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Abstract—Guaranteeing the security of information transmit- by using new mathematical tools. This is why the idea of using
ted through the Internet, against passive or active attacksis a chaotic dynamical systems for this purpose has recentlyp bee
major concern. The discovery of new pseudo-random number explored [8], [9]. The random-like and unpredictable dyiem

generators with a strong level of security is a field of reseah f chaoti t their inh t det - d simoli
in full expansion, due to the fact that numerous cryptosystms of chaouc systems, their inherent determinism and simplic

and data hiding schemes are directly dependent on the quajitof ity Of realization suggest their potential for exploitati@s
these generators. At the conference Internet'09, we destéd a PRNGSs. Such generators can strongly improve the confidence

generator based on chaotic iterations which behaves chaotilly put in any information hiding scheme and in cryptography in
as defined by Devaney. In this paper which is an extension of general: due to their properties of unpredictability, tresgi-

the work presented at the conference Internet'10, the propsal - . . .
is to improve the speed, the security, and the evaluation otis bilities offered to an attacker to achieve his goal are dratly

generator, to make its use more relevant in the Internet seaity ~ reduced in that context. For example, in cryptography, leegs
context. In order to do so, a comparative study between varies needed to be unpredictable enough, to make sure any search

generators is carried out and statistical results are improed. optimization based on the reduction of the key space to the

Finally, an application in the information hiding framewor k is ot probable values is impossible to work on. But the number

presented with details, to give an illustrative example of ie use . . .

of such a generator in the Internet security field. of generators claimed as chaotic, which actually have been
proven to be unpredictable (as it is defined in the mathemwdatic

Keywords-Internet security; Pseudo-random number genera- theory of chaos) is very small

tor; Chaotic sequences; Statistical tests; Discrete chaiat itera-
tions; Information hiding.

II. OUTLINE OF OURWORK

. INTRODUCTION This paper extends the study initiated in|[10]1[11].1[12],

Due to the rapid development of the Internet in recent yeaes)d tries to fill this gap. In[[11], it is mathematically prove
the need to find new tools to reinforce trust and securithat chaotic iterations (Cls), a suitable tool for fast caoipy
through the Internet has become a major concern. Its recdigtributed algorithms, satisfies the topological chagtiop-
role in everyday life implies the need to protect data arefty, following the definition given by Devanel [13]. In the
privacy in digital world. This extremely rapid developmarit paper [12] presented at Internet'09, the chaotic behavior o
the Internet brings more and more attention to the inforomati Cls is exploited in order to obtain an unpredictable PRNG
security techniques in all kinds of applications. For extmnp that depends on two logistic maps. We have shown that, in
new security concerns have recently appeared because ofatidition to being chaotic, this generator can pass the NIST
evolution of the Internet to support such activities as @fidg  (National Institute of Standards and Technology of the U.S.
VoD (Video on demand), and the protection of intellectugbovernment) battery of test§ [14], widely considered as a
property. In all these emerging techniques, pseudo-randeomprehensive and stringent battery of tests for crypfuyca
number generators (PRNG) play an important role, becageplications. In this paper, which is an extension[of [10§ w
they are fundamental components of almost all cryptosysteimave improved the speed, security, and evaluation of thedor
and information hiding schemes| [1][] [2]. PRNGs are typicallgenerator and of its application in information hiding. Gtia
defined by a deterministic recurrent sequence in a finite st@roperties, statistical tests, and security analysis fll6jv us
space, usually a finite field or ring, and an output functioto consider that this generator has good characteristids an
mapping each state to an input value. Following [3], thisigal is capable to withstand attacks. After having presented the
is often either a real number in the interyal 1) or an integer theoretical framework of the study and a security analysis,
in some finite range. PRNGs based on linear congruentveg will give a comparison based on statistical tests. Rynall
methods and feedback shift-registers are popular forfidsio concrete example of how to use these pseudo-random numbers
reasons|[[4], but their security level often has been redeal®r information hiding through the Internet is detailed.
to be inadequate by today’s standards. However, to use a&he remainder of this paper is organized in the following
PRNG with a high level of security is a necessity to protegtay. In Sectiori 1ll, some basic definitions concerning claot
the information contents sent through the Internet. Thiglle iterations and PRNGs are recalled. Then, the generatodbase
depends both on theoretical properties and on statisesé$.t on discrete chaotic iterations is presented in Secfioh IV.

Many PRNGs have already been proven to be secure f8lection[V is devoted to its security analysis. In Secfioh VI,
lowing a probabilistic approach1[5]][6][7]. However, the various tests are passed with a goal to achieve a statistical
performances must regularly be improved, among other shingpmparison between this new PRNG and other existing ones.
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In Sectior VI, a potential use of this PRNG in some Internés highly quantized (i.e., latticed) with a finite computing

security field is presented, namely in information hidingeT precision (in other words, dynamical degradation of cardins

paper ends with a conclusion and intended future work.  chaotic systems realized in finite computing precision).ewh
chaotic systems are realized in finite precision, their dyical

I1l. REVIEW OF BASICS properties will be deeply different from the properties of
A. Notations continuous-value systems and some dynamical degradation
[1:N] — {1,2,...,N} wil! arise, such as short cycle length and decayed dis.tdbut .
S" — then'" term of a sequencé = (S, S2,...) T_h|s phenomenon has been reported and analyzed in various
v;  — thei’™ component of a vector situations [17], [[18], [[10], [[20], [[21]. _ o
v=(v1,02,...,00) Therefore, continuous chaos may collapse into the digital

world and the ideal way to generate pseudo-random sequences

¥ — k' composition of a functiory _ > _ _
is to use a discrete-time chaotic system.

strategy — a sequence which elements belong[inN]
S — the set of all strategies

Ck - the binomial coefficien(”’) = #Lk)' D. Chaos for Discrete Dynamical Systems
@ — bitwise exclusive or Consider a metric spacgY, d) and a continuous function
+ — the integer addition f X — X, for one-dimensional dynamical systems of the
< and>— the usual shift operators form:
(X,d) — a metric space x” € X andVn € N*, 2" = f(a"1), 1)

mod — a modulo or remainder operator
| 2] — returns the highest integer smaller than
n! — the factorialn! =n x (n — 1) x --- x 1

the following definition of chaotic behavior, formulated by
Devaney[[13], is widely accepted:

IN* — the set of positive integer§l,2,3,..} Definition 1 A dynamical system of Forn{1) is said to be
chaaotic if the following conditions hold.
B. XORshift « Topological transitivity:

XORshift is a category of very fast PRNGs designed by VU,V open sets oft \ @, 3k > 0, fX(U)NV # @ (2)
George Marsaglia [16]. It repeatedly uses the transform of
exclusive or (XOR) on a number with a bit shifted version
of it. The state of a XORshift generator is a vector of bits.
At each step, the next state is obtained by applying a given
number of XORshift operations te-bit blocks in the current P=Xx (3)
state, wherav = 32 or 64. A XORshift operation is defined
as follows. Replace the-bit block by a bitwise XOR of the
original block, with a shifted copy of itself by positions either

« Density of periodic points it
Let P = {p € X|3In € IN* : f(p) = p} the set of
periodic points off. Then P is dense inX"

« Sensitive dependence on initial condition®& > 0,
Ve € X, V5§ > 0,3y € X, In € N, d(z,y) < 6 and

to the right or to the left, wheré < a < w. This Algorithm1 d(f"(@), [*(y) > e
has a period o232 — 1 = 4.29 x 10°. When f is chaotic, then the systerfit, f) is chaotic and
qguoting Devaney: “it is unpredictable because of the seesit

Input: the internal state (a 32-bit word) dependence on initial conditions. It cannot be broken down
Output: y (a 32-bit word) or decomposed into two subsystems which do not interact
z 4 2@ (2 < 13); because of topological transitivity. And, in the midst ofsth
z4z® (2> 17); random behavior, we nevertheless have an element of reg-
Z 4 2@ (2 < 5); ularity.” Fundamentally different behaviors are consetlye
Y 2 possible and occur in an unpredictable way.
returny;

Algorithm 1: An arbitrary round of XORshift algorithm  E. Discrete Chaotic Iterations
Definition 2 The setB denoting{0, 1}, let f : BN — BN be
an “iteration” function andS € S be a chaotic strategy. Then,

. ici i i 0 N
C. Continuous Chaos in Digital Computers ?nedso callecchaotic iterations[22] are defined by’ € B

In the past two decades, the use of chaotic systems in n—1 it gn 2y
the design of cryptosystems, pseudo-random number gene¥n € IN*,Vi € [1;N], z}* = { i i ! S fz N )]
ators (PRNG), and hash functions, has become more and FaD)sn i 5" =
more frequent. Generally speaking, the chaos theory in threother words, at thex*” iteration, only theS™—th cell is
continuous field is used to analyze performances of relatétkrated”. Note that in a more general formulatio$? can
systems. However, when chaotic systems are realized itaigbe a subset of components afig:"~!)s. can be replaced by
computers with finite computing precisions, it is doubtfuf(z*)s~, wherek < n, describing for example delays trans-
whether or not they can still preserve the desired dynamigsssion. For the general definition of such chaotic iteratjo
of the continuous chaotic systems. Because most dynamiseg, e.g.,[[22].
properties of chaos are meaningful only when dynamical Chaotic iterations generate a set of vectors (Boolean wecto
systems evolve in the continuous phase space, these pespein this paper), they are defined by an initial stat, an
may become meaningless or ambiguous when the phase sp@ecation functionf, and a chaotic strategy.



The next section gives the outline proof that chaotic iteraORshift sequence (SectiGn TV-B4). The iterate functjois
tions satisfy Devaney’s topological chaos property. Theyt the vectorial Boolean negation:
can be used to define a chaotic pseudo-random bit generator.

P g fo: (x1,...,zn) € BN — (71, ...,7Zn) € BN.

At each iteration, only theSi-th component of state” is
_ , _ . updated, as followsz = 27~ if i # S, elsex} = "',
A. A Theoretical Proof for Devaney’s Chaotic Dynamicafinally, somex™ are selected by a sequenoé as the pseudo-
Systems random bit sequence of our generaton™),en € MY is
Cg::mputed from a XORshift sequen€g?),.cw € 0,232 — 1]

S

IV. THE GENERATION OFCI PSEUDO-RANDOM SEQUENCE

The outline proofs, of thg properties on _Wh'c.h our pse“‘?‘ ee Sectiof IV-B3). So, the generator returns the follgwin
random number generator is based, are given in this sectiop|yes:

Denote by thediscrete Boolean metrjé(z,y) =0 < 2 =  Bits:
y. Given a functionf, define the functio; : [1; N]x BN — 0 7m0
BN such that L

mo

T mqg . mo+m1 _mo+mi mo+mi __mo+mi+mso
3

LTy Ty Ty BN Ty

or States:

Fy(k, B) = (E;.8(k,5) + F(E).8(F, )

m, mo+m mo+mi+m
g OO T

)je[[l;N]] ’

where + and . are the Boolean addition and product operations, ) . .
Consider the phase spack:— [1; N]™ x B and the map 2) The seed:The unpredictability of random sequences

is established using a random seed that is obtained by a
G (S,E) = (o(S), Fs(i(S), E)), physical source like timings of keystrokes. Without thedsee
the attacker must not be able to make any predictions about
then the chaotic iterations defined [N {I-E) can be desdibthe output bits, even when all details of the generator are
by the following iterations[[1/1] known [23].
X0 ¢ x The initial state of the system® and the first termy® of
{ Xk — G (XF) the XORshift are seeded either by the current time in seconds
since the Epoch, or by a number that the user inputs. Differen
Let us define a new distance between two pointgays are possible. For example, let us denote the decimal
(S,E),(S,F) € X by part of the current time. Se° can bet (mod 2") written in
binary digits andy® = ¢.
3) Sequencen of returned states:The output of the se-
quence(y™) is uniform in [0, 232 — 1], because it is produced

d((Sv E); (SvE)) = de(EvE) =+ ds(Sv S)a

where
N by a XORshift generator. However, we do not want the output
e do(E,E) = Z‘s(Ek’Ek) € [0;N] of (m™) to be uniform in[0, N], because in this case, the
=1 returns of our generator will not be uniform o, 2N — 1], as
o9 = |Sk — SF| it is illustrated in the following example. Let us supposatth
« (8,9 =5 g €01 29 = (0,0,0). Thenm? € [0, 3].

r=t o If m® =0, then no bit will change between the first and

It is then proven in[[111] by using the sequential continuity  the second output of our PRNG. Thus = (0,0,0).

that « If m® =1, then exactly one bit will change, which leads
Proposition 1 G is a continuous function oo, d). g)ngh(r(()eeoplo)ssmle values for', namely(1,0,0), (0,1,0),
Then, the vectorial negatiofy(z1,...,zn) = (ZT1,...,ZN) . etc.

satisfies the three conditions for Devaney's chaos, namehs each value irf0, 23 — 1] must be returned with the same
regularity, transitivity, and sensitivity in the metric &® propapility, then the valueg0,0,0), (1,0,0), (0,1,0), and

(&, d). This leads to the following result. (0,0,1) must occur forz! with the same probability. Finally
Proposition 2 G, is a chaotic map orfX’, d) in the sense of W€ See that, in this exampbez,0 = 1 must be three times more
Devaney. probable thanm® = 0. This leads to the following general
definition for m:
) n CU
B. Chaotic Iterations as Pseudo-Random Generator 01f 0 < 9w < S

. 1if N un <L Sy

1) Presentation: The CI generator (generator based on 2N = 232 <=0 2N
chaotic iterations) is designed by the following processstF  m” = gi(y") = { 2if Y1 Sh <& <7 54, (5)
of all, some chaotic iterations have to be done to generate : :

a sequencez"), .y € (]B'\‘)]N (N € N*,N > 2, N is e WN-1 G

not necessarily equal to 32) of Boolean vectors, which are NIt Dico o Som < 1.

the successive states of the iterated system. Some of theda order to evaluate our proposed method and compare its
vectors will be randomly extracted and our pseudo-randdm btatistical properties with various other methods, thesign
flow will be constituted by their components. Such chaotigistogram and intensity map of adjacent outputs have been
iterations are realized as follows. Initial staté < BN is a computed. The length of is N = 4 bits, and the initial con-
Boolean vector taken as a seed (see Settion IV-B2) and chaditions and control parameters are the same. A large nunfber o
strategy (S™),,c € [1,N]¥ is an irregular decimation of a sampled values are simulated{ samples). Figurel 1(a) shows




The histogram of adjacent oulput distribution (m"=f(y™)
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g 19000 Fig. 2: Balance property

mark sequence, then one position may change more than once
1 210000 and the balance property will not be checked, due to the fact
thatz = x. As an example, fob andm as in the previous
example,S = 1422 334 1421 1... andS = 14 4 42 1... lead to
the same outputs (because switching the same bit twice leads
5000 to the same state).
To check the balance property, a set of 500 sequences are
generated with and without decimation, each sequence con-
taining 10° bits. Figurd R shows the percentages of differences

R A 0 between zeros and ones, and presents a better balancetproper
output output™” for the sequences with decimation. This claim will be vedifie
(b) m™ = y™ mod 4 in the tests section (Sectign]VI).

Another example is given in Tab[@ I, in which means
“reset” and the integers which are underlined in sequéence
are discarded.

Fig. 1: Histogram and intensity maps

the intensity map form™ = g;(y"). In order to appear random, CI(XORshift, XORshift) Algorithm
the histogram should be uniformly distributed in all arelas.

can be observed that a uniform histogram and a flat coIorThe basic _deS|gn _procedure Of_ the novel ge_nerator IS
intensity map are obtained when using our scheme. Anotl%?mmed up- In Algorithn{]2. The internal state 45 the
illustration of this fact is given by Figurgl 1(b), whereas itoutput §tate isr. a and b are those .compyted by thg two
uniformity is further justified by the tests presented intiec XO.RSh'ﬂ g(_enerators. Th? valug (a) is an integer, defined
VTl asA|\n EquatloriiIS_. Last:%r,\l ia por:jsta_nt defmeddby thef u;er. y
. . . & N ; s a comparison, the basic design procedure of the o
geﬁ)eg?ea:jof‘lri)frtlr?i%%g:g ;rz)a;gﬁ;tt rsé?q%%sﬁdzeeeﬂ?[’ll,\lzﬂ\fﬂﬂlﬁ genergtqr is recalled in Algorithfal 3:(and b are pomputed
The only difference between the sequenéesnd b is that by logistic mapsN andc > 3N are constants defined by the

some terms ofb are discarded, in such a way thdk € user). Seel[12] for further information.
N, (§M* gM*+1  gM""'-1) does not contain any given
integer twice, where\/* = Zf:o mi. Therefore, no bit will
change more than once between two successive outputs
our PRNG, increasing the speed of the former generator
doing s0.S is said to be “an irregular decimation” &f This
decimation can be obtained by the following process.

Let (d',d?,...,dV) € {0,1}N be a mark sequence, suc
that whenevery_ | d = mF*, thenVi,d; = 0 (Vk, the
sequence is reset whehcontainsm”* times the number 1).
This mark sequence will control the XORshift sequehcas

lllustrative Example

this exampleN = 4 is chosen for easy understanding. As
ted before, the initial state of the systetrcan be seeded by
the decimal part of the current time. For example, if the cur-
rent time in seconds since the Epoch is 1237632934.484088,
(50 t = 484088, then 2% = t (mod 16) in binary digits,i.e.,
2% =(0,1,0,0).

To computem sequence, Equatidd 5 can be adapted to this

example as follows:

3

follows: 0 if 0 < ¥ < &,

o« if & £1,thenSF =/, d” =1, andk =k + 1, 1t & < & o< 2

. if & =1, thend’ is discarded. mt=gy") =3 2 if & < &L < H ()
For example, ifb = 1422334142112234... andm = 4341..., 3 it Lo ¥ < B
then S = 1423 341 4123 4... However, if we do not use the 4 if }—2 < ;’Tr; < 1,



Input: the internal state: (N bits)
Output: a stater of N bits
for i=0,...,N do

1,4,2,2,3,3,4,1,1,4,3,2,1, ...
Chaotic iterations are made with initial stat&, vectorial
logical negationf,, and strategys. The result is presented in

| d; < 0; Table[l. Let us recall that sequenee gives the states” to
end return, which are herg®, 294, 29+4+2 . So, in this exam-
a < XORshift1(); ple, the output of the generator is: 10100111101111110011.
m  gi(a); or 4,4,11,8,1...
k<~ m;
for i =0,....k do V. SECURITY ANALYSIS
g:__)b(_ORShlfﬂ() mod N; PRNG should be sensitive with respect to the secret key and
: o its size. Here, chaotic properties are also in close relatiih
if dg =0 then .
— the security.
s < ITs,
dg <+ 1;
end A. Key Space
else ifdg =1 then The PRNG proposed in this paper is based on discrete
| kk+1; chaotic iterations. It has an initial valu€ € BN. Considering
end this set of initial values alone, the key space size is equli't
end In addition, this new generator combines digits of two other
T X PRNGs. We used two different XORshifts here. lkebe the
returnr; key space of XORshift, so the total key space size is close to
Algorithm 2 An arbittary round of the new 2N . k2. Lastly, the impact of Equatidd 5, in which is defined

CI(XORshift, XORshift) generator

Input: the internal state: (N bits)
Output: a stater of N bits
a < Logisticmapl();

the (m™) sequence with a selector functign, must be taken
into account. This leads to conclude that the key space size i
large enough to withstand attacks.

Let us notice, to conclude this subsection, that our PRNG
can use any reasonable function as selector. In this pager,
andg,() are adopted for demonstration purposes, where:

if a > 0.5 then
n 0
Idd<—1 Nif 0< &5 < Sh,
en . OO n ci
else N_l'fz_ﬁlv<§3vz<zgzoz_@', .
. 1 T n 2 1
Idd<—0 m" =go(y") = N—=21if > o3 <3 <2, ot
en . .
m <+ d+c, L Neic o
for i=0,...,mdo 0if > o¢ < 3 < L.

b < Logisticmap2();
S« 1000006 mod N;
TS < Ts,

end

7 )

returnr;

Algorithm 3: An arbitrary round of the old CI PRNG

()
We will show later that both of them can pass all of the
performed tests.

B. Key Sensitivity

As a consequence of its chaotic property, this PRNG is
highly sensitive to the initial conditions. To illustrateid fact,
several initial values are put into the chaotic system. Het
be the number of differences between the sequences obtained

where y is generated by XORshift seeded with the curret this way. Suppose is the length of these sequences. Then

time. We can see that the probabilities of occurrences of  the variance ratic?, defined byP = H/n, is computed. The
O,m=1,m=2m=3m=4 are, &, & L 1L results are shown in Figufd 3 (axis is sequence lengthg,

respectively. Thisn determines what will be the next outpufXis iS variance ratid”). For the two PRNGs, variance ratios
. For instance, approach0.50, which indicates that the system is extremely

« If m =0, the followingz will be (0, 1,0,0). sensitive to the initial conditions.

o If m =1, the followingz can be(1,1,0,0), (0,0,0,0),
(0,1,1,0), or (0,1,0,1).

o If m =2, the followingx can be(1,0,0,0), (1,1,1,0),
(1,1,0,1), (0,0,1,0), (0,0,0,1), or (0,1,1,1).

o If m = 3, the followingx can be(0,0,1,1), (1,1,1,1),
(1,0,0,1), or (1,0,1,0).

C. Linear Complexity

The linear complexity (LC) of a sequence is the size in bits
of the shortest linear feedback shift register (LFSR) wltiah
produce this sequence. This value measures the difficulty of
generating — and perhaps analyzing — a particular sequence.

o If m =4, the followingz will be (1,0,1,1). Indeed, the randomness of a given sequence can be linked to

In this simulation,,» = 0,4,2,2,3,4,1,1,2,3,0,1,4,... the size of the smallest program that can produce it. LC is
Additionally, b is computed with a XORshift genera-the size required by a LFSR to be able to produce the given
tor too, but with another seed. We have foumd = sequence. The Berlekamp-Massey algorithm can measure this



m | 0 4 2 2
E |0 4 +1 2 2 +1
b 1 4 2 2 3 3 4 1 1 4
T T I T 0 0 T I
P F oo 0 1 1 oo 0 c|oo 0
0 0 0 1 1 1 0 0
0 1 1 1 0 1 0 1
1 4 2 3 3 4 1 4
J?U J?U 11,’4 J?b 1’8
0 0 L 1 1 Lo 0
1 1 20 0 0 0
0 0 51 %0 0 0
0 0 £ 1 Lo o0 41 1
Binary Output:x?xgxgxgx‘fxgxﬁxgg?xg... = 0100101110000001...
Integer Outputz?, 24, z6, 28... = 4,11,8,1...
TABLE I: Example of New CI(XORshift, XORshift) generation
s e independence, storage efficiency, and reproducibilityhaatic
0508 New CI(XORShift XORshi) 1 sequence may satisfy these requirements and also othdfcchao
0506 Old CiLogistc, Logistic 1 properties, as ergodicity, entropy, and expansivity. Aatita

sequence is extremely sensitive to the initial conditidrsat

is, even a minute difference in the initial state of the systan
lead to enormous differences in the final state, even ovdy fai
small timescales. Therefore, chaotic sequence fits thareequ
ments of pseudo-random sequence well. Contrary to XORshift

0402} | our generator possesses these chaotic propefties[[J]1],[12
odpb—— However, despite a large number of papers published in the
" x10* field of chaos-based pseudo-random generators, the impact o
this research is rather marginal. This is due to the follgwin
Fig. 3: Sensitivity analysis reasons: almost all PRNG algorithms using chaos are based

on dynamical systems defined on continuous setg, (the
set of real numbers). So these generators are usually slow,

2000 \ \ \ \ \ \ \ \ \ requiring considerably more storage space, and lose their
18000 , chaotic properties during computations as mentioned ezarli
in this paper. These major problems restrict their use as
1600 - b
generators[[24].
1400 ] In this paper, we do not simply integrate chaotic maps
1200( 1 hoping that the implemented algorithm remains chaotic. In-

deed, the PRNG we conceive is just discrete chaotic itaratio
and we have proven ir_[11] that these iterations produce a
topological chaos as defined by Devaney: they are regular,
600 ] transitive, and sensitive to initial conditions. This famso
definition of a chaotic behavior for a dynamical system imgli
unpredictability, mixture, sensitivity, and uniform repton.
Moreover, as only integers are manipulated in discretetahao
% 100 200 300 400 500 600 700 800 900 1000 iterations, the chaotic behavior of the system is preserved
sequence length during computations, and these computations are fast.

Let us now explore the topological properties of our gen-
erator and their consequences concerning the quality of the
generated pseudo-random sequences.

1000 (- B

linear complexity

800 B

Fig. 4: Linear complexity

LC, which can be used to evaluate the security of a pseud%‘- Topological Con.sequences o _ .
random sequence. It can be seen in Fiflire 4 that the LC curv&/Ve have proven ir [25] that chaotic iterations are expansive
of a sample sequence of 2000 bits is close to the ideal lip8d topologically mixing. These topological propertie® ar

C; = i/2, which implies that the generator has high linednherited by the generators we presented here. In pantjeuig
complexity. error on the seed are magnified until being equal to the consta

of expansivity. We will now investigate the consequences of
being chaotic, as defined by Devaney.

D. Devaney’s Chaos Property . e N .
) . First of all, the transitivity property implies the indecem
Generally speaking, the quality of a PRNG depends, top%sability of the system:

large extent, on the following criteria: randomness, umifidy,



Definition 3 A dynamical system(X, f) is indecomposable which approximately follows a? distribution with 2 degrees
if it is not the union of two closed setd, B C X such that of freedom ifn > 21.
f(A) C A, f(B) C B. c) Poker test: The poker test studies if each pattern of

Thus it is impossible to reduce the set of the outputs gen{aﬁﬁngtshxs(wfgfrt ijtifl%pzlr;%z Zﬂ%e]?ri thTagﬁiggTﬁ:r of

ated by our PRNG, in order to reduce its complexity. Morepver . m .
o . Sequencea into k£ non-overlapping parts, each of length Let
it is possible to show that Old and New CI generators are Ha
strongly transitive: n; be the number of occurrences of t _ 'pre of sequence
' of lengthm, wherel < ¢ < 2™. The statistic used is

Definition 4 A dynamical systenfX’, f) is strongly transitive om (2"
if Ve,y € X, Vr > 0,3z € X, d(z,z) < r = In € IN¥, X5 = - <Zn3> —k,

=1

f(z)=vy.

In other words, for allz,y € X, it is possible to find a which approximately follows a? distribution with 2™ — 1
point z in the neighborhood of such that an iterat¢”™(z) is degrees of freedom. Note that the poker test is a geneializat
y. Indeed, this result has been established during the pradfthe frequency test: settingr = 1 in the poker test yields
of the transitivity presented in_[11]. Among other thingsthe frequency test.
the strong transitivity property leads to the fact that wiih d) Runs test:The purpose of the runs test is to figure out
the knowledge of the seed, all of the outputs are possiblehether the number of runs of various lengths in the sequence
Additionally, no point of the output space can be discardedis as expected for a random sequence. A run is defined as a
when studying our PRNG: it is intrinsically complicated angbattern of all zeros or all ones, a block is a run of ones, and a
it cannot be simplified. gap is a run of zeros. The expected number of gaps (or blocks)
Finally, these generators possess the instability prgpert of lengthi in a random sequence of lengthis e; = 242,
Let k& be equal to the largest integérsuch thate; > 5. Let
B;, G, be the number of blocks and gaps of lengtin s, for
eachi € [1, k]. The statistic used here will then be:

Definition 5 A dynamical systentX, f) is unstable if for all
z € X, the orbity, : n € N — f"(x) is unstable, that
is: 3 > 0,V5 > 0,3y € X, In € N, d(z,y) < § and
d(y2(n),vy(n)) = &. r

.2 k PRy
)(4:2(3z eiel) +Z(Gz eiel) :
=1

i=1

This property, which is implied by the sensitive dependence
to the initial condition, leads to the fact that in all of the hich . v foll 2 distributi ith 2k — 2
neighborhoods of any, there are points that are separate fro;@/ ich approximately follows & distribution wit N

x under iterations off. We thus can claim that the behavio egreesAoft freedc|>rrt1l. test: Th f this test |
of our generators is unstable. e) Autocorrelation test: The purpose of this test is

to check for coincidences between the sequemcend

(non-cyclic) shifted versions of it. Lei be a fixed integer,

. 1 < d < [n/2]. The valueA(d) = X7 s; @ sipa is

A. Basic Common Tests the amount of bits not equal between the sequence and itself

1) Comparative test parametersn this section, five well- displaced byd bits. The statistic used here is:

known statistical tests[ [26] are used as comparison tools. d

They encompass frequency and autocorrelation tests. In wha X5 = [2(A(d) — - )/Vn —d|,

follows, s = s°, s!, s%,...,s"~! denotes a binary sequence of 2

lengthn. The question is to determine whether this sequenédlich approximately follows a normal distributiok’(0, 1) if

possesses some specific characteristics that a truly randem d = 10. Since small values ofi(d) are as unexpected as

sequence would be likely to exhibit. The tests are introducérge values, a two-sided test should be used.

in this subsection and results are given in the next one. 2) Comparison:We show in Tablé ]l a comparison among
a) Frequency test (monobit testfhe purpose of this test OUr New generator CI(XORshift, XORshift), its old version

is to check if the numbers of 0's and 1's are approximatefjenoted Old Cl(Logistic, Logistic), a basic PRNG based on

equal ins, as it would be expected for a random sequencd@gistic map, and a simple XORshift. In this table, time (in

Let ng, n; denote these numbers. The statistic used here isSeconds) is related to the duration needed by each algorithm
to generate @ x 10° bits long sequence. The test has been

VI. STATISTICAL ANALYSIS

X = M’ conducted using the same computer and compiler with the

n same optimization settings for both algorithms, in order to
which approximately follows a2 distribution with one degree make the test as fair as possible. The results confirm that the
of freedom whem > 107. proposed generator is a lot faster than the old one, while the

b) Serial test (2-bit test):;The purpose of this test is tostatistical results are better for most of the parameteeslihg
determine if the number of occurrences of 00, 01, 10, amadl the conclusion that the new PRNG is more secure than the
11 as subsequences ef are approximately the same. Letld one. Although the logistic map also has good results it i
noo, "o1, N1, andny; denote the number of occurrences ofoo slow to be implemented in Internet applications, and thi
00,01,10, and 11 respectively. Note thatgy + no1 + n10 + mMap is known to present various bias leading to severe $gcuri
ni11 = n — 1 since the subsequences are allowed to overlapsues.

The statistic used here is: As a comparison of the overall stability of these PRNGs,
4 ) ) ) ) 2 ) similar tests have been computed for different sequengghen
Xo = = (ngo + 1y +nip +111) = —(ng +11) + 1, (see FigureBI5[E9). For the monobit test comparison (Figure 5



TABLE II: Comparison with Old CI(Logistic, Logistic) for & x 10° bits sequence

Method Monobit (X;) Serial (X2) Poker (X3) Runs (X4) Autocorrelation K5)  Time
Logistic map 0.1280 0.1302 240.2893 26.5667 0.0373 0.965s
XORshift 1.7053 2.1466 248.9318 18.0087 0.5009 0.096s
Old Cl(Logistic, Logistic) 1.0765 1.0796 258.1069 20.9272 1.6994 0.389s
New CI(XORshift, XORshift) 0.3328 0.7441 262.8173 16.7877 0.0805 0.197s
Monobits test Poker test
= = 0ld i (Logisi, Logisio sior /Q\ - ggkclh(:oglsnc, Logisitc)
"7 New i (xRshit, xORshify 30 $ ' "7 Now (xORshit, xORshity
J \ A N x
290 é/ bb /,x\)é \x N x\ '/\\x/*\
.
/A/).x\ /\\\A 250
/KA/)%?( \‘x 240
Aa Ja 2301
N
/’:pﬂ\ - 220

Fig. 5: Comparison of monobits tests Fig. 7: Comparison of poker tests

Serial test Runs test

~ = = 0ld CI (Logistic, Logistic)
~A— - XORshift

35 —O- Logistic may

New CI (XORshift, XORshift)

25-Q

201

Fig. 6: Comparison of serial tests

Fig. 8: Comparison of runs tests

almost all of th.e PRNGS present the same issue: the beginngwbging the runs test comparison (Figufe 8). Moreover, this

values are a little high. However, for our new generator, thg,nqis reinforced when the lengths of the tested sequences
values are stable in a low level which never exceeds 1 increased

Indeed, the new generator distributes very randomly theszer The comparison of autocorrelation tests is presented in

alnd (Lnes, Whalie\éerhthe Lengtlz of the desired sequerrw]ce. It ;?I%re@. The new generator clearly dominates these tests,
also be remarked that the old generator presents the Secefid s the score of the old generator is surprisingly bais. T

bes_t performance, due to_lts use of chaqnc lterations. difference between two generators based on chaotic ivesati
Figure[® shows the serial test comparison. The new gener-

ator outperforms this test, but the score of the old generato
is not bad either: their occurrences of 00, 01, 10, and 11 ¢
very close to each other.

The poker test comparison with = 8 is shown in Figurél7.
XORshift is the most stable generator in all of these tesid, a
the logistic map also becomes good when producing sequen
of length greater than x 10°. Our old and new generators
present a similar trend, with a maximum in the neighborhoc
of 1.7 x 10°. These scores are not so good, even though t
new generator has a better behavior than the old one. Inde
the value ofm and the length of the sequences should
enlarged to be certain that the chaotic iterations expogatiyt
their complex behavior. In that situation, the performance
our generators in the poker test can be improved.

The graph of the new generator is the most stable one

Autocorrelation absulote value

~ % — 0Id CI (logistic, logistic)

—£ - XORshirft

—O- Logistic map

New CI (XORshirft, XORshirft)

Fig. 9: Comparison of autocorrelation tests



can be explained by the fact that the improvements realizedliabels by contributors, and search results are determiyed b
define the new generator lead to a more randomly output. these descriptions. These collaborative taggings, usedxo

To sum up we can claim that the new generator, which @nple in Flickr [27] and Delicious [28] websites, contribub
faster than its former version, outperforms all of the othéhe development of a Semantic Web, in which any Web page
generators in these statistical tests, especially wheduging contains machine-readable metadata that describe iteront

long output sequences. Information hiding technologies can be used for embedding
these metadata. The advantage of its use is the possilaility t
B. NIST Statistical Test Suite realize social search without websites and databasesiglesc

I tions are directly embedded into media, whatever their &ism
1) Presentation: Among the numerous standard tests fo . T -
?bustness is required in this situation, as descriptibnsld

pseudo-randomness, a convincing way to prove the quality L . g, )
the produced sequences is to confront them with the NI Cor:\s/;:;omnodlflcatlons like resizing, compression, ananiair

(National Institute of Standards and Technology) Statdti L i
The Internet security field is also concerned by water-

Test Suite SP 800-22, released by the Information Techlyolol% , X
Laboratory in August 25, 2008. arking technologies. Steganography and cryptography are

The NIST test suite, SP 800-22, is a statistical packa?Hprosed to be used by _terrorists to communicate_ through
consisting of 15 tests. They were developed to measure {HE Internet. Furthermore, in the areas of defense or insindu

randomness of (arbitrarily long) binary sequences prodlucgial espionage, many information leaks using steganducap

by either hardware or software based cryptographic pseucﬁ%ghmques have_been rep_orted. La_lsfcly, vv_atermarkmg &noft
random number generators. These tests focus on a varienf§fd @s @ possible solution to digital rights managements
different types of non-randomness that could occur in subfpUeS: t0 counteract piracy of digital work in an Interreséxd
sequences. These 15 tests include in the NIST test suite gpéertainment world [29].

described in the Appendix.

2) Interpretation of empirical resultsP is the “tail proba-
bility” that the chosen test statistic will assume values tre
equal to or worse than the observed test statistic value wher_et us now introduce our information hiding scheme based
considering the null hypothesis. For each statistical &stet on CI generator.
of Ps is produced from a set of sequences obtained by our) Most and least significant coefficientiset us define the

generator (i.e., 100 sequences are generated and teste, hgotions of most and least significant coefficients of an image
100 Ps are produced).

Empirical results can be interpreted in various ways. Is thP€finition 1 For a given image, most significant coefficients
paper, we check whether tifs are uniformly distributed, via (in short MSCs), are coefficients that allow the descriptin
an application of a2 distribution and the determination of athe relevant part of the imagee,, its richest part (in terms of

P corresponding to the Goodness-of-Fit distributional test €mbedding information), through a sequence of bits.

the P’s obtained for an arbitrary statistical test. For example, in a spatial description of a grayscale image,
If Py > 0.0001, then the sequences can be considered 0 h&jefinition of MSCs can be the sequence constituted by the

uniformly distributed. In our experiments, 100 sequenses ( first four bits of each pixel (see Figufe]10). In a discrete

100) of 1,000,000 bits are generated and tested. If the valyssine frequency domain description, each 8 block of the

Pr of a least one test is smaller than 0.0001, the sequenggsrier image is mapped onto a list of 64 coefficients. The

are considered to be not good enough and the generatopjig gy of the image is mostly contained in a determined part

unsuitable. ~ of themselves, which can constitute a possible sequence of
Table[l showsPs for the sequences based on dlscreiingCS_

chaotic iterations using different schemes. If there are at

least two statistical values in a test, this test is marketth wiDefinition 2 By least significant coefficients (LSCs), we mean

an asterisk and the average is computed to characterize ahtfanslation of some insignificant parts of a medium in a

statistical values. sequence of bits (insignificant can be understand as: “which
We can conclude from Tablelll that the worst situations agan be altered without sensitive damages”).

obtained with the New Cl"™ = y™ mod N) and New CI

(no mark) generators. Old Cl, New Cin{* = g:(y™)), and

B. Definition of a Chaos-Based Information Hiding Scheme

These LSCs can be, for example, the last three bits of
o " e gray level of each pixel (see Figlrel 10). Discrete cgsine
New Cl (n™ = g>(y™)) have successfully passed the NIS ourier, and wavelet transforms can be used also to generate

statistical test swte..These re§ults and the conclustruﬂ;d LSCs and MSCs. Moreover, these definitions can be extended
from the aforementioned basic tests reinforce the confieier[% other types of media

that can be put in the good behavior of chaotic CI PRNGs, thus . .
. . : o S LSCs are used during the embedding stage. Indeed, some
making them suitable for security applications as infoiorat U - o :
of the least significant coefficients of the carrier imagel wil

hiding and digital watermarking. be chaotically chosen by using our PRNG. These bits will

be either switched or replaced by the bits of the watermark.

) The MSCs are only useful in case of authentication; mixture

A. Introduction and embedding stages depend on them. Hence, a coefficient
Information hiding is now an integral part of Interneshould not be defined at the same time as a MSC and a LSC:

technologies. In the field of social search engines, for @tam the last can be altered while the first is needed to extract the

contents like pictures or movies are tagged with desceptiwatermark.

VIl. APPLICATION EXAMPLE IN INFORMATION HIDING



topological chaos[30]. The use of chaotic iterations isuoed
to the mixture of the watermark. See the following sectians f
more detail.

c) Extraction: The chaotic strategy can be regenerated
even in the case of an authenticated watermarking, because
the MSCs have not changed during the embedding stage. Thus,
the few altered LSCs can be found, the mixed watermark can
be rebuilt, and the original watermark can be obtained. In
case of a switch, the result of the previous chaotic itenatio
on the watermarked image should be the original cover. The
probability of being watermarked decreases when the number
of differences increase.

If the watermarked image is attacked, then the MSCs will
change. Consequently, in case of authentication and ddeeto t
high sensitivity of our PRNG, the LSCs designed to receiee th
watermark will be completely different. Hence, the restithe
recovery will have no similarity with the original waternkar

The chaos-based data hiding scheme is summed up in
Figure[11.

(b) MSCs of Lena. (c) LSCs of Lena k17). MEneypiion stages . T T [

Fig. 10: Example of most and least significant coefficients of
Lena.

encryption Encryption
algorithm

2) Stages of the schem@ur CI generator-based informa-
tion hiding scheme consists of two stages: (1) mixture of the
watermark and (2) its embedding.

a) Watermark mixture:Firstly, for security reasons, the
Wat_ermark can be m|xed b(_efore its e_mbeddlng into the image. | — /SN
A first way to achieve this stage is to apply the bitwise @
exclusive or (XOR) between the watermark and the New CI
generator. In this paper, we introduce a new mixture scheme
based on chaotic iterations. Its chaotic strategy, whigiedds N
on our PRNG, will be highly sensitive to the MSCs, in the case @@I
of an authenticated watermarking. g

b) Watermark embeddingsome LSCs will be switched,
or substituted by the bits of the possibly mixed watermark. replace the
To choose the sequence of LSCs to be altered, a numbel [Fmbecdngsiages \ASC22.7 ~  ——1— __ _ _

of integers, less than or equal to the numiérof LSCs

corresponding to a chaotic sequeri¢eis generated from the

chaotic strategy used in the mixture stage. Thus[tfeh least

significant coefficient of the carrier image is either switdh Fig. 11: The chaos-based data hiding decision tree.
or substituted by thé*" bit of the possibly mixed watermark.

In case of authentication, such a procedure leads to a choice

of the LSCs that are highly dependent on the MSCs [30].

On the one hand, when the switch is chosen, the waté¥- Application Example
marked image is obtained from the original image whose LSle) Experimental protocol:In this subsection, a concrete

L=1B" are replaced by the result of some chaotic iterationgyample is given: a watermark is encrypted and embedded
Here, the iterate function is the vectorial Boolean negatio it a cover image using the scheme presented in the previous
) M SIS — M section and CI(XORshift, XORshift). The carrier image ig th

fo: (@1, om) € BY— (@1, 7w) € BY, - (8) well-known Lena, which is a 256 grayscale image, and the

the initial state isL, and the strategy is equal @. In this watermark is the64 x 64 pixels binary image depicted in

case, the whole embedding stage satisfies the topologiaaschFigure[12.

properties[[30], but the original medium is required to egtr ~ The watermark is encrypted by using chaotic iterations: the

the watermark. On the other hand, when the selected LSi@gial state 2° is the watermark, considered as a Boolean

are substituted by the watermark, its extraction can be dovector, the iteration function is the vectorial logical aégn,

without the original cover (blind watermarking). In thissea and the chaotic strategip* ) is defined with CI(XORshift,

the selection of LSBs still remains chaotic because of tlee UEORshift), where initial parameters constitute the se&mst

of the New CI generator, but the whole process does notgatishd N = 64. Thus, the encrypted watermark is the last

I
I
|
I
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I
I
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LSCs to be
altered

Switch or




results in Table 1 have been obtained.

(a) The original image (b) The watermark (a) Cropping attack (b) Rotation attack

Fig. 12: Original images Fig. 14: Watermarked Lena after attacks.
UNAUTHENTICATION AUTHENTICATION
Size (pixels) | Similarity || Size (pixels) [ Similarity
10 99.08% 10 91.77%
50 97.31% 50 55.43%
100 92.43% 100 51.52%
200 70.75% 200 50.60%

Table. 1 Cropping attacks

. In Figure[I5, the decrypted watermarks are shown after
(a) Differences with the original (b) Encrypted watermark a crop of 50 pixels and after a crop of 10 pixels, in the
authentication case.

Fig. 13: Encrypted watermark and differences

Boolean vector generated by these chaotic iterations. An
example of such an encryption is given in Figlré 13.

Let L be the256 Booleans vector constituted by the three
last bits of each pixel of Lena arid® defined by the sequence:

vo = 0
{ Untl = Sl 42 x U™ +n [mod 2563). ©)

The watermarked Len4, is obtained from the original Lena,
whose three last bits are replaced by the resui4dfchaotic =
iterations with initial statel, and strategy/ (see Figuré_13). (b) Authentication %0 x 50). (c) Authentication {0 x 10).
The extraction of the watermark can be obtained in the Fia. 15: Extracted wat K aft . ttack
same way. Remark that the map — 260 of the torus, 9. 1o- Extracted watermark aier a cropping attack.
which is the famous dyadic transformation (a well-known
example of topological chaos[13]), has been chosen to makdBy analyzing the similarity percentage between the origina
(U*) <642 highly sensitive to the strategy. As a consequencand the extracted watermark, we can conclude that in case of
(U*) <642 is highly sensitive to the alteration of the imageunauthentication, the watermark still remains after a ingro
any significant modification of the watermarked image wilhttack: the desired robustness is reached. It can be ndtieéd
lead to a completely different extracted watermark, thusgi  zeroing sizes and percentages are rather proportional.
a way to authenticate media through the Internet. In case of authentication, even a small change of the carrier
Let us now evaluate the robustness of the proposed methiodage (a crop byl0 x 10 pixels) leads to a really different
2) Robustness evaluatiorin what follows, the embedding extracted watermark. In this case, any attempt to alter the
domain is the spatial domain, CI(XORshift, XORshift) hasibe carrier image will be signaled, the image is well autheréda
used to encrypt the watermark, MSCs are the four first bits of b) Rotation attack:Let ry be the rotation of angl®
each pixel (useful only in case of authentication), and LS@sound the centef128,128) of the carrier image. So, the
are the three next bits. transformation-_y o ry is applied to the watermarked image,
To prove the efficiency and the robustness of the proposedich is altered as in Figufg114. The results in Table 2 have
algorithm, some attacks are applied to our chaotic watedetar been obtained.
image. For each attack, a similarity percentage with theemwat UNAUTHENTICATION AUTHENTICATION
mark is computed, this percentage is the number of equal bits | Angle (degree)[ Similarity [| Angle (degree)| Similarity
between the original and the extracted watermark, shown as a 2 96.44% 2 73.40%

X 5 93.32% 5 60.56%
percentage. Let us notice that a result less than or eqaabto 10 90.68% 10 52.11%
implies that the image has probably not been watermarked. 25 78.13% 25 51.97%

a) Zeroing attack:In this kind of attack, a watermarked
image is zeroed, such as in Figurel 14(a). In this case, the Table. 2 Rotation attacks



TABLE I1I: SP 800-22 test resultsPg)

Method || New CI (n" = y" mod N) | New Cl (no mark)| OId CI | New Cl (41()) | New ClI (520)) |
Frequency (Monobit) Test 0.0004 0.0855 0.595549 0.474986 0.419
Frequency Test within a Block 0 0 0.554420 0.897763 0.6786
Runs Test 0.2896 0.5544 0.455937 0.816537 0.3345
Longest Run of Ones in a Block Test 0.0109 0.4372 0.016717 0.798139 0.8831
Binary Matrix Rank Test 0 0.6579 0.616305 0.262249 0.7597
Discrete Fourier Transform (Spectral) Tegt 0 0 0.000190 0.007160 0.0008
Non-overlapping Template Matching Test] 0.020071 0.37333 0.532252 0.449916 0.51879
Overlapping Template Matching Test 0 0 0.334538 0.514124 0.2492
Maurer’s “Universal Statistical” Test 0.6993 0.9642 0.032923 0.678686 0.1296
Linear Complexity Test 0.3669 0.924 0.401199 0.657933 0.3504
Serial Test* (m=10) 0 0.28185 0.013396 0.425346 0.2549
Approximate Entropy Test (m=10) 0 0.3838 0.137282 0.637119 0.7597
Cumulative Sums (Cusum) Test* 0 0 0.046464 0.279680 0.34245
Random Excursions Test* 0.46769 0.34788 0.503622 0.287409 0.18977
Random Excursions Variant Test* 0.28779 0.46505 0.347772 0.486686 0.26563
Success 8/15 11/15 15/15 15/15 15/15

The same conclusion as above can be declaimed: thes been compared to its former version, to XORshift, and to
watermarking method satisfies the desired properties. a generator based on logistic map. This comparison shows tha
¢) JPEG compressiorA JPEG compression is applied toCI(XORshift, XORshift) offers a sufficient speed and levél o
the watermarked image, depending on a compression leviel. kecurity for a wide range of Internet usages as cryptography
us notice that this attack leads to a change of the reprégentaand information hiding.
domain (from spatial to DCT domain). In this case, the rasult In future work, we will continue to try to improve the speed
in Table 3 have been obtained. and security of this PRNG, by exploring new strategies and

UNAUTHENTICATION AUTHENTICATION iteration functions. Its chaotic behavior will be deepersd
Compzression Sérgi;ag(i;y Compzression Ssirgillazrj;y using the numerous tools provided by the mathematical yheor
s 67:620/‘; s 52:120/2 of chaos. N(_ew statistical tes_tg will be used tq_cpmpare this
10 62.43% 10 48.22% PRNG to existing ones. Additionally a probabilistic study o
20 54.74% 20 49.07% its security will be done. Lastly, new applications in cortgyu
science will be proposed, especially in the Internet sécuri
Table. 3. JPEG compression attacks field.

A very good authentication through JPEG attack is obtained.
As for the unauthentication case, the watermark still resai REFERENCES
after a compression level equal to 10. This is a good resu_lt fi; x. Tong and M. Cui, “Image encryption scheme based on 3keba
we take into account the fact that we use spatial embedding. with dynamical compound chaotic sequence cipher gengrafignal
; icar ; Processingvol. 89, no. 4, pp. 480 — 491, 2009.
d) Gaussian noise:Watermarked image can be also [2] E. Erclebi and A. Subasl, "Robust muit bit and high qgalaudio
attacked by the addition of a Gaussian noise, depending watermarking using pseudo-random sequenc€sjnputers Electrical

a standard deviation. In this case, the results in Table € hav Engineering vol. 31, no. 8, pp. 525 — 536, 2005.
i [3] P. L'ecuyer, “Comparison of point sets and sequencesgf@si-monte
been obtained. carlo and for random number generatioBETA 2008vol. LNCS 5203,

UNAUTHENTICATION AUTHENTICATION pp. 1-17, 2008.
Standard dev,| Similarity [| Standard dev. Similarity [4] D. E. Knuth, The Art of Computer Programming, Volume 2: Seminumeri-
1 81.14% 1 55.57% cal Algorithms Reading, Mass, and third edition, Eds. Addison-Wesley,
2 75.01% 2 52.63% 1998.
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5 57.48% 5 51.34% number generator via cyclic phaseylathematics and Computers in
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. . Modelling vol. 42, pp. 809 — 816, 2005.

ane ag,a'” we ren_]ark ,that good I‘eSl.JltS are Obtam.e C. J. K. Tan, “The plfg parallel pseudo-random number egator,’

especially if we keep in mind that a spatial representation Future Generation Computer Systerwsl. 18, no. 5, pp. 693 — 698,

domain has been chosen. 2002. _ _ _ ,

[8] M. Falcioni, L. Palatella, S. Pigolotti, and A. Vulpigni‘Properties
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arXiv, vol. nlin/0503035, 2005.
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Table. 4 Gaussian noise attacks

VIII. CONCLUSION AND FUTURE WORK
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APPENDIX

The NIST Statistical Test Suite

In what follows, the objectives of the fifteen tests contdine
in the NIST Statistical tests suite are recalled. A moreitita
description for those tests can be found[inl [14].

Frequency (Monobit) Test is to determine whether the
number of ones and zeros in a sequence are approximately
the same as would be expected for a truly random sequence.

Frequency Test within a Blockis to determine whether the
frequency of ones in an M-bits block is approximately M/2,
as would be expected under an assumption of randomness (M
is the length of each block).

Runs Testis to determine whether the number of runs
of ones and zeros of various lengths is as expected for a
random sequence. In particular, this test determines weheth
the oscillation between such zeros and ones is too fast or too
slow.

Test for the Longest Run of Ones in a Blockis to
determine whether the length of the longest run of ones withi
the tested sequence is consistent with the length of theeking
run of ones that would be expected in a random sequence.

Binary Matrix Rank Test is to check for linear dependence
among fixed length substrings of the original sequence.

Discrete Fourier Transform (Spectral) Testis to detect
periodic features (i.e., repetitive patterns that are resarh
other) in the tested sequence that would indicate a dewiatio
from the assumption of randomness.

Non-overlapping Template Matching Testis to detect
generators that produce too many occurrences of a given non-
periodic (aperiodic) pattern.

Overlapping Template Matching Test is the number of
occurrences of pre-specified target strings.

Maurer’s “Universal Statistical” Test is to detect whether
or not the sequence can be significantly compressed without
loss of information.

Linear Complexity Test is to determine whether or not the
sequence is complex enough to be considered random.

Serial Testis to determine whether the number of occur-
rences of the™ m-bit (m is the length in bits of each block)
overlapping patterns is approximately the same as would be
expected for a random sequence.

Approximate Entropy Test is to compare the frequency of
overlapping blocks of two consecutive/adjacent lengthsu(iah
m+1) against the expected result for a random sequence (m is
the length of each block).

Cumulative Sums (Cusum) Testis to determine whether
the cumulative sum of the partial sequences occurring in the
tested sequence is too large or too small relative to thectege
behavior of that cumulative sum for random sequences.

Random Excursions Testis to determine if the number of
visits to a particular state within a cycle deviates from wha
one would expect for a random sequence.

Random Excursions Variant Testis to detect deviations
from the expected number of visits to various states in the
random walk.
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