p2) is accessible and co-accessible in
A1⊗A2, so is (q3, p4) in A3⊗A4. It follows that (q3, p4) is a state of A3‖A4 satisfying
(q1, p2)R(q3, p4).

(2) If a transition from (p1, p2) is �red by applying [PAR2], one can prove, as for case (1),
that condition i) of De�nition 2 is satis�ed.

(3) If a transition from (p1, p2) is �red by applying [SY NC], then there exist a transi-
tion (p1, a, c1, q1) in A1 and a transition (p2, a, c2, q2) such that a ∈ A1 ∩ A2. Since
(p1, p2)R(p3, p4), there are q3 in A3 and q4 in A4 and transitions (p3, a, c3, q3) and
(p4, a, c4, q4) in respectively A3 and A4 such that q1 �A1,A3 q3 and q2 �A2,A4 q4.
Since (q3, q4) is both an accessible and co-accessible state of A1⊗A2, (q1, q2)R(q3, q4),
proving that R is a simulation relation.

(Part 2):
Now we will prove the proposition for the substitutivity problem. Assume that A1 v A3

and A2 v A4. Let π be a successful path in A1‖A2. We denote by ϕi (i ∈ {1, 2}), the
partial function that maps transitions of A1‖A2 to transitions of Ai as follows: a transition
((p1, p2), a, c, (q1, q2)) of A1‖A2 is mapped to (pi, a, c, qi) if a ∈ Ai. Partial functions ϕi

(i ∈ {1, 2}) are extended to sequences of transitions: ϕi(t1, . . . , tk) = ϕi(t1), . . . , ϕi(tk) with
the convention that if ϕi(t) is not de�ned, then ϕi(t) is mapped to the empty path. For
instance, if t1, t2, t3 are three transition respectively labelled by letter of A1 ∩ A2, A1 \ A2

and A2 \A1, then ϕ1(t1, t2, t3) = ϕ1(t1), ϕ1(t2) and ϕ2(t1, t2, t3) = ϕ1(t1), ϕ1(t3).
Let π be a successful path in A1‖A2. One can easily check that ϕi(π) is a successful

path of Ai. Therefore there are successful paths π3 and π4 of respectively A3 and A4 such
that ϕ1(π) �A1,A3 π3, ϕ2(π) �A1,A3 π4, cost(π3) ≤ cost(ϕ1(π)) and cost(π4) ≤ cost(ϕ2(π)).
We inductively de�ne the �nite sequences of integers αi and βi by

- α1 = 1 and β1 = 1,

- if the i-th transition of π is labelled by a letter in A1 ∩ A2, then αi+1 = 1 + α1 and
βi+1 = 1 + βi,

- if the i-th transition of π is labelled by a letter in A1 \ A2, then αi+1 = 1 + α1 and
βi+1 = βi,

- if the i-th transition of π is labelled by a letter in A2 \ A1, then αi+1 = α1 and
βi+1 = 1 + βi.

Informally, when running the path π, each time a transition labelled by a letter in Ai is met,
the corresponding counter (α for A1 and β for A2) increases.

Now we de�ne the sequence of transitions π′ of A3 ⊗A4 by:

21

p1start p2
a, 1

a, 1 a, 1

p3start p4
a, 1

a, 1 a, 1

q1start q3 q2

a, 1

a, 1

a, 6

a, 0

q4start

a, 0

Figure 12: Automata for a counter-example on Proposition 16

- If the i-th transition of π is labelled by a letter a in A1 ∩ A2, then the i-th transition
of π′ is ((p3, p4), a, c3 + c4, (q3, q4)) where (p3, a, c3, q3) is the αi-th transition of π3 and
(p4, a, c4, q4) is the βi-th transition of π4.

- If the i-th transition of π is labelled by a letter a in A1 \ A2, then the i-th transition
of π′ is ((p3, p4), a, c3, (q3, p4)) where (p3, a, c3, q3) is the αi-th transition of π3.

- If the i-th transition of π is labelled by a letter a in A2 \ A1, then the i-th transition
of π′ is ((p3, p4), a, c4, (p3, q4)) where (p4, a, c4, q4) is the βi-th transition of π4.

One can easily check that αi is less or equal to the length of π1 (equivalently the length of
π3) and that βi is less or equal to the length of π2 (equivalently the length of π4). Thus,
following rules [PAR1], [PAR2] and [SY NC], π′ is well-de�ned. By a direct induction, one
can prove that π′ is a successful path of A3‖A4 satisfying πRπ′ and cost(π′) ≤ cost(π).
Since R is, by de�nition, included in �A1‖A2,A3‖A4 , the proof for the substitutivity problem
is complete.

2

Unfortunately, Proposition 16 does not hold for (partial) strong substitutivity problems.
Consider, for instance, the following automata (depicted in Fig. 12):

A1 = ({p1, p2}, {a}, {(p1, a, 1, p1), (p1, a, 1, p2), (p2, a, 1, p2)}, {p1}, {p2}),
A3 = ({q1, q2, q3}, {a}, {(q1, a, 1, q3), (q3, a, 6, q1), (q1, a, 0, q2), (q2, a, 1, q2)}, {q1}, {q2}),
A2 = ({p3, p4}, {a}, {(p3, a, 1, p3), (p3, a, 1, p4), (p4, a, 1, p4)}, {p3}, {p4}),
A4 = ({q4}, {a}, {(q4, a, 0, q4)}, {q4}, {q4}).

Both pairs of automata A1,A3 and A2,A4 satisfy the strong substitutivity problem.
But (p1, p3) �A1‖A2,A3‖A4 (q1, q4), (p1, p3) �A1‖A2,A3‖A4 (q3, q4) and (p2, p4) �A1‖A2,A3‖A4

(q2, q4). Therefore the successful paths

π12 = ((p1, p3), a, 2, (p1, p3))((p1, p3), a, 2, (p1, p3))((p1, p3), a, 2, (p2, p4))

and
π34 = ((q1, q4), a, 1, (q3, q4))((q3, q4), a, 6, (q1, q4))((q1, q4), a, 0, (q2, q4))

satisfy π12 �A1‖A2,A3‖A4 π34. But cost(π12) = 6 and cost(π34) = 7.
However, as for the sequential composition, one has the following result for pairs of

automata with disjoint alphabets.

22

Proposition 17. Let A1,A2,A3,A4 be �nite trim automata such that A1 and A2 have
disjoint alphabets and, A3 and A4 have disjoint alphabets. If A1 vst A3 and A2 vst A4 [resp.
A1 vst

p A3 and A2,vst
p A4], then the pair A1‖A2 vst A3‖A4 [resp. A1‖A2 vst

p A3‖A4].

Proof. Assume that both couples A1 vst A3 and A2 vst A4. Let π be a successful path
of A1‖A2. By Proposition 16, there exists a successful path of A3‖A4 similar to π with a
smaller cost.

We claim that if (p1, p2) �A1‖A2,A3‖A4 (p3, p4), then p1 �A1‖A2 p3 and p2 �A3‖A4 p4. It
su�ces to prove that p1 �A1‖A2 p3 because of the case symmetry. Assume that p1 6�A1‖A2

p3. Then the following cases may arise:

(1) p1 is a �nal state of A1 whereas p3 is not. Since A2 is trim, there exists a path
in A2 from p2 to a �nal state q2 of A2. This path is labelled by letters in the
A2 alphabet. Therefore there is a path in A1‖A2 from (p1, p2) to (p1, q2). Since
(p1, p2) �A1‖A2,A3‖A4 (p3, p4), there is a similar path in A3‖A4 to a state of the
form (p3, q4). Now since q2 is a �nal state in A2, so is (p1, q2) in A1‖A2. But
(p1, q2) �A1‖A2,A3‖A4 (p3, q4), so, (p3, q4) is �nal in A3‖A4. Consequently, p3 is �-
nal, a contradiction.

(2) There is a transition in A1 starting from p1 labelled by a, but no transition labelled by
a starts from p3 in A3. Therefore there is a transition in A1‖A2 starting from (p1, p2)
labelled by a. Since a is not a letter from the alphabet of A3, no transition labelled
by a in A3‖A4 can be �red from (p3, p4), a contradiction.

(3) There is a transition (p1, a1, c1, q1) of A1 such that for every transition of the form
(p3, a1, c3, q3) of A2, q1 6�A1,A3 q3. Iterating this construction, one can reach states
(p′1, p2) and (p′3, p3) satisfying conditions of case (1), proving the claim.

Now let π′ be a path in A3‖A4 such that π �A1‖A2,A3‖A4 π
′. Let π′3 be the sequence

of transitions obtained by deleting in π′ all the transitions labelled by a letter in the A4

alphabet. Let also π′4 be the sequence of transitions obtained by deleting in π′ all the
transitions labelled by a letter in the alphabet of A3. Using the hypotheses on the alphabets,
one can easily check that the projection π′3 of π′ on A3 is a successful path of A3. Similarly,
the projection π′4 of π′ on A4 is a successful path of A4. Following the same way, π can be
projected to produce a successful path π1 of A1 and a successful path π2 of A2. The claim
ensures that π1 �A1,A3 π

′
3 and that π2 �A1,A3 π

′
4. Now remind that both couples A1 vst A3

and A2 vst A4 satisfy the strong substitutivity problem. Thus cost(π′3) ≤ cost(π1) and
cost(π′4) ≤ cost(π2). Since cost(π) = cost(π1) + cost(π2) and since cost(π′) = cost(π′3) +
cost(π′4), one has cost(π′) ≤ cost(π), proving the proposition.

The proof for the partial strong substitutivity problem is similar and left to the reader.
2

7. Practical Issues

As explained in Section 1, this paper is dedicated to component and service substitutivity
with a special emphasis on their assembly. The challenge is to build trustworthy systems
which satisfy both functional and non functional requirements. The obtained theoretical
results have practical applications. Indeed, the methodological and practical approaches we
have been developing through various project collaborations rest on them. These approaches
can be summarised by:

1. The construction of trustworthy software systems from existing components.
2. An incremental approach to specify and verify component assembling.
3. The elicitation of non-functional requirements and their integration in the speci�cation.

23

7.1. Application to Web Services with QoS

There are numerous works on automata-based analyses of service composition (see [tBBG07]
for a survey). In the setting of the present paper, i.e. without silent τ -transitions, the �-
simulation relation is compatible with a sequential composition operator modelling e.g. the
sequence BPEL structured activities, and with an asynchronous parallel composition opera-
tor implementing e.g. the �ow BPEL structured activities. Notice that for the �ow activities,
the encoding would work without the source/target links that would somehow be encoded
through a synchronisation. Both BPEL operators are important in practice since they allow
building complex services by a composition of services.

An algorithm for the trace-based substitutivity problem has been implemented. The
tests have been performed on di�erent versions of a movie store example, a book store
example provided by Oracle [Jur05], and the classical loan approval example. We intend
to continue the implementation and extend that work to simulation-based substitutivity
problems presented in this paper.

7.2. Application to Embedded Components

Thousands of systems in very various domains such as telecommunications, transporta-
tion, home automation (also called smart homes or domotics), system-on-chip, etc. are
equipped with smart devices or "intelligent" components. They embed a growing software
part which is often critical for the safety of the global system. Embedded systems whose
resources are in general limited must satisfy both functional and non functional properties
to optimise the use of their resources (memory, energy, etc.).

Within the application domain of land transportation systems, di�erent models of a
localisation system are proposed4. A localisation composite component, which is a critical
part of land transportation systems, is made up of di�erent positioning systems, like GPS,
Wi� or GPS+Wi�. The use of more than one localisation system is required in a driverless
vehicle like Cristal or Cycab, because no system is e�cient enough to be used alone. Indeed,
a localisation based on the GPS data cannot be used in certain contexts, and the localisation
component must respond even if no satellite data can be captured. These requirements allow
the vehicle to set a real trustworthy level and to improve the con�dence in the reliability.

The composite localisation component includes several positioning systems, a controller,
and a merger. Figure 13 gives a very abstract view of the composite localisation component
we have been developing using the Fractal component model [BCL+06]. For building the
behavioural model, we follow a two-fold approach proposed in [BABC+09] for Fractal, GCM
and ProActive distributed components: (1) the architecture and hierarchy information are
extracted from the ADL and (2) each of the primitive component's functional behaviour is
speci�ed by the user in an automata-based language.

Each positioning system is composed of an atomic positioning component and a software
component to validate perceived data. The validation components transfer the positioning
data to the merger if they are precise enough. The merger applies a particular algorithm
to merge data obtained from positioning systems. The goal of this algorithm is to ensure
that the level of reliability must not decrease between two localisations unless the opera-
tion to update the context is called. Finally, the controller's purpose is to request and to
acknowledge the receipt of positioning data. In addition to mentioned requirements, other
non functional requirements such as environment context, time-constrained response, cost of
used networks, privacy, etc. must be taken into account when specifying and implementing
a localisation component.

4http://tacos.loria.fr.

24

MergeControl

C3

C4

Validate

Validate

Position Fusion Check

Check

Locate

Locate

a1, 1

d, 1c1, 3

a1, 1

d, 1c1, 3

a, 1 b1, 2

b2, 2c, 3
c, 3

b2, 4

a, 1

b1, 1c, 3

Figure 13: Sequential and parallel composition

In spite of their simpli�cation on the QoS measures, sequential and parallel composition
operators managing both functional and non functional aspects can assemble the above
mentioned components.

It is easy to see how important substitutivity, sequential and parallel compositions are,
especially given the need to bring costs into the analysis. Moreover, within the Fractal
framework, [NBL09, PMSD07] proposed dynamic recon�guration strategies to optimise the
used memory space. It is done thanks to an implementation, called Think5, especially
dedicated to embedded Fractal components. That implementation continues with the sep-
aration of concerns principle to ease portability, reusability, and code optimisation while
deploying components. Moreover, Think proposes components for services frequently used
in embedded systems.

In addition, the proposed framework seems to be well-adapted to handle energy dis-
persion associated with actions, that is particularly relevant for sensor networks (see for
instance [WCdL07]).

8. Conclusion

In this paper we proposed to manage both functional and non functional aspects of com-
ponents. To sum up, this paper exposes how integer weighted automata can be used to
address substitutivity issues in the context of component-based applications. We de�ned
four kinds of substitutivity managing QoS aspects. Several complexity results for these sub-
stitutivity problems were provided. They are summed up in the following table. Provided
proofs being constructive, above complexity results are tractable in practice.

5http://think.ow2.org/

25

deterministic �nitely ambiguous non-deterministic
automata automata automata

substitutivity Polynomial time Polynomial time open
partial Polynomial time Polynomial time Polynomial time

substitutivity

strong Polynomial time Polynomial time P-complete
substitutivity
partial strong Polynomial time Polynomial time P-complete
substitutivity

In addition, the substitutivity notions were considered in the composition context. Three
natural composition operators � sequential, strict-sequential and parallel compositions � were
de�ned. For these composition operators, new � positive and negative � results on the sub-
stitutivity vs. composition compatibility were provided. We demonstrated that considering
path costs when verifying simulation relations in a composition manner, has a cost. To sum
up, the composition results are given in the chart below.

sequential sequential strict parallel parallel
disj. alphabets disj. alphabets

substitutivity yes yes yes yes yes
partial yes yes yes yes yes

substitutivity
strong no yes yes no yes

substitutivity
partial strong no yes yes no yes
substitutivity

We are well aware that there are other possibilities for de�ning compositions. Neverthe-
less, our de�nitions are general enough, so the present paper can be seen as a step towards
more sophisticated settings to be of use in real-life applications (see, e.g., [MR08, ET07,
BABC+09]).

In this paper, there is no distinction between inputs, outputs and internal actions because
we want the substitutivity to deal with all kinds of actions. In our approach, distinguishing
actions will just lead to divide the alphabet into three parts: results will be exactly the
same.

Distinguishing actions would be useful either for composition purposes or for simulation
de�nitions. On the one hand, the parallel composition de�ned in Section 6 can manage
di�erent kinds of actions that can be synchronised or not. In this context, it is possible to
manage synchronisation on external actions. On the other hand, using internal actions may
lead to several simulation relation de�nitions. At this step, our work does not handle tau-
based simulation. We plan to investigate this direction in a future work. Several information
on that was pointed out at the beginning of Section 7.1. Notice that synchronisations for
the parallel composition operator we consider can manage tau-actions as another action.

In the paper, we consider that automata represent compositions already built up from
components/services. This approach seems to be not contradictory with works in [LMW07,
SW09] where the behaviour semantics of a set of open nets (uncoloured Petri nets with inter-
faces modelling services) is given by automata whose states are annotated by boolean formula
over states. In those automata, interactions/communications are already performed. Once
the interactions/synchronisations are hidden in composition automata, the only remained
piece of information we are interested in concerns action costs.

Note that the answer to the substitutivity problem proposed in this paper depends on
the chosen abstraction. In fact, the results obtained in our framework, as well as for all
abstraction-based approaches, depend on the expressive power of the formalism and on

26

the quality of the model. It would be interesting to address the same problem with �ner
abstractions. In the future, following works on automata-based analyses of services [tBBG07]
and components [BABC+09], we plan to extend the model to include messages among
components. To go further, more expressive formalisms like Mealy machines, process algebra
or Petri nets would provide more precise component abstractions. In this context, extending
substitutivity de�nitions to these formalisms is easy, but algorithmic studies have to be
performed again: however substitutivity problems may be undecidable or have an intractable
complexity for these formalisms. In other respects, the matter of whether the substitutivity
problem is decidable in the general case, remains open. In the context of the trace-based
substitutivity, this problem is undecidable. We conjecture the same result holds for the
simulation-based substitutivity.

Polynomial time decidability shows the substitution notion presented in the paper is
reasonable and practical. For example, it would be possible to take into consideration the
fact that performance/reliability metrics of a component service are not only a function on
the service or the service trace, but also on parameters such as the execution environment,
the performance/reliability of externally called services, and the usage pro�le. In fact, the
decidability being polynomial time, it could be possible to apply the algorithms for each of
these parameters.

In a more general context, modelling quantitative aspects is of great interest for modelling
and verifying component-based applications. Work continues on modelling and verifying
properties simpler than substitutivity, and on considering other applications, e.g. business
protocols.

We would like to thank the anonymous referees and FACS'08 participants for their in-
teresting and helpful comments and suggestions to improve and to develop the preliminary
results in [HKV08]. We are grateful to the anonymous SCP referees for their corrections,
interesting comments and helpful advice to improve the preliminary version of this paper.

References

[AHU74] A. Aho, J. Hopcroft, and J. Ullman. The design and analysis of computer
algorithms, pages 395�400. Addison-Wesley, 1974.

[BABC+09] T. Barros, R. Ameur-Boulifa, A. Cansado, L. Henrio, and E. Madelaine. Be-
havioural models for distributed Fractal components. Annales des Télécommu-
nications, 64(1-2):25�43, 2009.

[BBBR07] P. Bouyer, Th. Brihaye, V. Bruyère, and J.-F. Raskin. On the optimal reacha-
bility problem of weighted timed automata. Formal Methods in System Design,
31(2):135�175, 2007.

[BBK+78] B. W. Boehm, J. R. Brown, H. Kaspar, M. Lipow, G. J. MacLeod, and M. J.
Merritt. Characteristics of Software Quality. North-Holland Publishing Com-
pany, 1978.

[BCH05] D. Beyer, A. Chakrabarti, and Th. A. Henzinger. Web service interfaces. In
A. Ellis and T. Hagino, editors, WWW, pages 148�159. ACM, 2005.

[BCHS07] D. Beyer, A. Chakrabarti, Th. A. Henzinger, and S. A. Seshia. An application
of web-service interfaces. In ICWS, pages 831�838. IEEE Computer Society,
2007.

[BCL+06] E. Bruneton, Th. Coupaye, M. Leclercq, V. Quéma, and J.-B. Stefani. The
fractal component model and its support in Java. Softw., Pract. Exper., 36(11-
12):1257�1284, 2006.

27

[BGW01] A.L. Buchsbaum, R. Giancarlo, and J. Westbrook. An approximate de-
terminization algorithm for weighted �nite-state automata. Algorithmica,
30(4):503�526, 2001.

[BJ06] Thomas Ball and Robert B. Jones, editors. Antichains: A New Algorithm for
Checking Universality of Finite Automata, volume 4144 of Lecture Notes in
Computer Science. Springer, 2006.

[BK03] P. Buchholz and P. Kemper. Weak bisimulation for (max/+) automata and
related models. Journal of Automata, Languages and Combinatorics, 8(2):187�
218, 2003.

[BKR07] Ste�en Becker, Heiko Koziolek, and Ralf Reussner. Model-based performance
prediction with the palladio component model. In Vittorio Cortellessa, Se-
bastián Uchitel, and Daniel Yankelevich, editors, WOSP, pages 54�65. ACM,
2007.

[BR88] J. Berstel and Ch. Reutenauer. Rational Series and Their Languages. Springer-
Verlag, 1988.

[Bra03] Premysl Brada. Speci�cation-Based Component Substitutability and Revision
Identi�cation. PhD thesis, Charles University in Prague, 2003.

[BRL07] F. Baligand, N. Rivierre, and Th. Ledoux. A declarative approach for QoS-
aware Web service compositions. In ICSOC, pages 422�428, 2007.

[BV06] Premysl Brada and Lukas Valenta. Practical veri�cation of component substi-
tutability using subtype relation. In EUROMICRO-SEAA, pages 38�45. IEEE,
2006.

[CCH+07] S. Chouali, S. Colin, A. Hammad, O. Kouchnarenko, A. Lanoix, H. Mountassir,
and J. Souquières. Requirements for the description of a component in order
to use in a component based approach � Livrable TACOS L2-1.0. 23 pages
Available at http://tacos.loria.fr ANR-06-SETI-017 (TACOS), 2007.

[CCSS08] Sagar Chaki, Edmund M. Clarke, Natasha Sharygina, and Nishant Sinha. Ver-
i�cation of evolving software via component substitutability analysis. Formal
Methods in System Design, 32(3):235�266, 2008.

[CHS06] S. Chouali, M. Heisel, and J. Souquières. Proving component interoperability
with B re�nement. Electr. Notes Theor. Comput. Sci., 160:157�172, 2006.

[CVZ07] I. Cerná, P. Vareková, and B. Zimmerova. Component substitutability via
equivalencies of component-interaction automata. Electr. Notes Theor. Com-
put. Sci., 182:39�55, 2007.

[d'A06] A. d'Ambrogrio. A Model-driven WSDL Extension for Describing the QoS of
Web Services. In ICWS'06, Chicago, Illinois, USA, 2006.

[DvdA04] J. Dehnert and W. M. P. van der Aalst. Bridging the gap between business
models and work�ow speci�cations. Int. J. Cooperative Inf. Syst., 13(3):289�
332, 2004.

[EFPC04] E. Ermel, A. Fladenmuller, G. Pujolle, and A. Cotton. Improved position
estimation in Wireless heterogeneous networks. In NETWORKING 2004, May
2004.

28

[ET07] N. Evans and H. Treharne. Interactive tool support for csp || b consistency
checking. Formal Asp. Comput., 19(3):277�302, 2007.

[FEHC02] Alexandre V. Fioukov, Evgeni M. Eskenazi, Dieter K. Hammer, and Michel
R. V. Chaudron. Evaluation of static properties for component-based architec-
tures. In EUROMICRO, pages 33�39. IEEE Computer Society, 2002.

[FM07] Juliana Küster Filipe and Sotiris Moschoyiannis. Concurrent logic and au-
tomata combined: A semantics for components. Electr. Notes Theor. Comput.
Sci., 175(2):135�151, 2007.

[FUMK07] H. Foster, S. Uchitel, J. Magee, and J. Kramer. Ws-Engineer: A model-based
approach to engineering web service compositions and choreography. In Test
and Analysis of Web Services, pages 87�119. 2007.

[Gau95] S. Gaubert. Performance Evaluation of (max,+) Automata. IEEE Trans. on
Automatic Control, 40(12), 1995.

[GIRS08] C. E. Gerede, O. H. Ibarra, B. Ravikumar, and J. Su. Minimum-cost delegation
in service composition. Theoretical Computer Science, 409(3):417�431, 2008.

[Gli07] M. Glinz. On Non-Functional Requirements. In IEEE, editor, 15th IEEE
International Requirements Engineering Conference, pages 21 � 26, 2007.

[GMRS07] Vincenzo Grassi, Ra�aela Mirandola, Enrico Randazzo, and Antonino Sabetta.
Klaper: An intermediate language for model-driven predictive analysis of per-
formance and reliability. In Andreas Rausch, Ralf Reussner, Ra�aela Miran-
dola, and Frantisek Plasil, editors, CoCoME, volume 5153 of Lecture Notes in
Computer Science, pages 327�356. Springer, 2007.

[HIJ02] K. Hashiguchi, K. Ishiguro, and S. Jimbo. Decidability of the Equivalence
Problem for Finitely Ambiguous Finance Automata. IJAC, 12(3), 2002.

[HKV07] P.-C. Héam, O. Kouchnarenko, and J. Voinot. How to Handle QoS Aspects in
Web Services Substitutivity Veri�cation. In WETICE'07, Paris, France, pages
333�338. IEEE Computer Society, 2007.

[HKV08] P.-C. Héam, O. Kouchnarenko, and J. Voinot. Component simulation-based
substitutivity managing QoS aspects. Technical report, University of Málaga,
2008. Int. Workshop on Formal Aspects of Software Components, FACS'08.

[HM85] M. Hennessy and R. Milner. Algebraic laws for nondeterminism and concur-
rency. Journal of the ACM, 32(1):137�161, 1985.

[HNS03] J. Hallberg, M. Nilsson, and K. Synnes. Positioning with Bluetooth. In 10th
Int. Conference on Telecommunications (ICT'2003), 2003.

[IvR99] K. Culik II and P.C. von Rosenberg. Generalized weighted �nite automata
based image compression. J. UCS, 5(4):227�242, 1999.

[Jur05] M. B. Juric. A Hands-on Introduction to BPEL, Part 2: Advanced BPEL, 2005.
http://www.oracle.com/technology/pub/articles/matjaz_bpel2.html.

[KLMP04] I. Klimann, S. Lombardy, J. Mairesse, and Ch. Prieur. Deciding unambiguity
and sequentiality from a �nitely ambiguous max-plus automaton. Theoretical
Computer Science, 327(3):349�373, 2004.

29

[KMT04] F. Katritzke, W. Merzenich, and M. Thomas. Enhancements of partitioning
techniques for image compression using weighted �nite automata. Theoretical
Computer Science, 313(1):133�144, 2004.

[Kro94] D. Krob. The Equality Problem for Rational Series with Multiplicities in the
Tropical Semiring is Undecidable. IJAC, 4(3), 1994.

[LKD+03] H. Ludwig, A. Keller, A. Dan, R.P. King, and R. Franck. Web Service Level
Agreement (WSLA) Language Speci�cation, Version 1.0. IBM Corporation,
January 2003.

[LMW07] N. Lohmann, P. Massuthe, and K. Wolf. Operating guidelines for �nite-state
services. In J. Kleijn and A. Yakovlev, editors, ICATPN, volume 4546 of Lecture
Notes in Computer Science, pages 321�341. Springer, 2007.

[LVOS09] N. Lohmann, H.M.W. Verbeek, C. Ouyang, and Ch. Stahl. Comparing and
evaluating Petri net semantics for BPEL. Int. J. Business Process Integration
and Management, 4(1):60�73, 2009.

[Mil80] R. Milner. A Calculus of Communicating Systems, volume 92 of Lecture Notes
in Computer Science. Springer Verlag, 1980.

[MPR02] M. Mohri, F. Pereira, and M. Riley. Weighted �nite-state transducers in speech
recognition. Computer Speech & Language, 16(1):69�88, 2002.

[MPR05] M. Mohri, F. Pereira, and M. Riley. Weighted automata in text and speech
processing. volume abs/cs/0503077, 2005.

[MR08] R. Mateescu and S. Rampacek. Formal modeling and discrete-time analysis of
BPEL Web services. In J. L. G. Dietz, A. Albani, and J. Barjis, editors, CIAO!
/ EOMAS, volume 10 of Lecture Notes in Business Information Processing,
pages 179�193. Springer, 2008.

[MRW77] J. A. McCall, P. K. Richards, and G. F. Walters. Factors in software quality
(volume-III). In Preliminary Handbook on Software Quality for an Acquisition
Manager. 1977.

[MSK05] Sotiris Moschoyiannis, Michael W. Shields, and Paul J. Krause. Modelling
component behaviour with concurrent automata. Electr. Notes Theor. Comput.
Sci., 141(3):199�220, 2005.

[NBL09] J-F. Navas, J-P. Babau, and O. Lobry. Minimal yet e�ective recon�guration
infrastructures in component-based embedded systems. In SINTER'09, pages
41�48. ACM, 2009.

[OG00] R.J. Orr and G.D.Abowd. The smart �oor: A mechanism for natural user
identi�cation and tracking. In Conference on Human Factors in Computing
Systems (CHI2000), The Netherlands, 2000.

[Par81] D. Park. Concurrency and automata on in�nite sequences. In Lecture Notes in
Computer Science, volume 104, pages 167�183. Springer Verlag, 1981.

[PMSD07] J. Polakovic, S. Mazare, J.-B. Stefani, and P.-Ch. David. Experience with safe
dynamic recon�gurations in component-based embedded systems. In CBSE,
pages 242�257, 2007.

[Reu03] P. H. Reussner. Automatic component protocol adaptation with the coconut/j
tool suite. Future Gener. Comput. Syst., 19(5):627�639, 2003.

30

[RHH05] R. Reussner, J. Happe, and A. Habel. Modelling parametric contracts and
the state space of composite components by graph grammars. In Fundamental
Approaches to Software Engineering, 8th International Conference, FASE 2005,
Edinburgh, UK, volume 3442 of Lecture Notes in Computer Science, pages 80�
95. Springer, 2005.

[RMG05] J.A. Royo, E. Mena, and L.C. Gallego. Locating users to develop location-
based services in Wireless local area networks. In Thomson, editor, Symp.
on Ubiquitous Computing and Ambient Intelligence, pages 471�478, Granada
(Spain), September 2005.

[SCHS07] H. W. Schmidt, I. Crnkovic, G. T. Heineman, and J. A. Sta�ord, editors.
Component-Based Software Engineering, 10th International Symposium, CBSE
2007, Medford, MA, USA, July 9-11, 2007, Proceedings, volume 4608 of LNCS.
Springer, 2007.

[SE06] M. Scuturici and D. Ejigu. Positioning support in pervasive environments. In
IEEE Int. Conf. on Pervasive Services (ICPS), June 2006.

[SJ01] Z. Sawa and P. Jancar. P-hardness of equivalence testing on �nite-state pro-
cesses. In SOFSEM, pages 326�335, 2001.

[SJ05] Z. Sawa and P. Jancar. Behavioural equivalences on �nite-state systems are
ptime-hard. Computers and Arti�cial Intelligence, 24(5), 2005.

[SW09] Ch. Stahl and K. Wolf. Deciding service composition and substitutability using
extended operating guidelines. Data Knowl. Eng., 68(9):819�833, September
2009.

[tBBG07] M.H. ter Beek, A. Bucchiarone, and S. Gnesi. Formal methods for service
composition. Annals of Mathematics, Computing & Teleinformatics, 5(1):1�
10, 2007.

[Tia05] Min Tian. QoS integration in Web services with the WS-QoS framework. PhD
thesis, Freie Universitat Berlin, 2005.

[vdA98] W. M. P. van der Aalst. The Application of Petri Nets to Work�ow Manage-
ment. The Journal of Circuits, Systems and Computers, 8(1):21�66, 1998.

[vG01] R.J. van Glabbeek. The linear time - branching time spectrum, Handbook of
Process Algebra, chapter 1. Elsevier, 2001.

[WCdL07] Xiaoling Wu, Jinsung Cho, Brian J. d'Auriol, and Sungyoung Lee. Energy-
aware routing for wireless sensor networks by AHP. In Software Technologies
for Embedded and Ubiquitous Systems, volume 4761 of LNCS, pages 446�455,
2007.

[Web94] A. Weber. Finite-valued Distance Automata. Theoretical Computer Science,
134, 1994.

[WS91] A. Weber and H. Seidl. On the degree of ambiguity of �nite automata. Theo-
retical Computer Science, 88(2):325�349, 1991.

31

