Under consideration for publication in Formal Aspects of Computing

Generating Tests from B
Specifications and Dynamic Selection
Criterial

J. Julliand, P.-A. Masson, R. Tissot and P.-C. Bué

LIFC, Université de Franche-Comté
16, route de Gray F-25030 Besangon Cedex France
{julliand, masson, tissot, bue}@lifc.univ-fcomte.fr

Abstract. This paper is about generating tests from dynamic selection criteria called test purposes, in
addition to structural tests, obtained from static selection criteria. We present a method that re-uses a
behavioral model and an abstract test concretization layer developed for structural testing, and relies on
additional test purposes. We propose, in the B framework, a process of test generation that uses the symbolic
animation mechanisms of LTG (Leirios Test Generator) based on constraint solving, and guided by the test
purposes. We build for that a B model that is the synchronized product of a behavioral B abstract model
and a test purpose described as a labelled transition system. We prove the correctness of this method, and
show some experimental results obtained on the TAS case study. IAS is an industrial smart-card platform
dedicated to the operations of Identification, Authentication and electronic Signature. Our experiments show
that the tests obtained from test purposes are complementary to the structural tests.

Keywords: Model-Based Testing, Test Purpose, IAS Case Study.

1. Introduction

B models are well suited for producing functional tests of an implementation by means of a model-based testing
approach [BJK*05, UL06]. This approach, as is described in Sec. 5 and illustrated by Fig. 8, proceeds by
writing a formal behavioral model (M) of the expected functionalities of a system. This model is an abstraction
of any real implementation, and is supposed to provide a reliable view of the implementation under test (IUT).
By applying selection criteria, a test generation tool can automatically extract tests from the model. These
tests are particular “executions” of the model. They are sequences of operation calls, with values of their
parameters and their results as predicted by the model. The tests are abstract since they have the same level
of abstraction as the model. They are concretized by a concretization layer (CL) to become executable on
the IUT. Comparing the results returned by the IUT with the ones predicted by the model allows delivering
a verdict of the tests.

Structural testing uses static (syntactic) selection criteria, essentially providing control flow and data

I Research partially funded by the French National Research Agency ANR (POSE ANR-05-RNTL-01001) and the Région
Franche-Comté.
Correspondence and offprint requests to: J. Julliand, P.-A. Masson, R. Tissot and P.-C. Bué

2 J. Julliand, P.-A. Masson, R. Tissot and P.-C. Bué

coverage of the model. The tests exercise the functionalities of the system by directly activating and covering
the corresponding operations. Industrial studies have proven the efficiency of the method to detect faults
in an implementation (see for example [EFHP02, BLLP04]). Writing M and CL is an important effort, but
the cost is justified by the possibility to automatically compute a great number of smart test cases, with M
as an oracle. Nevertheless, static selection criteria appear to be insufficient to exercise the IUT in tortuous
situations. We think for example of some scenarios of attack of systems requiring strong security guarantees.
Our objective is to benefit from M and CL to compute some additional tests that use a particular scenario
as a selection criterion.

The scenario can be described by means of a test purpose (TP), which we consider as a dynamic (semantic)
selection criteria that orchestrates the successive calls of the operations of the model. The tests extracted
from the model by means of a test purpose are sequences of operation calls corresponding to the scenario.

The context of this work is the test generation from B models?. We use LTG (Leirios Test Genera-
tor) [JLOT7], the test generator from Smartesting®, to automatically extract abstract tests from a behavioral
model written in B. LTG uses a constraint solver for computing the tests. LTG produces structural tests
by applying static criteria to cover all the paths of the control structure of every operation. Moreover, it is
possible to assist the generation of tests by providing LTG with sequences of operation calls that describe
the shape of the expected tests. We have validated our approach on IAS, an industrial standard for smart
cards.

Our main contribution in this paper is to define in the B framework a process that uses LTG for generating
abstract tests, but with a dynamic selection criterion, provided to LTG in the shape of a set of sequences
of operations, described by a TP. Also, we have performed experiments that show that these tests are new
tests w.r.t. the ones obtained from static criteria.

We give in Sec. 2 some preliminary definitions to our work. TAS, the case study on which we have
experimented our approach, is described in Sec. 3. Section 4 defines test purposes, and proposes a language
dedicated to their expression. The model-based testing process with static criteria using LT G, as well as our
process based on dynamic criteria, are introduced in Sec. 5. Section 6 describes how to combine a behavioral
model and a test purpose to obtain a B model for the test generation. Our experimental results are given in
Sec. 7. We conclude, compare our proposition to related works and expose some future works in Sec. 8.

2. Preliminaries

This section gives the background required for reading the paper, with respect to B in particular. We give
general notions about B abstract machines. We define the notions of B trace and B execution. We also define
the restrictions due to the targeted application class and to the context of test generation.

First introduced by J.-R. ABRIAL [Abr96], a B abstract machine defines an open specification of a system
by a set of operations. Intuitively, an operation has a precondition and modifies the internal state variables
by a generalized substitution. An operation is provided with a list of parameters and can return results.

We address a particular class of specifications. Our specifications are defensive, i.e. we assume that
an operation terminates whenever it is invoked with well typed parameters. That means that we consider
environments that respect a contract: they always call the operations with well typed parameter values. We
also assume that any operation returns a status word (the term is borrowed from the smart card world)
that codifies a report of its execution. Therefore in the remainder of the paper, operations are defined as in
Def. 1.

Definition 1 (Operation). Let S; be a substitution. Let sw; be a status word and p; be a list of parameter
names. Let T;(p;) be a typing predicate on p;. An operation named op; is defined as sw; <+ op;(p;) =
PRE T;(p;) THEN S; END.

For defining a B abstract machine, we need to remind the reader of the notions of B predicates and B
generalized substitutions. B predicates on a set of variables = are denoted by P(z), R(z), I(x), T(z), ... In
the remainder of this paper, the predicate I(z) denotes an invariant and T'(p) denotes a typing predicate on
the parameter variables p. When there is no ambiguity on z, we simply denote the predicates by P, R, I, ...

2 This paper is a revised and extended version of a paper [JMTO8b] previously presented at the ABZ’08 conference.
3 http://www.smartesting.com, formerly Leirios Technologies.

Generating Tests from B Specifications and Dynamic Selection Criteria 3

We denote by S the B generalized substitutions and by E, F', ... the B expressions. Expressions are typed as
natural, boolean, set, function or relation. Relations between two sets A and C are denoted as A <> C'. Total
and partial functions are respectively denoted as A — C and A +» C. A pair of elements related by a relation
or a function is denoted as a — ¢. Given a substitution S and a post-condition R we are able to compute the
weakest precondition P, such that if P is satisfied, then R is satisfied after the execution of S. The weakest
precondition, defined in [Abr96], is denoted by [S]R. We denote by (S)R the expression —[S]-R, intuitively
meaning that if (S)R is satisfied, then a computation of S exists terminating in a state satisfying R. Given
a B substitution S, a particular predicate denoted by prd, (S) defines the relation between the values of the
state variables x before the execution of S and the values of the state variable 2’ after the execution of S.
prd, (S) is the before-after predicate of S. It is defined in Def. 2. B abstract machines are defined as in Def. 3.

Definition 2 (Before-after predicate). Let S be a substitution. The before-after predicate prd,(S) is
defined as prd, (S) = (S)(z = x').

Definition 3 (B Abstract Machine). A B abstract machine M is a tuple (z, I, Init, OP) where

x is a set of state variables,
e [is an invariant predicate over z,

Init is a substitution called initialization,
OP is a set of operation definitions as in Def. 1.

We denote as Xy (where X € {z, I, Init, OP}) a component of the B model M. If there is no ambiguity
on the model that is considered, we simply denote it by X. A model M defines a set Ay of operation names
and a set Predy of B predicates over the state variables z of M.

The test cases are finite executions. We first define the notion of B trace of a B abstract machine in
Def. 4. Intuitively, a B trace is a finite sequence of operation names starting after the initialization.

Definition 4 (B Trace). Let M = (z, I, Init, OP) be a B abstract machine. A trace is a finite sequence
v = Init; op1; 0p; . - . ; opy, wWhere op; is the name of an operation (€ Ay) defined in OP as in Def. 1.

Several executions can be associated to a B trace because, for any operation op;, there are possibly several
parameter values v; of p; that satisfy the typing predicate T3(p;). As can be seen in Def. 5, an execution is
an instance of a B trace with parameter values for every operation call that satisfy the precondition T;(p;).

Definition 5 (B Execution). Let M = (z,I,Init, OP) be a B abstract machine. Let 7y = Init; op1; opa;

...;0py be a trace of M. oy = (op1(v1),w1); (op2(ve),w2); . .. ; (opn(vn), w,) is an execution associated to 7w,
denoted by om € Execg(M,mm), if there is a sequence of state variable values ug; u1; us;. . .; Uy, a sequence
of status words wy;ws;...;w, and a sequence of parameter values vy;vs;...; v, such that

o [z' := uo|prd,(Init),
e for any i € 1.n: [p; := vi]Ti(p:i) A [, 2', swi, pi = wi—1, ui, wi, vi]prd,(S;).

Since we assume our specifications to be defensive (i.e. the preconditions are limited to typing predicates),
there is at least one execution associated to a B trace if T;(p;) is a satisfiable typing predicate. Thanks to
that, we assume that the executions respect the preconditions, i.e. the environment (simulated by the test
generator) always calls the operations with well-typed parameter values. In other words, the test generator
chooses parameter values that satisfy the precondition, i. e. the typing predicate T;(p;). Moreover, the
operation call op;(v;) from the state u;_; gives the new state variable values u; and returns the status word
w;- Ui—1, Ui, w; and v; satisfy the before-after predicate of S;.

3. IAS Case Study

This work was done in the framework of the RNTL POSE project, that brings together industrial (GEMALTO,
SMARTESTING, SILICOMP/AQL) and academic (LIFC/INRIA CASSIS project, LIG) partners. The aim
of the project was the validation of the conformity of a system to its security policy, especially for smart
cards.

Experiments have been made with a real size industrial application, the TAS platform. Prior to the
project, a behavioral model in B had been written by the LIFC and SMARTESTING, from which structural

4 J. Julliand, P.-A. Masson, R. Tissot and P.-C. Bué

A
I [}
I I
L] | [
I I
I I
I I

I| DF: file_02 | | PIN: pin_02 ||| KEY: key_01 ” EF: file_04 |

Fig. 1. A sample IAS tree structure

tests had been computed and executed on an TAS implementation by GEMALTO. We have extended these
tests with tests computed from dynamic selection criteria.

IAS is a standard for Smart Cards developed as a common platform for e-Administration in France, and
specified in [GIX04] by GIXEL. TAS provides services to the other applications running on the card. TAS
conforms to the ISO 7816 standard.

The file system of TAS is illustrated with an example in Fig. 1. Files in TAS are either Elementary Files
(EF), or Directory Files (DF), e.g. file 01 and file 02 in Fig. 1. The file system is organized as a tree
structure whose root is designed as MF (Master File).

The Security Data Objects (SDO) are objects of an application that contain highly sensitive data such
as PIN codes (e.g. pin_02 in Fig. 1) or cryptographic keys that protect another data. They can be used to
restrict the access to some of the application data.

The access to an object by an operation in TAS is protected by security rules based on security attributes.
The access rules can possibly be expressed as a conjunction of elementary access conditions, such as Never
(which is the rule by default, stating that the command can never access the object), Always (the command
can always access the object), or User (user authentication: the user must be authenticated by means of a
PIN code).

Let us present the variables of the model that we use in a forthcoming example of a test purpose given
in Sec. 4.3. Let X_ID be a set of X identifiers, where X is either DF, PIN, OBJ or SDO. The variable
current DF (€ DF_ID) stores the current selected DF. The variable pin_02_dfParent (€ PIN_ID + DF_ID)
is a partial function that associates to a PIN the DF where it is located. The variable rule 2_obj (€
SDO_ID U {always, never} <+ OBJ_ID) is a relation that associates to a SDO the object that it protects. If
the object is always (resp. never) accessible, then the SDO is replaced by the value always (resp. never).
The variable pin_authenticated 2_df (€ PIN_ID «» DF_ID) is a relation that associates a PIN with the DF
where the owner of the PIN is authenticated.

Consider for example the data structure shown in Fig. 1. The predicate pin 02 +— file 01 €
pin_02_dfParent is true since the PIN object pin_02 is located in the DF file_01. The predicate pin_02 —
file 02 € rule_2 obj is true if the access to the DF file_ 02 is protected by a user authentication over the
SDO pin_02. If pin 02 + file 02 € pin_authenticated 2_df is true, then the access to the DF file_02
is authorized, otherwise it is forbidden.

The services provided by the IAS platform can be invoked by means of various APDU# commands. Some
of these commands allow the creation of objects: for example, PUT_DATA 0BJ_PIN_CREATE creates a PIN code,
CREATE FILE DF creates a DF, ... Some are used to navigate through the file system, such as SELECT_FILE DF_-
PARENT Or SELECT_FILE DF_CHILD. Some set the values of attributes: for example, RESET_-RETRY_COUNTER is for resetting
the PIN try counter to its initial value, CHANGE REFERENCE DATA is for changing a PIN code value, VERIFY sets a
validation flag to true or false depending on the success of an authentication over a PIN code, ... Other
commands are for changing the life cycle state of files, such as DEACTIVATE FILE, ACTIVATE FILE, TERMINATE FILE,
Or DELETE FILE, ...

In accordance with APDU commands, the TAS platform responds to a command by means of a status
word (i.e. a codified number), which indicates whether the APDU command has executed correctly or not. If
not, the status word indicates the nature of the problem that prevented the command from ending normally.

4 Application Protocol Data Unit - it is the communication unit between a reader and a card; its structure conforms to the
ISO 7816 standards

Generating Tests from B Specifications and Dynamic Selection Criteria 5

OP L= operation_name

"Sop”
| "$op\{" OPLIST "}"

OPLIST = operation_name
| operation_name " OPLIST
SP L= state_predicate

Fig. 2. Syntactic Rules for the Model Layer

CHOICE = e

Fig. 3. Syntactic Rule for the Test Generation Directive Layer

4. Test Purpose

We see a test purpose as a means to exercise the system in a particular situation, for example w.r.t. a
property. Based on his know-how, an experienced security engineer will imagine possible scenarios in which
he thinks the property might be violated by an erroneous implementation. He describes the scenario as a
test purpose.

We have defined in [JMT08a] a language to express such test purposes. It is based on regular expressions
and allows the engineer to conceive its scenarios in terms of states to be reached and operations to be called.
We present the language in Sec. 4.1. The starting non-terminal of its grammar is SEQ. We give its semantics
in Sec. 4.2, and show a test purpose example in Sec. 4.3.

4.1. Language for Test Purposes Description

We designed the language to be as generic as possible w.r.t. the modelling language used to formalize the
system. The language is structured as three different layers: model, sequence, and test generation directive.

The model layer is for describing the operation calls and the state properties in the terms of the behav-
ioral model M. This layer constitutes the interface between M and the test purposes, and is the only one
that is modelling language dependent. The sequence layer is based on regular expressions and allows the
description of the shape of test scenarios as sequences of operation calls leading to states that satisfy some
state properties. The test generation directive layer is used to deal with combinatorial issues, by specifying
some selection criteria intended for the test generation tool.

We give the syntax of each layer. An example of a test purpose issued from the IAS case study can be
seen in Sec. 4.3.

4.1.1. Model Layer

The syntax of the model layer is given in Fig. 2. The rule SP describes conditions as state predicates over the
variables of M. The rule 0P allows for describing the operation calls, either by an operation name indicating
which operation is called, or by the token $op meaning that any operation is called, or by $op\{OPLIST}
meaning that any operation is called except one from the list OPLIST.

4.1.2. Test Generation Directive Layer

This part of the language is given in Fig. 3. It allows to specify guidelines for the test generation step. We
propose one directive aimed at reducing the search for instantiations of the test purposes.

The rule CHOICE introduces two operators denoted as | and ® for covering the branches of a choice. Let
S; and S be two test purposes. Then S; | Sy specifies that the test generator must generate tests for both
S1 and Ss. 81 ® S, specifies that the test generator must generate tests for either S; or S,. This directive is
taken into account by the unfolding function that will be shown in Fig. 10 and explained in Sec. 5.2.

4.1.8. Sequence Layer

This part of the language is given in Fig. 4. The rule SEQ is the root of the grammar for describing a TP as

6 J. Julliand, P.-A. Masson, R. Tissot and P.-C. Bué

SEQ = OP | (" SEQ ") | OP "~(" SP ")
| SEQ "." SEQ
| SEQ REPEAT
| SEQ CHOICE SEQ
REPEAT = ok | T4 | Y
| "{" num "}" | "{" num } | { num "} | { num num "}

Fig. 4. Syntactic Rules for the Sequence Layer

a regular expression.

A step of a sequence is either an operation call as denoted by 0P (see Fig. 2) or a subsequence of operation
calls that leads to a state satisfying a state predicate, as denoted by 0P ~»(SP).

Sequences can be composed by the concatenation of two sequences, the repetition of a sequence or the
choice between two sequences. We use the usual regular expression repetition operators (* for zero or many
times, + for one or many times, 7 for zero or one time), augmented with bounded repetition operators ({n}
means exactly n times, {n, } means at least n times, {,m} means at most m times, and {n,m} means between
n and m times). Notice that using the operators * and + possibly define infinite sets of tests. To be of
practical interest, they will have to be instantiated by the test engineer as explicit numbers some time in
the process. Using these operators in a test purpose allows the engineer to postpone this decision.

4.2. Semantics of the Test Purposes

The semantics of a test purpose expressed in our language is given as a labelled transition system in Def. 6.
The semantics of a test purpose TP is bound to a B abstract machine M that is the specification of the
system under test. We say that TP is defined on M. We give a unique name to any transition in a set
T = {t1,t2,...,t,}. The binding between the semantics of TP and M is such that the transitions of the
semantics of TP are labelled by the names of the operations of M in Ay, and a state predicate of Predy on
the variables z of M is associated to any state of the semantics of TP.

Definition 6 (Semantics of a Test Purpose). The semantics of a test purpose on a model M is a tuple
(@, 90, T, \,v, Q) where @ is a finite set of states, go € @ is the initial state, @y C @ is the set of terminating
states, T € T — (Q x 2 x Q) is a finite set of labelled transitions that are named and denoted by
ti— gic1 B g, A € Q = Predw is a total function that associates a state predicate, denoted by A(¢:),
with every state, and v € @ - {|,®} is a partial function that associates with every source state of a choice
expression its kind of operator.

To lighten the vocabulary, in the remainder of the paper, the word test purpose is used both for designing
a test purpose expressed in our language, and for designing its semantics.

Definition 7 (TP Trace). A finite sequence of transitions 7rp = t1;t2;...;t, is a trace of a test purpose
TP if there are ¢; € Q and op; € Awm such that for any i € 1.n, t; — qi—1 = ¢; € T and gy, € Qs

Given a trace 7rp, there are zero or many executions of 7rp on the B abstract machine on which TP is
defined.

Definition 8 (TP Execution). Let M = (z, I, Init, OP) be a B abstract machine. Let 7rp = t1;t2;...;t,
be a trace of a test purpose TP = (Q,qo,T, A, v, Q) defined on M. orp = (t1(v1),wr); (t2(v2), w2);. . .;
(tn(vn),w,) is an execution associated to 7rp, denoted by orp € Ezectp(M, 71p), if there are a sequence of
state values of TP qo;q1;q2;--.;qn, a sequence of state variable values of M ug; uy;us;...;u,, a sequence of
status words values wy;ws;...;w, and a sequence of parameter values vy;vs;...;v, such that:

o [z' := wo|prd, (Init),
o foranyiel.n:ti— g1 SqeTl,
e for any i € 1..n: [p; := v;|Ti(pi) A [z, &', swi, pi := Wiy, Ui, w;, v3]prd. (S;) A [z := u;)\ (q:).
We have defined in Def. 6 the semantics of a test purpose as a labelled transition system. We obtain it as

follows. We first express the regular expressions as normal forms, based on the three following basic operators:

concatenation, denoted by ”.” | choice denoted by ”|” or ”®”, and repeat denoted by ”*”. The other repetition

Generating Tests from B Specifications and Dynamic Selection Criteria 7

operators are redefined from these three basic operators. The instances of the constructions ”$op”, ”$op\{”
OPLIST ”}” and OP ”~»(” SP ”)” are collected as they are, into a set L of atomic symbols. Second, from these
normal forms, we compute an automaton (Q,qo,T",~y, Q) where T" is a set of labelled transitions in the set
Q% (AwUL) xQ and 7 is a partial function in Q-»{|, ®}. We apply the usual transformation rules of a regular
expression into an automaton to get it. There is however a little difference with the usual rules due to our two
choice operators: with v, we label the state on which the choice occurs with the corresponding choice operator.
Third, assuming that the name ¢ of every transition in 7' is unique, we transform the automata (Q, go,
T',7v,Q¢) that we have obtained into transition systems (Q, qo, T, A, v, Q) as follows.

Let ops be an OPLIST, a be an operation name in Ay, b be an operation name in Ay U {$op} and sp
be a state_predicate:

. $op~
t»—)q“i“fq'ETlfq&.pq'ET’orq °p—>(8p)q’€T’,
A . 3$

M\{—fps} g eTifq OP\ifps} q eT,
t»—)q—%q’ETifq—aH]'ET’orqawiqp)q'ET’,

for every state ¢’ Aq') = . sp; ; otherwise \(q') = true.
very q EQ: (q) /\(QieQ and Qib (_}p,)q,eT,) Di ; w (q)

t—q

A test purpose TP defines a set of finite traces that represents a set of symbolic test cases. We call each
trace a TP trace (see Def. 7). A TP trace is a finite sequence of transitions that is well formed w.r.t. the
transition relation of TP. To be precise, let us notice that it is actually one of the set of sets of finite traces,
due to the test generation directive represented by the function 7 and the operator ®. For example, the
semantics of the regular expression (a | b).(¢c ® d) is one of the four following sets of TP traces: {a.c, b.c},
{a.d,b.d}, {a.c,b.d} or {a.d,b.c}. These symbolic test cases must be instantiated as test cases (non symbolic),
called TP executions (see Def. 8) by a symbolic animator from a behavioral model M and some coverage
criteria. In Def. 8, an execution is a finite sequence of pairs made of an operation call provided with the
values of its parameters, and the expected status word value returned by the operation call.

The executions are easy to compute by a test generator when the TP traces are sequences of transition
names whose labels have all been instantiated, i.e. in which there is no $op label on the transition. Back-
tracking may be necessary to satisfy the constraints set by the predicates for the states to reach, and the
enabling conditions of the operations.

As for the B executions, several TP executions can be associated to a TP trace for the same reasons. But
in the TP executions, every operation call op;(v;) must moreover lead to a state that satisfies the target state
predicate A(g;) which is associated to the target state g; of the test purpose. For that, in Def. 8, we have
added the following condition for any i: [z := u;]A(g;). Consequently, it is also possible that no execution
is associated to a TP trace if there is no sequence uq;us;...;u, of state variable values that satisfy the
sequence A(q1), A(g2),- -, A(gn) of target state properties.

4.3. Test Purpose Example

Here, we exhibit one of the test purposes written for the experimentation of our approach. We wanted to
test a property saying that “fo access an object protected by a PIN code, the PIN must be authenticated” .
We have written a test purpose that causes the loss of the PIN authentication in all possible ways, and then
tries to access the object. The test purpose is given in two stages: the initialization stage and the core testing
stage.

Figure 5 presents the initialization stage of the test pattern in four steps, aiming at building the data
structure required on the card to run the test. The DF file 01 and file 02 and the PIN pin_02 are
names of objects that are defined in the description of the TP. Their types are defined from the types of
parameters that they instantiate. Notice that the target state predicates are expressed in the test purpose
as B predicates over the objects declared in the TP and the state variables of the B model M (see Sec. 3
for the explanation of the variables used in this example). The aim of the first step is to create a new DF
denoted file_ 01. The second step aims at creating a PIN object denoted pin_02 into the DF file 01 and
gaining an authentication over it. The aim of the third step is to create the DF file 02 into the DF file 01.
Finally, the last step aims at setting the current DF to file_01 in order to start the core of the test. The
resulting data structure is that of the dashed circled part of the Fig. 1: the DF file 02 is protected by the
PIN pin_02 for all commands.

8 J. Julliand, P.-A. Masson, R. Tissot and P.-C. Bué

CREATE_FILE_DF

~ (rule_2_obj[{file_.01}] ={always} A current_DF = file_01) // Pl
.PUT_DATA_OBJ_PIN_CREATE . VERIFY

~~ (PIN_2_dfParent(pin_02) = file_01

A file_O1 € pin_authenticated_2_df[{pin_02}]) // P2
. CREATE_FILE_DF
~ (rule_2_obj[{file_02}] = {pin_02} A current_DF = file_02) // P3
.SELECT_FILE_.DF_PARENT
~~ (current_DF = file_01) // P4

Fig. 5. Example of a test purpose — initialization stage

. (VERIFY | CHANGE_REFERENCE_DATA
| (RESET . SELECT_FILE_DF_CHILD) | RESET_RETRY_COUNTER
| (SELECT_FILE_.DF_PARENT . SELECT_FILE_DF_CHILD))

~(current_DF = file_01 A file_01 ¢ pin_authenticated_2_df[{pin_02}]) // P5
.SELECT_FILE_LDF_CHILD
~~(current_DF = file_02) // P6

. CREATE_FILE_DF|DELETE_FILE | ACTIVATE_FILE | DEACTIVATE_FILE
| TERMINATE_FILE_DF | PUT_DATA_OBJ_PIN_CREATE

Fig. 6. Example of a test purpose — execution stage

We have given in Fig. 5 and Fig. 6 a label to each target state predicates, so we can refer to it afterwards.
These labels appear as double slashed comments on the right hand of each predicate: // p1, // P2, etc.

Figure 6 shows the core testing stage, describing the test purpose of a successful authentication after
all possible ways to lose an authentication. First, the pattern describes the five possible ways for losing the
authentication over the PIN pin_02 (for instance, a failure of the VERIFY command or a reset of the retry
counter). The aim of the second step is to select the DF file 02, with the command SELECT FILE DF_CHILD.
The final step of the test pattern describes the application of six commands, with the current directory file
being file 02 in order to test the correctness of the access conditions.

The complete test purpose is represented as an automaton in Fig. 7. The edges are labelled by the
operation names of the pattern and the labels in the vertices refer to the target state predicates Pi of Fig. 5
and Fig. 6. Predicate true denotes a state that is not constrained.

5. Model-Based Testing Processes

This section first describes a model-based black-box testing process using static structural selection criteria
to compute tests from a model. Then we complete this process by using a dynamic selection criterion (TP)
instead of static ones, to compute additional tests. This approach is implemented within the Leirios Test

—)O— CREATE_FILE_DF —) PUT_DATA_OBJ_PIN_.CREATE @ VERIFY Po

SELECT-FILE_DF_PARENT \P-g/ CREATE_FILE_DF

VERIFY ~_
CHANGE_REFERENCE_DATA —
SELECT_FILE_DF_CHILD

|

CREATE_FILE_DF

PUT_DATA_OBJ_PIN_.CREATE

Fig. 7. Automaton associated to the test purpose example

Generating Tests from B Specifications and Dynamic Selection Criteria 9

f o ~
I tatic select.
: criteria

Test Generation

Fig. 8. Functional Model-Based Test Generation Process

Generator (LTG) tool [JLO7] from Smartesting, that takes B models as inputs. The LTG test computation
algorithm, presented in [CLP04], is based on structural coverage criteria of the operations of the model.

5.1. Model-Based Testing with Static Selection Criteria
5.1.1. Model-Based Testing Process

The process for computing model-based functional tests is summarized by Fig. 8. The process is made of
three steps.

e Test Generation. A set of functional tests is first statically computed from a behavioral functional model
M according to some static selection criteria. In our case, the test generation is performed by LTG. The
tool computes test targets from the model according to control flow, decision, condition and data coverage
criteria, as further detailed in Sec. 5.1.2 and Sec. 5.1.3.

e Concretization. As the tests computed have the abstraction level of the functional model M, they have to
be transformed into concrete tests, at the level of the implementation under test (IUT). This step relies
on the concretization layer which maps the operations and data of M to the operations and data of the
IUT, as further explained in Sec. 5.1.4.

e FEzxecution. In this step the verdict is given by the comparison between the outputs predicted by M as
included in the concrete tests, and the outputs given by the execution of the IUT on the data appearing
in the concrete tests (see Sec. 5.1.4).

The dashed circled parts in Fig. 8 show what in the process will be reused to generate tests from dynamic
selection criteria (TP), in addition to the functional ones. This will be performed by replacing the abstract
functional tests entering the right hand dashed circled part by abstract dynamic tests generated from a
functional model M and a TP as it is shown in Fig. 10.

The next three sections detail the composition of the test cases, the generation of test targets by appli-
cation of static coverage criteria and finally the concretization of test sequences into executable scripts.

5.1.2. Test Case Composition

The purpose of the model-based testing approach of LTG is to activate the operations of the B model.
More precisely, it focuses on a path-coverage of the control flow graph of the operations, in which each
path is called a behavior. Thus, each operation is covered according to its structure, by extracting its nested
behaviors. Each behavior is composed of two elements: an activation condition and an effect that describes
the evolution of the state variables if the activation condition is satisfied.

For each behavior, a test target is defined as its activation predicate (called decision). The tests covering
the behavior will be constituted of a preamble that puts the system in a state that satisfies the activation
predicate of the behavior. To achieve that, customized algorithms automatically explore the state space
defined by the B model and finds one path from the initial state to a state verifying the target. LTG
automatically selects the shortest preamble that reaches the test target. It is equipped with a constraint
solver and proceeds by symbolic animation to valuate the parameters of a test sequence.

10 J. Julliand, P.-A. Masson, R. Tissot and P.-C. Bué

preamble P identification

y
v
4
N

A
y

body " postamble

Fig. 9. Composition of a LTG test case

Apart from the preamble, a test is thus composed of the 4 elements shown in Fig. 9. The test body consists
of the invocation of the tested operation with the adequate parameters so that the considered behavior is
effectively activated. The identification phase is a set of user-defined operation calls that are supposed to
perform the observation of the system state. Their invocation when playing the test case on the IUT will
make it possible to compare the concretely observed values w.r.t. their expected values computed from the
model. Finally, a test case is ended by a postamble that is an optional sequence of operations calls that resets
the system to its initial state so as to chain the test cases together.

5.1.8. Coverage Criteria for Test Target Generation

From the previous basic definition of a test target, based on the coverage of the structure of the operation
model, two other model coverage criteria can be applied, namely predicate and data coverage. These criteria
are selected by the validation engineer.

Predicate coverage makes it possible to increase the test targets number, and possibly their error de-
tection abilities. This provides a mean for satisfying classical predicate coverage criteria that are: (i) Decision
Coverage (DC) stating that the tests evaluate the decisions (each activation condition) at least once, (ii) Con-
dition/Decision Coverage (C/DC) stating that each boolean atomic subexpression (called a condition) in a
decision has been evaluated as true and false, (iii) Modified Decision/Condition Coverage (MC/DC) stating
that each condition can affect the result of its encompassing decision, or (iv) Multiple Condition Coverage
(MCC) stating that the tests evaluate each possible combination of satisfying a predicate. In practice, dif-
ferent rewriting rules are applied on the disjunctive predicate form of the decisions, so as to refine the test
targets in order to take this coverage criteria into account (for more details see [ULO06]).

Data coverage makes it possible to indicate which of the test data have to be computed in order to
instantiate the tests. The options, applied to operation parameters and/or state variables, propose a choice
between: (i) all the possible values for a given variable/parameter that satisfy the test target, (i7) a smart
instantiation that selects a single value for each test data, or (ii7) boundary value coverage, for numerical
data, that will be instantiated to their extrema values (minimal and maximal values).

5.1.4. Executable Scripts and Verdicts

Once the abstract test cases have been computed, they have to be translated into the test bench syntax so
as to be automatically executed on the IUT. This is the concretization step.

To achieve that, the validation engineer has to provide two correspondence tables. One of these tables
maps the operation signatures of the B model to the control points of the test bench. The other one maps
the abstract constant values of the B model to the internal data values of the IUT. By using an appropriate
translator, a test script is automatically generated into the syntax of the test bench, ready to be run on the
IUT. The correspondence tables and the translator implement the concretization layer.

For each test, the verdict is established by comparing the outputs of the system in response to inputs sent
as the successive operations. The concretization layer is in charge of delivering the verdict, by implementing
functions that perform the comparison. In this context, the more observation operations (identification phase
of Fig. 9) are available, the more accurate the verdict is.

Limitations This approach aims at ensuring that the behaviors described in the model also exist in the
IUT, and their implementation conforms to the model. Nevertheless, this approach suffers from several
limitations.

First, the preamble computed by LTG is always the shortest path from the initial state to the test target.
As a consequence, possibly interesting scenarios for reaching this target may be avoided. This implies a lack

Generating Tests from B Specifications and Dynamic Selection Criteria 11

Dyn. select.
criterion TP

—_—— = — -

Unfelding

Trace animation

Abstract
Dynamic Tests

Fig. 10. Process for Generating and Executing Tests from a B model and a Test Purpose

j
g

of variety in the composition of these preambles, which may avoid revealing errors. Second, the preamble
computation is bounded in depth and/or time. This may prevent a test target from being reached.

To overcome these limitations, we now present a model-based testing approach that consists of using
dynamic selection criteria to compute new tests w.r.t. the ones issued from LTG.

5.2. Model-Based Testing with Dynamic Selection Criteria

Our process for generating tests uses a test purpose TP as selection criterion and a B behavioral functional
model M as oracle. The complete process is described by Fig. 10. Notice that the dashed circled parts are
the same as in Fig. 8, showing what is reused from the previous process. Here we replace the computation of
abstract functional tests based on static selection criteria, by a computation of abstract dynamic tests based
on a TP. The abstract dynamic test computation is made in three steps:

e synchronize M and the semantics of TP in Myp,
e compute the set of TP traces rrp unfolding the semantics of TP,

e compute the set of TP executions (abstract dynamic tests) from Myp and the set of TP traces.

Computing the abstract test cases is obtained by a symbolic animation of the TP traces on a B machine
M+p that is the synchronized product between the B model M and the test purpose TP. The synchronized
product between M and TP is computed according to the expression in B that is given in Sec. 6. The result
is a B machine Myp whose executions are the possible executions from M that conform to TP. Besides, TP is
unfolded as a finite set of TP traces (see Def. 7) 7rp, i.e. as sequences of transition names (each one labelled
with an un-parameterized operation call) defined according to TP, but without the target states. This set
computes all the TP traces whose last state is terminating, and whose length is lower or equal to a maximum
length defined by the tester.

We use LTG to instantiate the TP traces. LTG is also a B trace (see Def. 4 in Sec. 2) animator, used by
the test engineer to validate its models and manually complete the tests sequences. A TP trace is a B trace
of Mtp. LTG proceeds by symbolic animation. Notice that any other tool with similar capabilities could be
used for that purpose. The principle is to “guess” values for the parameters of the operations that make
it possible to execute the sequence of operations as described by a particular trace 7rp of the test purpose
TP. In other words, TP executions are computed by LTG animation capabilities from TP traces and Myp.
The parameter values are computed in LTG by a constraint solver, that finds some values that make the
sequences of operations of rrp reach the target states given in the TP. No execution is computed when the
target states are impossible to reach. The status words are also computed as expected by Myp for these
parameters. Additionally, from one TP trace 7rp, LTG will try to compute a TP execution.

The tests computed by this procedure have the abstraction level of the model M of the system and must
be concretized as explained in Sec. 5.1.1 in the item entitled Concretization.

12 J. Julliand, P.-A. Masson, R. Tissot and P.-C. Bué

MACHINE M MACHINE M+p
VARIABLES z INCLUDES M
INVARIANT 1 SETS Q = {q0,--.,qn}
INITIALISATION Init VARIABLES Cq
OPERATIONS INVARIANT Cq € Q

/* Cq : current state of TP */

sw; < opi(pi) = INITIALISATION Cq := qo

PRE T;(p;) THEN S; END OPERATIONS)

/*foranytini_loﬂqieT*/

END /* we define an operation ¢; s.t. */

SW; ti(pi) =

PRE T;(p;) THEN
SELECT Cg = gij—1 A3(z, sw}) -

(prdz(Si) A [z := oI\ (4:))

THEN sw; < opi(p;) || Cq := q;
END

END;

END

Fig. 11. Combination of a model M and a test purpose TP on M

6. Combining a Model and a Test Purpose for Dynamic Selection of Tests

In Fig. 11, we define how to express in B the synchronized product Myp of a behavioral model M described
as a B abstract machine, and a test purpose TP on M. Mtp includes the abstract machine M so that it can
read the state variables z of M, and it can synchronize any transition ¢ of TP with a call to an operation
of M labelled by t. The variable C'q represents the current state reached by the last transition executed
in the test purpose TP. The initial state is go. For any transition ¢; (such that T'(t;) = gi—1 = ¢;), we
define an operation also called ¢; in Myp. Its parameter values must satisfy the typing predicate T;(p;) of the
operation op; that is called by ¢;. This operation is enabled if the current state is ¢;—; and if there are state
variable values z' and a status word value sw} after ¢; that satisfy the before-after predicate of the body of
the operation op; and the target state predicate of the test purpose A(g;). When these conditions hold, the
operation t; calls the operation of M op; and places the system in the target state ¢; of the test purpose.

Theorem 1 establishes the soundness of the method. For a TP trace 7rp = t1;t2;. .. ;t, (see Def. 7), any B
execution (see Def. 5) of the B composed abstract machine Mtp for the B trace Ty, = Initm,;t1;t2;. .. tn
is a TP execution (see Def. 8) of 7rp on the abstract machine M. Theorem 2 establishes the method com-
pleteness.

Theorem 1 (Soundness). Let Mtp be the B composition of a B model M and a test purpose TP on M as
in Fig. 11, and let 7rp be a TP trace then,

E:L'CCB(MTP, I’I’LitMTP; TTp) g E:L'CCTP(M, TTP)-

Proof. The proof relies on the fact that, the difference between the B executions of the model M and the
TP executions of M, is that, the target predicate A(g;) holds in every target state g; of the TP execution.
This condition is also satisfied in the B execution of Mtp since we add this condition in the guard of its
operations t; (see Fig. 11). Moreover, it is obvious that the B executions of Myp and the TP executions of
M compute the same sequence of states as TP, and execute the same sequence of operation calls as M. [

Theorem 2 (Completeness). Given a B composition Mtp of a B model M, a test purpose TP on M and
a TP trace 7rp,

Execrp(M, 71p) C Ezecg(Mrp, Imitmy,; Tp).

The proof is straightforward.
Our implementation with LTG computes the B execution of Mtp with the semantics given in Def. 5. It
is sound, but not complete because the constraint solving algorithm is time limited.

Generating Tests from B Specifications and Dynamic Selection Criteria

Test purpose | f operations | f transitions | f states
TP1 12 13 12
TP2 10 17 14
TP3 9 15 12

13

Table 1. Test purposes description

7. Experimental Results

In this part, we report and comment the results of an experimentation done with a security-based B model
of TAS, which is 1032 lines long and contains 12 B operations and 19 states variables. This model focuses on
access control, and in particular on user authentication by means of a PIN code.

In Sec. 7.1, we present the goal of our experiments. We deduce from this objective the criteria that we
must evaluate to reach it. Then we propose an experimental protocol. In Sec. 7.2, we present the experimental
results, and we conclude in Sec. 7.3 with the analysis of the results.

7.1. Goal, Means and Process of Experimentation

The goal of our experimentations is to answer the question of the complementarity of the test cases generated
from dynamic selection criteria, w.r.t. the test cases generated from static selection criteria. We have to
address two points to reach this goal:

e we need sets of test cases generated either with dynamic or static selection criteria,
e we need coverage evaluation criteria in order to compare the different test suites.

As for the first point, we have generated four test suites (see Table 2) named LTG, TP1, TP2 and TP3.
The LTG test suite have been generated using C/DC static selection criteria with the tool LT'G. The three
other test suites have been generated using dynamic selection criteria in the shape of three test purposes
named TP1, TP2 and TP3. Table 1 gives the number of operations, the number of transitions and the
number of states of each test purpose. The first test purpose, that is defined in Sec. 4.3, aims at producing
test sequences combining different ways to lose the authentication over a PIN code with the launching of
different commands protected by this PIN code. The second test purpose aims at validating the correct
interpretation of an access rule, in a context where a confusion could occur between two different PIN
objects, due to the complexity of the IAS object reference mechanisms. The third test purpose aims at
checking the behavior of the application when an authentication over a PIN object is combined with file life
cycle changes.

As for the second point, we have decided to evaluate the coverage of each test suite with respect to a
common frame of reference. Directly taking the IAS model as a reference for comparing the coverage of the
test campaigns woul not have been a good choice for two reasons: first, the number of states and transitions
is too big and second, the part covered by a particular test purpose would be too weak to give significant
results. Thus, we have decided to generate an abstraction of the model by focusing on variables giving a good
point of view of the states of the system targeted in the test purposes. This abstraction has been computed
by the GeneSyst tool [BPS05]. This tool computes a symbolic labelled state-transition system from a B
model and the description of the symbolic states that we want to observe, i.e. the domain decomposition of
the chosen variables. In our case, the graph produced for TAS was made of 18 states and 497 transitions.

In order to obtain an abstraction which is relevant with respect to the observation of the system, and
in particular the access control based on user authentication by means of a PIN code, we have chosen three
variables. These variables are: current_DF that models the location of the current directory; df2_dfParent?®
that represents the structure of the directory tree; and pin_authenticated 2_df that indicates the authen-
tication status of a PIN code inside a DF. This choice of variables gave us an abstraction well suited to the
observation of the coverage of the tests produced with the test purposes TP1 and TP2. But this abstraction
is not well suited to study the coverage of the tests generated from the test purpose TP3. This is due to the
fact that TP3 aims at testing the combination of the authentication mechanism with file life cycle changes.
The variable representing the file life cycle state has not been taken into account to produce the abstraction,

5 This function associates each directory with his parent.

J. Julliand, P.-A. Masson, R. Tissot and P.-C. Bué

14
Tests | f tests | Average length | Min length [Max length
LTG 65 2.5 1 5
TP1 35 9.4 9 10
TP2 66 9.5 8 11
TP3 88 6.9 5 8
Table 2. Test generation results
Tests f tests State coverage Transition coverage
LTG 65 5/18 = 27.78 % | 33/497 = 6.64 %
TP1 35 9/18 = 50.00 % | 35/497 = 7.04 %
TP2 66 12/18 = 66.67 % | 52/497 = 10.46 %
TP3 88 5/18 = 27.78 % | 23/497 = 4.63 %
TP123 189 13/18 = 72.22 % | 87/497 = 17.51 %

Table 3. Test suites coverage measures

because it resulted in too many symbolic states. It could be interesting to produce another abstraction to
study the coverage results of the tests produced with the test purpose TP3.

7.2. Results of Test Generation and Comparison of the Test Suites

Tables 2, 3 and 4 give the results of our experimentations. We consider the following test suites:

o the LTG test suite, where tests have been generated using behavior coverage criteria with coverage of
conditions and decisions (C/DC) and coverage of boundary values for the operation parameters;

e the three test suites TP1, TP2 and TP3, where tests have been generated using respectively the test
purposes TP1, TP2 and TP3 as dynamic coverage criteria.

Table 2 indicates for each test suite the number of tests computed, the average number of operation calls
per test sequence and the minimal and maximal number of operation calls per test sequence.

Table 3 presents the state and transition coverage achieved by each test suite as well as by the union of
the three test suites generated using the test purposes.

The complementarity of a test suite e; w.r.t. a test suite ey is denoted as comp(es,es). We measure it
as the ratio between the number of transitions covered solely by e; (i.e. not by e2) and the full number
of transitions covered by e; (possibly including transitions also covered by es). If cov(e) is the number of

transitions covered by a test suite e, then comp(e;,es) = %
We need additional coverage results given in Table 4 to measure the complementarity of the test suites

issued either from LTG or from the test purposes:

e TP1 U LTG, TP2 U LTG and TP3 U LTG give the coverage achieved by the union of each test suite
issued from the test purposes with the LTG test suite;

e TP123 U LTG gives the coverage achieved by the union of all the test suites.

The last two columns of Table 4 give the percentage of transitions that are not redundantly covered by the
test suites of LTG and by the ones issued from the test purposes.

Test suite i tests State coverage Transition coverage | comp(LTG,TP;) | comp(TP;, LTQG)

TP1 U LTG 100 9/18 = 50.00 % 63/497 = 12.68 % 28/33 =848 % 30/35 = 85.7 %

TP2 U LTG 131 12/18 = 66.67 % 83/497 = 16.70 % 31/33 =939 % 50/52 = 96.2 %

TP3 U LTG 153 6/18 = 33.33 % 51/497 = 10.26 % | 28/33 =84.8 % 18/23 =783 %

TP123 U LTG 254 13/18 = 72.22 % | 109/497 = 21.93 % 22/33 = 66.7 % 76/87 = 87.4 %
Table 4. Measures of the Complementarity of the Transitions Covered

Generating Tests from B Specifications and Dynamic Selection Criteria 15

7.3. Report and Conclusion About the Results

The coverage evaluation corroborates the fact that the tests generated using test purposes as dynamic
coverage criteria complement the tests generated using static criteria.

Table 2 shows that the average length of the tests generated from the test purposes is between 2.7 and 3.8
times longer than the tests generated from static selection criteria. Table 3 shows that the tests generated
from the test purposes cover up to twice as many states and transitions than the tests generated from static
selection criteria.

The first part of Table 3 shows that the test suites obtained from test purposes give a better coverage
of the states and transitions of the abstraction than LTG, except for the last test purpose TP3. The better
coverage —such as 66.67 % of states and 10.46 % of transitions for the tests generated using TP2- is due to
the fact that test purposes were designed to test the access control, and that the abstraction has been chosen
to focus on it. The poor coverage results obtained with the third test purpose are due to the fact that the
abstraction was not suited to TP3 (see Sec. 7.1).

The results given in Table 4 clearly show that there is little redundancy between the tests issued from
LTG and the ones issued from the test purposes. Nearly 85% and more of the transitions covered by the
LTG tests are not covered by the test purposes ones, and vice-versa. There are two slightly lower ratios.
“Only” 66.7% of the LTG tests differ from the union of the ones issued from TP1, TP2 and TP3. This is
not surprising since the intersections of the LTG tests with each of the three test purposes are put together
by this measure. We also see that less than 80% of the TP3 tests are complementary to the LTG ones. This
comes again from the abstraction not well suited to TP3. Nevertheless, the ratio (78.3%) remains good.
Finally, we think that All-Transition-Pairs coverage criterion (every pair of adjacent transitions in the state
transition model must be traversed at least once), which has not been studied in this paper, could also serve
our intention to show the complementarity of the different test suites.

These results show that we have increased the coverage of the system —in particular, the access control
part which is observed by the abstraction— by generating test suites from the three different test purposes.
These results also show that the test purposes that we designed lead to complementary test sequences w.r.t.
the tests generated from static selection criteria.

8. Conclusion

We have presented in the B framework a method for generating tests from test purposes in a behavioral
model-based testing context. We have performed experiments on the industrial smart card platform IAS.
This experimentation shows that the tests that we have generated are complementary w.r.t. the struc-
tural ones [BLLP04, SLBO05]. The method makes use of already existing material, written for model-based
structural testing: the behavioral model, the concretization layer and the test execution environment. The
approach also re-uses the set theory constraint solvers and the algorithms for preamble searching of a test
target. Additionally, test purposes are written by a test engineer to describe his test intentions.We have
presented a language dedicated to the expression of the test purposes. The language allows the tester to
describe operations to be called as well as states to be reached. Writing a test purpose needs good expertise
in the model of the system on behalf of the tester. He must express the set of executions for which he wishes
a test selection by a test purpose. But the expressivity of the language that we propose makes their descrip-
tions easier, thanks for example to the use of regular expressions. In general, it would be far more difficult,
if possible at all, to drive the static generator by transforming the behavioral model and/or adapting the
static selection criteria, in such a way that it finds similar tests to the ones generated from test purposes.

The method easily ensures the traceability of the tests generated to the original test purposes, since the
tests are computed from them. Also, with the traceability mechanism for functional test generation that we
use, we know which operation behaviors have been covered.

Among the works on Model-Based Testing, some use static (or structural) test selection criteria [EFHP02,
BLLP04, UL06], applied to the behavioral model. Some other works apply dynamic criteria. Our works fit in
this second category, and complete a test generation environment based on static criteria. Dynamic selection
criteria target specific classes of execution of the system. The aim is to test dynamic properties such as
safety properties, security properties (access control [DJMO08, PMLT08], integrity, authentication, etc.), and
partial availability properties called possibilities in [CJMRO7]. In the previous cited works, dynamic selection

16 J. Julliand, P.-A. Masson, R. Tissot and P.-C. Bué

criteria are described as input-output labelled transition systems. We have called test purposes these dynamic
selection criteria.

Many other works use test purposes as selection criteria to extract tests from a model. The test pur-
poses are described by temporal properties in a temporal logic [ADX01, TSL04], input output Labelled (or
Symbolic) Transition Systems ioLTS (ioSTS [JJRZ05, CIVDP07, FTWO05]), or use cases [GHN93].

As in all these approaches, our method performs the synchronized product between the test purpose and
a behavioral model. Two points make our method different from the approaches with properties expressed
as temporal logic formulas. On one hand, the test purposes express a test intention from the tester by a
combination of state sequencing (as in temporal logic) and operation calls (which does not exist in temporal
logic). On the other hand, the test generation technology is different. Temporal logic based approaches use
model-checkers, that generate tests by exhibiting counter-examples. Our approach uses constraint solving
techniques to perform symbolic executions, on symbolic values of the parameters of the operations. Thus it is
possible to treat infinite data domains, thanks to strategies of static selection of finite sets of representatives.
Finally, the approach [ADXO01] uses property mutation techniques, based on syntactical transformation of
operators. In our approach, the tester combines a test need with a property, which can be seen as a semantic
mutation of a property. Our mutations introduce modifications in the sequencing of operation calls while the
automatic mutations transform the propositional or relational operators used in the atomic conditions.

Our approach differs from approaches such as the one adopted by TGV [JJ05] (resp. STG [JTRZ05])
that use IOLTS (resp. IOSTS) expressing operation calls, with no information on the targeted states. These
approaches use constraint solving techniques on data in integer and boolean scalar domains. We also use
constraint solvers on more complex data structures of set theory domains, in order to fully treat the behav-
ioral B modelling language (sets, functions, relations and sequences). The approaches with IOSTS also use
symbolic execution techniques by abstract interpretation, to reduce the size of the synchronized product.
The unreachable states are suppressed by over-approximation. This abstract interpretation allows treating
symbolic models. Our approach uses a symbolic model to evaluate the tests coverage.

In [SMLO6], the authors present a test case generation algorithm from B event systems and use cases
by refinement. There are three main differences with our approach. Our method reuses abstract B machines
and a concretization layer CL dedicated to the functional test generation. Therefore we do not refine the test
cases. Moreover, our test purposes are more expressive use cases that contain target state descriptions.

As a difference with the preceding approaches, we have shown in a previous work [MJP*07] how the test
purposes can be automatically computed, by modelling some test needs as syntactic transformation rules that
transform behavioral properties. We are currently working at identifying and writing such transformation
rules, based on the TAS case study. This work needs to be developed by studying many other case studies (for
instance, the mini-challenge that proposes to design and verify a POSIX compliant flash-based system [JH07])
in order to produce rules sufficiently generic to be applicable to a variety of examples. Rules could also be
automatically deduced from the syntactic expression of a property, as suggested by [BDGJ06] for properties
expressed in JTPL, a temporal logic for JML.

The method that we have presented works well, and is applicable to industrial size applications as long as
the TPs are not too generic. By that, we mean that the constructions $op™* or $op*, although allowed by the
language, are not used by the tester. If no $op is used at all, then all the operation calls are explicitly defined,
and we find their parameter values by animation of the behavioral model M. If $op is used with no repetition
operator, it is still easy to instantiate it as an operation call: this is obtained by trying every operation at most
once. But when the constructions $op™ or $op* are used, the valuation becomes more complicated. Indeed,
every such construction has to be instantiated, i.e. replaced by a sub-sequence of valuated and explicitly
defined operation calls. This implies searching amongst all the possible instantiations, one for which there
are parameter values that cause the sub-sequence to reach the targeted symbolic state specified in the TP.
There is a combinatorial explosion of the possibilities. To deal with this situation, we plan to generate an
abstraction of the system, based on variables and sub-domains identified in the TP. We could synchronize
this abstraction with the TP. We would thus obtain a view of the system where the generic operation calls
have been instantiated. We could use this view to generate tests from a static selection criterion, such as the
coverage of the states, or of the transitions of this view. These tests would be symbolic tests, in the shape
of a sequence of operation calls, provided with symbolic values of their parameters. They would have to be
valuated afterwards from the detailed behavioral model. We could also use the abstraction synchronized with
the TP as a reference model to evaluate the tests coverage. This approach raises two technological challenges.
On one hand, it is necessary to have a time efficient technology of abstraction, that can be applied in practice.
On the other hand, the abstraction techniques can fold back sequences of operation calls into cycles. So, the

Generating Tests from B Specifications and Dynamic Selection Criteria 17

search of a valuation of the symbolic tests will have to find sub-sequences of operations to insert between
two symbolic calls. But this cycle combination search is highly combinatorial. Thus, the issue will be to find
incomplete, but practically efficient, search techniques. This means techniques that provide reasonably good
coverage rates for the examples treated.

References

[Abr96] Jean-Raymond Abrial. The B Book: Assigning Programs to Meanings. Cambridge University Press, 1996.

[ADX01] P. Amman, W. Ding, and D. Xu. Using a model checker to test safety properties. In ICECCS’01. IEEE Computer
Society, 2001.

[BDGJO06] F. Bouquet, F. Dadeau, J. Groslambert, and J. Julliand. Safety property driven test generation from JML speci-
fications. In FATES/RV’06, volume 4262 of LNCS, pages 225-239. Springer, 2006.

[BJKt05] M. Broy, B. Jonsson, J.-P. Katoen, M. Leucker, and A. Pretschner, editors. Model-Based Testing of Reactive
Systems, volume 3472 of LNCS. Springer, 2005.

[BLLP04] E. Bernard, B. Legeard, X. Luck, and F. Peureux. Generation of test sequences from formal specifications: GSM
11-11 standard case study. Software: Practice and Ezperience, 34(10):915-948, 2004.

[BPSO05] D. Bert, M.-L. Potet, and N. Stouls. Genesyst: a tool to reason about behavioral aspects of B event specifications.
In ZB’05, volume 3455 of LNCS, 2005.

[CIVDPO07] J. Calamé, N. Ioustinova, and J. Van De Pol. Automatic model-based generation of parameterized test cases using
data abstraction. ENTCS, 191:25-48, 2007.

[CIMRO7] C. Constant, T. Jéron, H. Marchand, and V. Rusu. Integrating formal verification and conformance testing for
reactive systems. IEEE Transactions on Software Engineering, 33(8):558-574, August 2007.

[CLP04] S. Colin, B. Legeard, and F. Peureux. Preamble computation in automated test case generation using Constraint
Logic Programming. The Journal of Software Testing, Verification and Reliability, 14(3):213-235, 2004.

[DIMO8] J. Dubreil, T. Jéron, and H. Marchand. Automatic test generation for security properties. Deliverable 1.3.3,
INRIA/IRISA Vertecs Project, 2008. Politess Project, ANR-05-RNRT-01301.

[EFHP02] E. E. Farchi, A. Hartman, and S. S. Pinter. Using a model-based test generator to test for standard conformance.
IBM Systems Journal, 41(1):89-110, 2002.

[FTWO05] L. Frantzen, J. Tretmans, and T.A.C. Willemse. Test generation based on symbolic specifications. In J. Grabowski
and B. Nielsen, editors, FATES 2004, Formal Approaches to Software Testing, volume 3395 of LNCS, pages 1-15.
Springer, 2005.

[GHN93] J. Grabowski, D. Hogrefe, and R. Nahm. Test case generation with test purpose specification by MSCs. In SDL’93
- Using Objects, October 1993.

[GIX04] GIXEL. Common IAS Platform for eAdministration, Technical Specifications, 1.01 Premium edition, 2004.
http://www.gixel.fr.

[JHO7] R. Joshi and G. Holzmann. A mini challenge: build a verifiable filesystem. Formal Aspects of Computing, 19(2):269—
272, June 2007.

[JJ05] C. Jard and T. Jéron. TGV: theory, principles and algorithms. Software Tools for Technology Transfert, 7(1),
2005.

[JIRZ05] T. Jeannet, T. Jéron, V. Rusu, and E. Zinovieva. Symbolic test selection based on approximate analysis. In
TACAS’05, volume 3440 of LNCS, pages 349-364. Springer, 2005.

[JLO7] E. Jaffuel and B. Legeard. LEIRIOS Test Generator: Automated test generation from B models. In B’2007, volume
4355 of LNCS, pages 277-280. Springer, 2007.

[JMTO08a] J. Julliand, P.-A. Masson, and R. Tissot. Generating security tests in addition to functional tests. In AST’08, 3rd
Int. workshop on Automation of Software Test, pages 41-44, Leipzig, Germany, May 2008. ACM Press.

[JMTO08b] J. Julliand, P.-A. Masson, and R. Tissot. Generating tests from B specifications and test purposes. In ABZ’08,
Int. Conf. on ASM, B and Z, volume 5328 of LNCS, pages 139-152, London, UK, September 2008. Springer.

[MJPt07] P.-A. Masson, J. Julliand, J.-C. Plessis, E. Jaffuel, and G. Debois. Automatic generation of model-based tests for
a class of security properties. In A-MOST’07, pages 12-22. ACM Press, 2007.

[PMLTO08] A. Pretschner, T. Mouelhi, and Y. Le Traon. Model-based tests for access control policies. In ICST08, Int. Conf.
on Software Testing, Verification, and Validation, pages 338-347. IEEE Computer Society, 2008.

[SLBO05] M. Satpathy, M. Leuschel, and M. Butler. ProTest: An automatic test environment for B specifications. In MBT’0/,
volume 111 of ENTCS, pages 113-136, 2005.

[SML06] M. Satpathy, Q.-A. Malik, and J. Lilius. Synthesis of scenario based test cases from B models. In FATES/RV’06,
volume 4262 of LNCS, pages 133-149. Springer, 2006.

[TSLO04] L. Tan, O. Sokolsky, and I. Lee. Specification-based testing with linear temporal logic. In IRI’2004, IEEE Int.

[ULO6]

Conf. on Information Reuse and Integration, pages 413-498, November 2004.
M. Utting and B. Legeard. Practical Model-Based Testing - A tools approach. Elsevier Science, 2006.

