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Abstract—Guaranteeing the security of information transmit-
ted through the Internet, against passive or active attacks, is a
major concern. The discovery of new pseudo-random number
generators with a strong level of security is a field of research
in full expansion, due to the fact that numerous cryptosystems
and data hiding schemes are directly dependent on the quality of
these generators. At the conference Internet‘09, we described a
generator based on chaotic iterations which behaves chaotically
as defined by Devaney. In this paper which is an extension of
the work presented at the conference Internet‘10, the proposal
is to improve the speed, the security, and the evaluation of this
generator, to make its use more relevant in the Internet security
context. In order to do so, a comparative study between various
generators is carried out and statistical results are improved.
Finally, an application in the information hiding framewor k is
presented with details, to give an illustrative example of the use
of such a generator in the Internet security field.

Keywords-Internet security; Pseudo-random number genera-
tor; Chaotic sequences; Statistical tests; Discrete chaotic itera-
tions; Information hiding.

I. I NTRODUCTION

Due to the rapid development of the Internet in recent years,
the need to find new tools to reinforce trust and security
through the Internet has become a major concern. Its recent
role in everyday life implies the need to protect data and
privacy in digital world. This extremely rapid developmentof
the Internet brings more and more attention to the information
security techniques in all kinds of applications. For example,
new security concerns have recently appeared because of the
evolution of the Internet to support such activities as e-Voting,
VoD (Video on demand), and the protection of intellectual
property. In all these emerging techniques, pseudo-random
number generators (PRNG) play an important role, because
they are fundamental components of almost all cryptosystems
and information hiding schemes [1], [2]. PRNGs are typically
defined by a deterministic recurrent sequence in a finite state
space, usually a finite field or ring, and an output function
mapping each state to an input value. Following [3], this value
is often either a real number in the interval(0, 1) or an integer
in some finite range. PRNGs based on linear congruential
methods and feedback shift-registers are popular for historical
reasons [4], but their security level often has been revealed
to be inadequate by today’s standards. However, to use a
PRNG with a high level of security is a necessity to protect
the information contents sent through the Internet. This level
depends both on theoretical properties and on statistical tests.

Many PRNGs have already been proven to be secure fol-
lowing a probabilistic approach [5], [6], [7]. However, their
performances must regularly be improved, among other things

by using new mathematical tools. This is why the idea of using
chaotic dynamical systems for this purpose has recently been
explored [8], [9]. The random-like and unpredictable dynamics
of chaotic systems, their inherent determinism and simplic-
ity of realization suggest their potential for exploitation as
PRNGs. Such generators can strongly improve the confidence
put in any information hiding scheme and in cryptography in
general: due to their properties of unpredictability, the possi-
bilities offered to an attacker to achieve his goal are drastically
reduced in that context. For example, in cryptography, keysare
needed to be unpredictable enough, to make sure any search
optimization based on the reduction of the key space to the
most probable values is impossible to work on. But the number
of generators claimed as chaotic, which actually have been
proven to be unpredictable (as it is defined in the mathematical
theory of chaos) is very small.

II. OUTLINE OF OUR WORK

This paper extends the study initiated in [10], [11], [12],
and tries to fill this gap. In [11], it is mathematically proven
that chaotic iterations (CIs), a suitable tool for fast computing
distributed algorithms, satisfies the topological chaoticprop-
erty, following the definition given by Devaney [13]. In the
paper [12] presented at Internet‘09, the chaotic behavior of
CIs is exploited in order to obtain an unpredictable PRNG
that depends on two logistic maps. We have shown that, in
addition to being chaotic, this generator can pass the NIST
(National Institute of Standards and Technology of the U.S.
Government) battery of tests [14], widely considered as a
comprehensive and stringent battery of tests for cryptographic
applications. In this paper, which is an extension of [10], we
have improved the speed, security, and evaluation of the former
generator and of its application in information hiding. Chaotic
properties, statistical tests, and security analysis [15]allow us
to consider that this generator has good characteristics and
is capable to withstand attacks. After having presented the
theoretical framework of the study and a security analysis,
we will give a comparison based on statistical tests. Finally a
concrete example of how to use these pseudo-random numbers
for information hiding through the Internet is detailed.

The remainder of this paper is organized in the following
way. In Section III, some basic definitions concerning chaotic
iterations and PRNGs are recalled. Then, the generator based
on discrete chaotic iterations is presented in Section IV.
Section V is devoted to its security analysis. In Section VI,
various tests are passed with a goal to achieve a statistical
comparison between this new PRNG and other existing ones.

http://arxiv.org/submit/0375071/pdf


In Section VII, a potential use of this PRNG in some Internet
security field is presented, namely in information hiding. The
paper ends with a conclusion and intended future work.

III. R EVIEW OF BASICS

A. Notations
J1;NK → {1, 2, . . . ,N}
Sn → thenth term of a sequenceS = (S1, S2, . . .)
vi → the ith component of a vector

v = (v1, v2, . . . , vn)
fk → kth composition of a functionf

strategy→ a sequence which elements belong inJ1;NK
S → the set of all strategies
C

k
n → the binomial coefficient

(

n
k

)

= n!
k!(n−k)!

⊕ → bitwise exclusive or
+ → the integer addition

≪ and≫→ the usual shift operators
(X , d) → a metric space
mod → a modulo or remainder operator

⌊x⌋→ returns the highest integer smaller thanx
n!→ the factorialn! = n× (n− 1)× · · · × 1
N

∗→ the set of positive integers{1,2,3,...}

B. XORshift

XORshift is a category of very fast PRNGs designed by
George Marsaglia [16]. It repeatedly uses the transform of
exclusive or (XOR) on a number with a bit shifted version
of it. The state of a XORshift generator is a vector of bits.
At each step, the next state is obtained by applying a given
number of XORshift operations tow-bit blocks in the current
state, wherew = 32 or 64. A XORshift operation is defined
as follows. Replace thew-bit block by a bitwise XOR of the
original block, with a shifted copy of itself bya positions either
to the right or to the left, where0 < a < w. This Algorithm 1
has a period of232 − 1 = 4.29× 109.

Input : the internal statez (a 32-bit word)
Output : y (a 32-bit word)
z ← z ⊕ (z ≪ 13);
z ← z ⊕ (z ≫ 17);
z ← z ⊕ (z ≪ 5);
y ← z;
returny;

Algorithm 1: An arbitrary round of XORshift algorithm

C. Continuous Chaos in Digital Computers

In the past two decades, the use of chaotic systems in
the design of cryptosystems, pseudo-random number gener-
ators (PRNG), and hash functions, has become more and
more frequent. Generally speaking, the chaos theory in the
continuous field is used to analyze performances of related
systems. However, when chaotic systems are realized in digital
computers with finite computing precisions, it is doubtful
whether or not they can still preserve the desired dynamics
of the continuous chaotic systems. Because most dynamical
properties of chaos are meaningful only when dynamical
systems evolve in the continuous phase space, these properties
may become meaningless or ambiguous when the phase space

is highly quantized (i.e., latticed) with a finite computing
precision (in other words, dynamical degradation of continuous
chaotic systems realized in finite computing precision). When
chaotic systems are realized in finite precision, their dynamical
properties will be deeply different from the properties of
continuous-value systems and some dynamical degradation
will arise, such as short cycle length and decayed distribution.
This phenomenon has been reported and analyzed in various
situations [17], [18], [19], [20], [21].

Therefore, continuous chaos may collapse into the digital
world and the ideal way to generate pseudo-random sequences
is to use a discrete-time chaotic system.

D. Chaos for Discrete Dynamical Systems

Consider a metric space(X , d) and a continuous function
f : X −→ X , for one-dimensional dynamical systems of the
form:

x0 ∈ X and∀n ∈ N
∗, xn = f(xn−1), (1)

the following definition of chaotic behavior, formulated by
Devaney [13], is widely accepted:

Definition 1 A dynamical system of Form (1) is said to be
chaotic if the following conditions hold.

• Topological transitivity:

∀U, V open sets ofX \∅, ∃k > 0, fk(U)∩V 6= ∅ (2)

• Density of periodic points inX :
Let P = {p ∈ X|∃n ∈ N

∗ : fn(p) = p} the set of
periodic points off . ThenP is dense inX :

P = X (3)

• Sensitive dependence on initial conditions:∃ε > 0,
∀x ∈ X , ∀δ > 0, ∃y ∈ X , ∃n ∈ N, d(x, y) < δ and
d (fn(x), fn(y)) > ε.

When f is chaotic, then the system(X , f) is chaotic and
quoting Devaney: “it is unpredictable because of the sensitive
dependence on initial conditions. It cannot be broken down
or decomposed into two subsystems which do not interact
because of topological transitivity. And, in the midst of this
random behavior, we nevertheless have an element of reg-
ularity.” Fundamentally different behaviors are consequently
possible and occur in an unpredictable way.

E. Discrete Chaotic Iterations

Definition 2 The setB denoting{0, 1}, let f : BN −→ B
N be

an “iteration” function andS ∈ S be a chaotic strategy. Then,
the so-calledchaotic iterations[22] are defined byx0 ∈ B

N

and

∀n ∈ N
∗, ∀i ∈ J1;NK, xn

i =

{

xn−1
i if Sn 6= i

f(xn−1)Sn if Sn = i.
(4)

In other words, at thenth iteration, only theSn−th cell is
“iterated”. Note that in a more general formulation,Sn can
be a subset of components andf(xn−1)Sn can be replaced by
f(xk)Sn , wherek < n, describing for example delays trans-
mission. For the general definition of such chaotic iterations,
see, e.g., [22].

Chaotic iterations generate a set of vectors (Boolean vector
in this paper), they are defined by an initial statex0, an
iteration functionf , and a chaotic strategyS.



The next section gives the outline proof that chaotic itera-
tions satisfy Devaney’s topological chaos property. Thus they
can be used to define a chaotic pseudo-random bit generator.

IV. T HE GENERATION OFCI PSEUDO-RANDOM SEQUENCE

A. A Theoretical Proof for Devaney’s Chaotic Dynamical
Systems

The outline proofs, of the properties on which our pseudo-
random number generator is based, are given in this section.

Denote byδ thediscrete Boolean metric, δ(x, y) = 0⇔ x =
y. Given a functionf , define the functionFf : J1;NK×BN −→
B

N such that

Ff (k,E) =
(

Ej .δ(k, j) + f(E)k.δ(k, j)
)

j∈J1;NK
,

where + and . are the Boolean addition and product operations.
Consider the phase space:X = J1;NKN ×B

N and the map

Gf (S,E) = (σ(S), Ff (i(S), E)) ,

then the chaotic iterations defined in (III-E) can be described
by the following iterations [11]

{

X0 ∈ X
Xk+1 = Gf (X

k).

Let us define a new distance between two points
(S,E), (Š, Ě) ∈ X by

d((S,E); (Š, Ě)) = de(E, Ě) + ds(S, Š),

where

• de(E, Ě) =

N
∑

k=1

δ(Ek, Ěk) ∈ J0;NK

• ds(S, Š) =
9

N

∞
∑

k=1

|Sk − Šk|
10k

∈ [0; 1].

It is then proven in [11] by using the sequential continuity
that

Proposition 1 Gf is a continuous function on(X , d).
Then, the vectorial negationf0(x1, . . . , xN) = (x1, . . . , xN)

satisfies the three conditions for Devaney’s chaos, namely,
regularity, transitivity, and sensitivity in the metric space
(X , d). This leads to the following result.

Proposition 2 Gf0 is a chaotic map on(X , d) in the sense of
Devaney.

B. Chaotic Iterations as Pseudo-Random Generator

1) Presentation: The CI generator (generator based on
chaotic iterations) is designed by the following process. First
of all, some chaotic iterations have to be done to generate
a sequence(xn)n∈N

∈
(

B
N
)N

(N ∈ N
∗,N > 2, N is

not necessarily equal to 32) of Boolean vectors, which are
the successive states of the iterated system. Some of these
vectors will be randomly extracted and our pseudo-random bit
flow will be constituted by their components. Such chaotic
iterations are realized as follows. Initial statex0 ∈ B

N is a
Boolean vector taken as a seed (see Section IV-B2) and chaotic
strategy(Sn)n∈N

∈ J1,NKN is an irregular decimation of a

XORshift sequence (Section IV-B4). The iterate functionf is
the vectorial Boolean negation:

f0 : (x1, ..., xN) ∈ B
N 7−→ (x1, ..., xN) ∈ B

N.

At each iteration, only theSi-th component of statexn is
updated, as follows:xn

i = xn−1
i if i 6= Si, elsexn

i = xn−1
i .

Finally, somexn are selected by a sequencemn as the pseudo-
random bit sequence of our generator.(mn)n∈N ∈ MN is
computed from a XORshift sequence(yn)n∈N ∈ J0, 232 − 1K
(see Section IV-B3). So, the generator returns the following
values:
Bits:

x
m0

1 x
m0

2 x
m0

3 . . . x
m0

N
x
m0+m1

1 x
m0+m1

2 . . . x
m0+m1

N
x
m0+m1+m2

1 . . .

or States:
x
m0

x
m0+m1

x
m0+m1+m2

. . .

2) The seed:The unpredictability of random sequences
is established using a random seed that is obtained by a
physical source like timings of keystrokes. Without the seed,
the attacker must not be able to make any predictions about
the output bits, even when all details of the generator are
known [23].

The initial state of the systemx0 and the first termy0 of
the XORshift are seeded either by the current time in seconds
since the Epoch, or by a number that the user inputs. Different
ways are possible. For example, let us denote byt the decimal
part of the current time. Sox0 can bet (mod 2N ) written in
binary digits andy0 = t.

3) Sequencem of returned states:The output of the se-
quence(yn) is uniform in J0, 232− 1K, because it is produced
by a XORshift generator. However, we do not want the output
of (mn) to be uniform in J0, NK, because in this case, the
returns of our generator will not be uniform inJ0, 2N− 1K, as
it is illustrated in the following example. Let us suppose that
x0 = (0, 0, 0). Thenm0 ∈ J0, 3K.

• If m0 = 0, then no bit will change between the first and
the second output of our PRNG. Thusx1 = (0, 0, 0).

• If m0 = 1, then exactly one bit will change, which leads
to three possible values forx1, namely(1, 0, 0), (0, 1, 0),
and (0, 0, 1).

• etc.

As each value inJ0, 23 − 1K must be returned with the same
probability, then the values(0, 0, 0), (1, 0, 0), (0, 1, 0), and
(0, 0, 1) must occur forx1 with the same probability. Finally
we see that, in this example,m0 = 1 must be three times more
probable thanm0 = 0. This leads to the following general
definition form:

mn = g1(y
n) =



































0 if 0 6
yn

232 <
C0

N

2N
,

1 if C0
N

2N
6

yn

232 <
∑1

i=0
Ci

N

2N
,

2 if
∑1

i=0
Ci

N

2N
6

yn

232 <
∑2

i=0
Ci

N

2N
,

...
...

N if
∑

N−1
i=0

Ci
N

2N
6

yn

232 < 1.

(5)

In order to evaluate our proposed method and compare its
statistical properties with various other methods, the density
histogram and intensity map of adjacent outputs have been
computed. The length ofx is N = 4 bits, and the initial con-
ditions and control parameters are the same. A large number of
sampled values are simulated (106 samples). Figure 1(a) shows



(a) mn = f(yn)

(b) mn = yn mod 4

Fig. 1: Histogram and intensity maps

the intensity map formn = g1(y
n). In order to appear random,

the histogram should be uniformly distributed in all areas.It
can be observed that a uniform histogram and a flat color
intensity map are obtained when using our scheme. Another
illustration of this fact is given by Figure 1(b), whereas its
uniformity is further justified by the tests presented in Section
VI.

4) Chaotic strategy:The chaotic strategy(Sk) ∈ J1,NKN is
generated from a second XORshift sequence(bk) ∈ J1, NKN.
The only difference between the sequencesS and b is that
some terms ofb are discarded, in such a way that∀k ∈
N, (SMk

, SMk+1, . . . , SMk+1
−1) does not contain any given

integer twice, whereMk =
∑k

i=0 m
i. Therefore, no bit will

change more than once between two successive outputs of
our PRNG, increasing the speed of the former generator by
doing so.S is said to be “an irregular decimation” ofb. This
decimation can be obtained by the following process.

Let (d1, d2, . . . , dN) ∈ {0, 1}N be a mark sequence, such
that whenever

∑

N

i=1 d
i = mk, then ∀i, di = 0 (∀k, the

sequence is reset whend containsmk times the number 1).
This mark sequence will control the XORshift sequenceb as
follows:

• if db
j 6= 1, thenSk = bj, db

j

= 1, andk = k + 1,
• if db

j

= 1, thenbj is discarded.

For example, ifb = 1422334142112234... andm = 4341...,
thenS = 1423 341 4123 4... However, if we do not use the
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Fig. 2: Balance property

mark sequence, then one position may change more than once
and the balance property will not be checked, due to the fact
that ¯̄x = x. As an example, forb andm as in the previous
example,S = 1422 334 1421 1... andS = 14 4 42 1... lead to
the same outputs (because switching the same bit twice leads
to the same state).

To check the balance property, a set of 500 sequences are
generated with and without decimation, each sequence con-
taining106 bits. Figure 2 shows the percentages of differences
between zeros and ones, and presents a better balance property
for the sequences with decimation. This claim will be verified
in the tests section (Section VI).

Another example is given in Table I, in whichr means
“reset” and the integers which are underlined in sequenceb
are discarded.

C. CI(XORshift, XORshift) Algorithm

The basic design procedure of the novel generator is
summed up in Algorithm 2. The internal state isx, the
output state isr. a and b are those computed by the two
XORshift generators. The valueg1(a) is an integer, defined
as in Equation 5. Lastly,N is a constant defined by the user.

As a comparison, the basic design procedure of the old
generator is recalled in Algorithm 3 (a and b are computed
by logistic maps,N and c > 3N are constants defined by the
user). See [12] for further information.

D. Illustrative Example

In this example,N = 4 is chosen for easy understanding. As
stated before, the initial state of the systemx0 can be seeded by
the decimal partt of the current time. For example, if the cur-
rent time in seconds since the Epoch is 1237632934.484088,
so t = 484088, thenx0 = t (mod 16) in binary digits,i.e.,
x0 = (0, 1, 0, 0).

To computem sequence, Equation 5 can be adapted to this
example as follows:

mn = g1(y
n) =



























0 if 0 6
yn

232 < 1
16 ,

1 if 1
16 6

yn

232 < 5
16 ,

2 if 5
16 6

yn

232 < 11
16 ,

3 if 11
16 6

yn

232 < 15
16 ,

4 if 15
16 6

yn

232 < 1,

(6)



Input : the internal statex (N bits)
Output : a stater of N bits
for i = 0, . . . ,N do

di ← 0;
end
a← XORshift1();
m← g1(a);
k ← m;
for i = 0, . . . , k do

b← XORshift2() mod N;
S ← b;
if dS = 0 then

xS ← xS ;
dS ← 1;

end
else if dS = 1 then

k ← k + 1;
end

end
r ← x;
returnr;

Algorithm 2: An arbitrary round of the new
CI(XORshift,XORshift) generator

Input : the internal statex (N bits)
Output : a stater of N bits
a← Logisticmap1();
if a > 0.5 then

d← 1
end
else

d← 0
end
m← d+ c;
for i = 0, . . . ,m do

b← Logisticmap2();
S ← 100000b mod N;
xS ← xS ;

end
r ← x;
returnr;

Algorithm 3: An arbitrary round of the old CI PRNG

where y is generated by XORshift seeded with the current
time. We can see that the probabilities of occurrences ofm =
0, m = 1, m = 2, m = 3, m = 4, are 1

16 , 4
16 , 6

16 , 4
16 , 1

16 ,
respectively. Thism determines what will be the next output
x. For instance,

• If m = 0, the followingx will be (0, 1, 0, 0).
• If m = 1, the followingx can be(1, 1, 0, 0), (0, 0, 0, 0),

(0, 1, 1, 0), or (0, 1, 0, 1).
• If m = 2, the followingx can be(1, 0, 0, 0), (1, 1, 1, 0),

(1, 1, 0, 1), (0, 0, 1, 0), (0, 0, 0, 1), or (0, 1, 1, 1).
• If m = 3, the followingx can be(0, 0, 1, 1), (1, 1, 1, 1),

(1, 0, 0, 1), or (1, 0, 1, 0).
• If m = 4, the followingx will be (1, 0, 1, 1).
In this simulation,m = 0, 4, 2, 2, 3, 4, 1, 1, 2, 3, 0, 1, 4, ...

Additionally, b is computed with a XORshift genera-
tor too, but with another seed. We have foundb =

1, 4, 2, 2, 3, 3, 4, 1, 1, 4, 3, 2, 1, ...
Chaotic iterations are made with initial statex0, vectorial

logical negationf0, and strategyS. The result is presented in
Table I. Let us recall that sequencem gives the statesxn to
return, which are herex0, x0+4, x0+4+2, . . . So, in this exam-
ple, the output of the generator is: 10100111101111110011...
or 4,4,11,8,1...

V. SECURITY ANALYSIS

PRNG should be sensitive with respect to the secret key and
its size. Here, chaotic properties are also in close relation with
the security.

A. Key Space

The PRNG proposed in this paper is based on discrete
chaotic iterations. It has an initial valuex0 ∈ B

N. Considering
this set of initial values alone, the key space size is equal to 2N.
In addition, this new generator combines digits of two other
PRNGs. We used two different XORshifts here. Letk be the
key space of XORshift, so the total key space size is close to
2N · k2. Lastly, the impact of Equation 5, in which is defined
the (mn) sequence with a selector functiong1, must be taken
into account. This leads to conclude that the key space size is
large enough to withstand attacks.

Let us notice, to conclude this subsection, that our PRNG
can use any reasonable function as selector. In this paper,g1()
andg2() are adopted for demonstration purposes, where:

mn = g2(y
n) =



































N if 0 6
yn

232 <
C0

N

2N
,

N− 1 if C0
N

2N
6

yn

232 <
∑1

i=0
Ci

N

2N
,

N− 2 if
∑1

i=0
Ci

N

2N
6

yn

232 <
∑2

i=0
Ci

N

2N
,

...
...

0 if
∑N−1

i=0
Ci

N

2N 6
yn

232 < 1.
(7)

We will show later that both of them can pass all of the
performed tests.

B. Key Sensitivity

As a consequence of its chaotic property, this PRNG is
highly sensitive to the initial conditions. To illustrate this fact,
several initial values are put into the chaotic system. LetH
be the number of differences between the sequences obtained
in this way. Supposen is the length of these sequences. Then
the variance ratioP , defined byP = H/n, is computed. The
results are shown in Figure 3 (x axis is sequence lengths,y
axis is variance ratioP ). For the two PRNGs, variance ratios
approach0.50, which indicates that the system is extremely
sensitive to the initial conditions.

C. Linear Complexity

The linear complexity (LC) of a sequence is the size in bits
of the shortest linear feedback shift register (LFSR) whichcan
produce this sequence. This value measures the difficulty of
generating – and perhaps analyzing – a particular sequence.
Indeed, the randomness of a given sequence can be linked to
the size of the smallest program that can produce it. LC is
the size required by a LFSR to be able to produce the given
sequence. The Berlekamp-Massey algorithm can measure this



m 0 4 2 2
k 0 4 +1 2 2 +1
b 1 4 2 2 3 3 4 1 1 4

d r r







1
0
0
0













1
0
0
1













1
1
0
1













1
1
1
1






r







0
0
1
0













0
0
1
1






r







1
0
0
0













1
0
0
1







S 1 4 2 3 3 4 1 4
x0 x0 x4 x6 x8

0 0
1
−→ 1 1 1

1
−→ 0 0

1 1
2
−→ 0 0 0 0

0 0
3
−→ 1 1

3
−→ 0 0 0

0 0
4
−→ 1 1

4
−→ 0 0

4
−→ 1 1

Binary Output:x0
1
x0
2
x0
3
x0
4
x4
1
x4
2
x4
3
x4
4
x6
1
x6
2
... = 0100101110000001...

Integer Output:x0, x4, x6, x8... = 4, 11, 8, 1...

TABLE I: Example of New CI(XORshift,XORshift) generation
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LC, which can be used to evaluate the security of a pseudo-
random sequence. It can be seen in Figure 4 that the LC curve
of a sample sequence of 2000 bits is close to the ideal line
Ci = i/2, which implies that the generator has high linear
complexity.

D. Devaney’s Chaos Property

Generally speaking, the quality of a PRNG depends, to a
large extent, on the following criteria: randomness, uniformity,

independence, storage efficiency, and reproducibility. A chaotic
sequence may satisfy these requirements and also other chaotic
properties, as ergodicity, entropy, and expansivity. A chaotic
sequence is extremely sensitive to the initial conditions.That
is, even a minute difference in the initial state of the system can
lead to enormous differences in the final state, even over fairly
small timescales. Therefore, chaotic sequence fits the require-
ments of pseudo-random sequence well. Contrary to XORshift,
our generator possesses these chaotic properties [11],[12].
However, despite a large number of papers published in the
field of chaos-based pseudo-random generators, the impact of
this research is rather marginal. This is due to the following
reasons: almost all PRNG algorithms using chaos are based
on dynamical systems defined on continuous sets (e.g., the
set of real numbers). So these generators are usually slow,
requiring considerably more storage space, and lose their
chaotic properties during computations as mentioned earlier
in this paper. These major problems restrict their use as
generators [24].

In this paper, we do not simply integrate chaotic maps
hoping that the implemented algorithm remains chaotic. In-
deed, the PRNG we conceive is just discrete chaotic iterations
and we have proven in [11] that these iterations produce a
topological chaos as defined by Devaney: they are regular,
transitive, and sensitive to initial conditions. This famous
definition of a chaotic behavior for a dynamical system implies
unpredictability, mixture, sensitivity, and uniform repartition.
Moreover, as only integers are manipulated in discrete chaotic
iterations, the chaotic behavior of the system is preserved
during computations, and these computations are fast.

Let us now explore the topological properties of our gen-
erator and their consequences concerning the quality of the
generated pseudo-random sequences.

E. Topological Consequences

We have proven in [25] that chaotic iterations are expansive
and topologically mixing. These topological properties are
inherited by the generators we presented here. In particular, any
error on the seed are magnified until being equal to the constant
of expansivity. We will now investigate the consequences of
being chaotic, as defined by Devaney.

First of all, the transitivity property implies the indecom-
posability of the system:



Definition 3 A dynamical system(X , f) is indecomposable
if it is not the union of two closed setsA,B ⊂ X such that
f(A) ⊂ A, f(B) ⊂ B.

Thus it is impossible to reduce the set of the outputs gener-
ated by our PRNG, in order to reduce its complexity. Moreover,
it is possible to show that Old and New CI generators are
strongly transitive:

Definition 4 A dynamical system(X , f) is strongly transitive
if ∀x, y ∈ X , ∀r > 0, ∃z ∈ X , d(z, x) 6 r ⇒ ∃n ∈ N

∗,
fn(z) = y.

In other words, for allx, y ∈ X , it is possible to find a
point z in the neighborhood ofx such that an iteratefn(z) is
y. Indeed, this result has been established during the proof
of the transitivity presented in [11]. Among other things,
the strong transitivity property leads to the fact that without
the knowledge of the seed, all of the outputs are possible.
Additionally, no point of the output space can be discarded
when studying our PRNG: it is intrinsically complicated and
it cannot be simplified.

Finally, these generators possess the instability property:

Definition 5 A dynamical system(X , f) is unstable if for all
x ∈ X , the orbit γx : n ∈ N 7−→ fn(x) is unstable, that
is: ∃ε > 0, ∀δ > 0, ∃y ∈ X , ∃n ∈ N, d(x, y) < δ and
d (γx(n), γy(n)) > ε.

This property, which is implied by the sensitive dependence
to the initial condition, leads to the fact that in all of the
neighborhoods of anyx, there are points that are separate from
x under iterations off . We thus can claim that the behavior
of our generators is unstable.

VI. STATISTICAL ANALYSIS

A. Basic Common Tests

1) Comparative test parameters:In this section, five well-
known statistical tests [26] are used as comparison tools.
They encompass frequency and autocorrelation tests. In what
follows, s = s0, s1, s2, . . . , sn−1 denotes a binary sequence of
lengthn. The question is to determine whether this sequence
possesses some specific characteristics that a truly random
sequence would be likely to exhibit. The tests are introduced
in this subsection and results are given in the next one.

a) Frequency test (monobit test):The purpose of this test
is to check if the numbers of 0’s and 1’s are approximately
equal in s, as it would be expected for a random sequence.
Let n0, n1 denote these numbers. The statistic used here is:

X1 =
(n0 − n1)

2

n
,

which approximately follows aχ2 distribution with one degree
of freedom whenn > 107.

b) Serial test (2-bit test):The purpose of this test is to
determine if the number of occurrences of 00, 01, 10, and
11 as subsequences ofs are approximately the same. Let
n00, n01, n10, and n11 denote the number of occurrences of
00, 01, 10, and11 respectively. Note thatn00 + n01 + n10 +
n11 = n − 1 since the subsequences are allowed to overlap.
The statistic used here is:

X2 =
4

n− 1
(n2

00 + n2
01 + n2

10 + n2
11)−

2

n
(n2

0 + n2
1) + 1,

which approximately follows aχ2 distribution with 2 degrees
of freedom ifn > 21.

c) Poker test:The poker test studies if each pattern of
lengthm (without overlapping) appears the same number of
times in s. Let ⌊ n

m
⌋ > 5 × 2m and k = ⌊ n

m
⌋. Divide the

sequences into k non-overlapping parts, each of lengthm. Let
ni be the number of occurrences of theith type of sequence
of lengthm, where1 6 i 6 2m. The statistic used is

X3 =
2m

k

(

2m
∑

i=1

n2
i

)

− k,

which approximately follows aχ2 distribution with 2m − 1
degrees of freedom. Note that the poker test is a generalization
of the frequency test: settingm = 1 in the poker test yields
the frequency test.

d) Runs test:The purpose of the runs test is to figure out
whether the number of runs of various lengths in the sequence
s is as expected for a random sequence. A run is defined as a
pattern of all zeros or all ones, a block is a run of ones, and a
gap is a run of zeros. The expected number of gaps (or blocks)
of length i in a random sequence of lengthn is ei =

n−i+3
2i+2 .

Let k be equal to the largest integeri such thatei > 5. Let
Bi, Gi be the number of blocks and gaps of lengthi in s, for
eachi ∈ J1, kK. The statistic used here will then be:

X4 =

k
∑

i=1

(Bi − ei)
2

ei
+

k
∑

i=1

(Gi − ei)
2

ei
,

which approximately follows aχ2 distribution with 2k − 2
degrees of freedom.

e) Autocorrelation test: The purpose of this test is
to check for coincidences between the sequences and
(non-cyclic) shifted versions of it. Letd be a fixed integer,
1 6 d 6 ⌊n/2⌋. The valueA(d) =

∑n−d−1
i=0 si ⊕ si+d is

the amount of bits not equal between the sequence and itself
displaced byd bits. The statistic used here is:

X5 = |2(A(d)− n− d

2
)/
√
n− d|,

which approximately follows a normal distributionN (0, 1) if
n− d > 10. Since small values ofA(d) are as unexpected as
large values, a two-sided test should be used.

2) Comparison:We show in Table II a comparison among
our new generator CI(XORshift, XORshift), its old version
denoted Old CI(Logistic, Logistic), a basic PRNG based on
logistic map, and a simple XORshift. In this table, time (in
seconds) is related to the duration needed by each algorithm
to generate a2 × 105 bits long sequence. The test has been
conducted using the same computer and compiler with the
same optimization settings for both algorithms, in order to
make the test as fair as possible. The results confirm that the
proposed generator is a lot faster than the old one, while the
statistical results are better for most of the parameters, leading
to the conclusion that the new PRNG is more secure than the
old one. Although the logistic map also has good results, it is
too slow to be implemented in Internet applications, and this
map is known to present various bias leading to severe security
issues.

As a comparison of the overall stability of these PRNGs,
similar tests have been computed for different sequence lengths
(see Figures 5 - 9). For the monobit test comparison (Figure 5),



TABLE II: Comparison with Old CI(Logistic, Logistic) for a2× 105 bits sequence

Method Monobit (X1) Serial (X2) Poker (X3) Runs (X4) Autocorrelation (X5) Time

Logistic map 0.1280 0.1302 240.2893 26.5667 0.0373 0.965s

XORshift 1.7053 2.1466 248.9318 18.0087 0.5009 0.096s

Old CI(Logistic, Logistic) 1.0765 1.0796 258.1069 20.9272 1.6994 0.389s

New CI(XORshift,XORshift) 0.3328 0.7441 262.8173 16.7877 0.0805 0.197s
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almost all of the PRNGs present the same issue: the beginning
values are a little high. However, for our new generator, the
values are stable in a low level which never exceeds 1.2.
Indeed, the new generator distributes very randomly the zeros
and ones, whatever the length of the desired sequence. It can
also be remarked that the old generator presents the second
best performance, due to its use of chaotic iterations.

Figure 6 shows the serial test comparison. The new gener-
ator outperforms this test, but the score of the old generator
is not bad either: their occurrences of 00, 01, 10, and 11 are
very close to each other.

The poker test comparison withm = 8 is shown in Figure 7.
XORshift is the most stable generator in all of these tests, and
the logistic map also becomes good when producing sequences
of length greater than1 × 105. Our old and new generators
present a similar trend, with a maximum in the neighborhood
of 1.7 × 105. These scores are not so good, even though the
new generator has a better behavior than the old one. Indeed,
the value ofm and the length of the sequences should be
enlarged to be certain that the chaotic iterations express totally
their complex behavior. In that situation, the performances of
our generators in the poker test can be improved.

The graph of the new generator is the most stable one
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during the runs test comparison (Figure 8). Moreover, this
trend is reinforced when the lengths of the tested sequences
are increased.

The comparison of autocorrelation tests is presented in
Figure 9. The new generator clearly dominates these tests,
whereas the score of the old generator is surprisingly bad. This
difference between two generators based on chaotic iterations
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can be explained by the fact that the improvements realized to
define the new generator lead to a more randomly output.

To sum up we can claim that the new generator, which is
faster than its former version, outperforms all of the other
generators in these statistical tests, especially when producing
long output sequences.

B. NIST Statistical Test Suite

1) Presentation:Among the numerous standard tests for
pseudo-randomness, a convincing way to prove the quality of
the produced sequences is to confront them with the NIST
(National Institute of Standards and Technology) Statistical
Test Suite SP 800-22, released by the Information Technology
Laboratory in August 25, 2008.

The NIST test suite, SP 800-22, is a statistical package
consisting of 15 tests. They were developed to measure the
randomness of (arbitrarily long) binary sequences produced
by either hardware or software based cryptographic pseudo-
random number generators. These tests focus on a variety of
different types of non-randomness that could occur in such
sequences. These 15 tests include in the NIST test suite are
described in the Appendix.

2) Interpretation of empirical results:P is the “tail proba-
bility” that the chosen test statistic will assume values that are
equal to or worse than the observed test statistic value when
considering the null hypothesis. For each statistical test, a set
of Ps is produced from a set of sequences obtained by our
generator (i.e., 100 sequences are generated and tested, hence
100Ps are produced).

Empirical results can be interpreted in various ways. In this
paper, we check whether thePs are uniformly distributed, via
an application of aχ2 distribution and the determination of a
PT corresponding to the Goodness-of-Fit distributional teston
thePs obtained for an arbitrary statistical test.

If PT ≥ 0.0001, then the sequences can be considered to be
uniformly distributed. In our experiments, 100 sequences (s =
100) of 1,000,000 bits are generated and tested. If the value
PT of a least one test is smaller than 0.0001, the sequences
are considered to be not good enough and the generator is
unsuitable.

Table III showsPT for the sequences based on discrete
chaotic iterations using different schemes. If there are at
least two statistical values in a test, this test is marked with
an asterisk and the average is computed to characterize the
statistical values.

We can conclude from Table III that the worst situations are
obtained with the New CI (mn = yn mod N ) and New CI
(no mark) generators. Old CI, New CI (mn = g1(y

n)), and
New CI (mn = g2(y

n)) have successfully passed the NIST
statistical test suite. These results and the conclusion obtained
from the aforementioned basic tests reinforce the confidence
that can be put in the good behavior of chaotic CI PRNGs, thus
making them suitable for security applications as information
hiding and digital watermarking.

VII. A PPLICATION EXAMPLE IN INFORMATION HIDING

A. Introduction

Information hiding is now an integral part of Internet
technologies. In the field of social search engines, for example,
contents like pictures or movies are tagged with descriptive

labels by contributors, and search results are determined by
these descriptions. These collaborative taggings, used for ex-
ample in Flickr [27] and Delicious [28] websites, contribute to
the development of a Semantic Web, in which any Web page
contains machine-readable metadata that describe its content.
Information hiding technologies can be used for embedding
these metadata. The advantage of its use is the possibility to
realize social search without websites and databases: descrip-
tions are directly embedded into media, whatever their formats.
Robustness is required in this situation, as descriptions should
resist to modifications like resizing, compression, and format
conversion.

The Internet security field is also concerned by water-
marking technologies. Steganography and cryptography are
supposed to be used by terrorists to communicate through
the Internet. Furthermore, in the areas of defense or in indus-
trial espionage, many information leaks using steganographic
techniques have been reported. Lastly, watermarking is often
cited as a possible solution to digital rights managements
issues, to counteract piracy of digital work in an Internet based
entertainment world [29].

B. Definition of a Chaos-Based Information Hiding Scheme

Let us now introduce our information hiding scheme based
on CI generator.

1) Most and least significant coefficients:Let us define the
notions of most and least significant coefficients of an image.

Definition 1 For a given image, most significant coefficients
(in short MSCs), are coefficients that allow the descriptionof
the relevant part of the image,i.e., its richest part (in terms of
embedding information), through a sequence of bits.

For example, in a spatial description of a grayscale image,
a definition of MSCs can be the sequence constituted by the
first four bits of each pixel (see Figure 10). In a discrete
cosine frequency domain description, each8× 8 block of the
carrier image is mapped onto a list of 64 coefficients. The
energy of the image is mostly contained in a determined part
of themselves, which can constitute a possible sequence of
MSCs.

Definition 2 By least significant coefficients (LSCs), we mean
a translation of some insignificant parts of a medium in a
sequence of bits (insignificant can be understand as: “which
can be altered without sensitive damages”).

These LSCs can be, for example, the last three bits of
the gray level of each pixel (see Figure 10). Discrete cosine,
Fourier, and wavelet transforms can be used also to generate
LSCs and MSCs. Moreover, these definitions can be extended
to other types of media.

LSCs are used during the embedding stage. Indeed, some
of the least significant coefficients of the carrier image will
be chaotically chosen by using our PRNG. These bits will
be either switched or replaced by the bits of the watermark.
The MSCs are only useful in case of authentication; mixture
and embedding stages depend on them. Hence, a coefficient
should not be defined at the same time as a MSC and a LSC:
the last can be altered while the first is needed to extract the
watermark.



(a) Lena.

(b) MSCs of Lena. (c) LSCs of Lena (×17).

Fig. 10: Example of most and least significant coefficients of
Lena.

2) Stages of the scheme:Our CI generator-based informa-
tion hiding scheme consists of two stages: (1) mixture of the
watermark and (2) its embedding.

a) Watermark mixture:Firstly, for security reasons, the
watermark can be mixed before its embedding into the image.
A first way to achieve this stage is to apply the bitwise
exclusive or (XOR) between the watermark and the New CI
generator. In this paper, we introduce a new mixture scheme
based on chaotic iterations. Its chaotic strategy, which depends
on our PRNG, will be highly sensitive to the MSCs, in the case
of an authenticated watermarking.

b) Watermark embedding:Some LSCs will be switched,
or substituted by the bits of the possibly mixed watermark.
To choose the sequence of LSCs to be altered, a number
of integers, less than or equal to the numberM of LSCs
corresponding to a chaotic sequenceU , is generated from the
chaotic strategy used in the mixture stage. Thus, theUk-th least
significant coefficient of the carrier image is either switched,
or substituted by thekth bit of the possibly mixed watermark.
In case of authentication, such a procedure leads to a choice
of the LSCs that are highly dependent on the MSCs [30].

On the one hand, when the switch is chosen, the water-
marked image is obtained from the original image whose LSBs
L = B

M are replaced by the result of some chaotic iterations.
Here, the iterate function is the vectorial Boolean negation,

f0 : (x1, ..., xM) ∈ B
M 7−→ (x1, ..., xM) ∈ B

M, (8)

the initial state isL, and the strategy is equal toU . In this
case, the whole embedding stage satisfies the topological chaos
properties [30], but the original medium is required to extract
the watermark. On the other hand, when the selected LSCs
are substituted by the watermark, its extraction can be done
without the original cover (blind watermarking). In this case,
the selection of LSBs still remains chaotic because of the use
of the New CI generator, but the whole process does not satisfy

topological chaos [30]. The use of chaotic iterations is reduced
to the mixture of the watermark. See the following sections for
more detail.

c) Extraction: The chaotic strategy can be regenerated
even in the case of an authenticated watermarking, because
the MSCs have not changed during the embedding stage. Thus,
the few altered LSCs can be found, the mixed watermark can
be rebuilt, and the original watermark can be obtained. In
case of a switch, the result of the previous chaotic iterations
on the watermarked image should be the original cover. The
probability of being watermarked decreases when the number
of differences increase.

If the watermarked image is attacked, then the MSCs will
change. Consequently, in case of authentication and due to the
high sensitivity of our PRNG, the LSCs designed to receive the
watermark will be completely different. Hence, the result of the
recovery will have no similarity with the original watermark.

The chaos-based data hiding scheme is summed up in
Figure 11.

Fig. 11: The chaos-based data hiding decision tree.

C. Application Example

1) Experimental protocol:In this subsection, a concrete
example is given: a watermark is encrypted and embedded
into a cover image using the scheme presented in the previous
section and CI(XORshift, XORshift). The carrier image is the
well-known Lena, which is a 256 grayscale image, and the
watermark is the64 × 64 pixels binary image depicted in
Figure 12.

The watermark is encrypted by using chaotic iterations: the
initial state x0 is the watermark, considered as a Boolean
vector, the iteration function is the vectorial logical negation,
and the chaotic strategy(Sk)k∈N is defined with CI(XORshift,
XORshift), where initial parameters constitute the secretkey
and N = 64. Thus, the encrypted watermark is the last



(a) The original image (b) The watermark

Fig. 12: Original images

(a) Differences with the original (b) Encrypted watermark

Fig. 13: Encrypted watermark and differences

Boolean vector generated by these chaotic iterations. An
example of such an encryption is given in Figure 13.

Let L be the2563 Booleans vector constituted by the three
last bits of each pixel of Lena andUk defined by the sequence:

{

U0 = S0

Un+1 = Sn+1 + 2× Un + n [mod 2563].
(9)

The watermarked LenaIw is obtained from the original Lena,
whose three last bits are replaced by the result of642 chaotic
iterations with initial stateL and strategyU (see Figure 13).

The extraction of the watermark can be obtained in the
same way. Remark that the mapθ 7→ 2θ of the torus,
which is the famous dyadic transformation (a well-known
example of topological chaos [13]), has been chosen to make
(Uk)k6642 highly sensitive to the strategy. As a consequence,
(Uk)k6642 is highly sensitive to the alteration of the image:
any significant modification of the watermarked image will
lead to a completely different extracted watermark, thus giving
a way to authenticate media through the Internet.

Let us now evaluate the robustness of the proposed method.
2) Robustness evaluation:In what follows, the embedding

domain is the spatial domain, CI(XORshift,XORshift) has been
used to encrypt the watermark, MSCs are the four first bits of
each pixel (useful only in case of authentication), and LSCs
are the three next bits.

To prove the efficiency and the robustness of the proposed
algorithm, some attacks are applied to our chaotic watermarked
image. For each attack, a similarity percentage with the water-
mark is computed, this percentage is the number of equal bits
between the original and the extracted watermark, shown as a
percentage. Let us notice that a result less than or equal to50%
implies that the image has probably not been watermarked.

a) Zeroing attack:In this kind of attack, a watermarked
image is zeroed, such as in Figure 14(a). In this case, the

results in Table 1 have been obtained.

(a) Cropping attack (b) Rotation attack

Fig. 14: Watermarked Lena after attacks.

UNAUTHENTICATION AUTHENTICATION
Size (pixels) Similarity Size (pixels) Similarity

10 99.08% 10 91.77%
50 97.31% 50 55.43%
100 92.43% 100 51.52%
200 70.75% 200 50.60%

Table. 1. Cropping attacks

In Figure 15, the decrypted watermarks are shown after
a crop of 50 pixels and after a crop of 10 pixels, in the
authentication case.

(a) Unauthentication (50× 50).

(b) Authentication (50× 50). (c) Authentication (10× 10).

Fig. 15: Extracted watermark after a cropping attack.

By analyzing the similarity percentage between the original
and the extracted watermark, we can conclude that in case of
unauthentication, the watermark still remains after a zeroing
attack: the desired robustness is reached. It can be noticedthat
zeroing sizes and percentages are rather proportional.

In case of authentication, even a small change of the carrier
image (a crop by10 × 10 pixels) leads to a really different
extracted watermark. In this case, any attempt to alter the
carrier image will be signaled, the image is well authenticated.

b) Rotation attack: Let rθ be the rotation of angleθ
around the center(128, 128) of the carrier image. So, the
transformationr−θ ◦ rθ is applied to the watermarked image,
which is altered as in Figure 14. The results in Table 2 have
been obtained.

UNAUTHENTICATION AUTHENTICATION
Angle (degree) Similarity Angle (degree) Similarity

2 96.44% 2 73.40%
5 93.32% 5 60.56%
10 90.68% 10 52.11%
25 78.13% 25 51.97%

Table. 2. Rotation attacks



TABLE III: SP 800-22 test results (PT )

Method New CI (mn = yn mod N ) New CI (no mark) Old CI New CI (g1()) New CI (g2())

Frequency (Monobit) Test 0.0004 0.0855 0.595549 0.474986 0.419

Frequency Test within a Block 0 0 0.554420 0.897763 0.6786

Runs Test 0.2896 0.5544 0.455937 0.816537 0.3345

Longest Run of Ones in a Block Test 0.0109 0.4372 0.016717 0.798139 0.8831

Binary Matrix Rank Test 0 0.6579 0.616305 0.262249 0.7597

Discrete Fourier Transform (Spectral) Test 0 0 0.000190 0.007160 0.0008

Non-overlapping Template Matching Test* 0.020071 0.37333 0.532252 0.449916 0.51879

Overlapping Template Matching Test 0 0 0.334538 0.514124 0.2492

Maurer’s “Universal Statistical” Test 0.6993 0.9642 0.032923 0.678686 0.1296

Linear Complexity Test 0.3669 0.924 0.401199 0.657933 0.3504

Serial Test* (m=10) 0 0.28185 0.013396 0.425346 0.2549

Approximate Entropy Test (m=10) 0 0.3838 0.137282 0.637119 0.7597

Cumulative Sums (Cusum) Test* 0 0 0.046464 0.279680 0.34245

Random Excursions Test* 0.46769 0.34788 0.503622 0.287409 0.18977

Random Excursions Variant Test* 0.28779 0.46505 0.347772 0.486686 0.26563

Success 8/15 11/15 15/15 15/15 15/15

The same conclusion as above can be declaimed: this
watermarking method satisfies the desired properties.

c) JPEG compression:A JPEG compression is applied to
the watermarked image, depending on a compression level. Let
us notice that this attack leads to a change of the representation
domain (from spatial to DCT domain). In this case, the results
in Table 3 have been obtained.

UNAUTHENTICATION AUTHENTICATION
Compression Similarity Compression Similarity

2 85.76% 2 56.42%
5 67.62% 5 52.12%
10 62.43% 10 48.22%
20 54.74% 20 49.07%

Table. 3. JPEG compression attacks

A very good authentication through JPEG attack is obtained.
As for the unauthentication case, the watermark still remains
after a compression level equal to 10. This is a good result if
we take into account the fact that we use spatial embedding.

d) Gaussian noise:Watermarked image can be also
attacked by the addition of a Gaussian noise, depending on
a standard deviation. In this case, the results in Table 4 have
been obtained.

UNAUTHENTICATION AUTHENTICATION
Standard dev. Similarity Standard dev. Similarity

1 81.14% 1 55.57%
2 75.01% 2 52.63%
3 67.64% 3 52.68%
5 57.48% 5 51.34%

Table. 4. Gaussian noise attacks

Once again we remark that good results are obtained,
especially if we keep in mind that a spatial representation
domain has been chosen.

VIII. C ONCLUSION AND FUTURE WORK

In this paper, the pseudo-random generator proposed in [12]
has been improved. By using XORshift instead of logistic
map and due to a rewrite of the way to generate strategies,
the generator based on chaotic iterations works faster and is
more secure. The speed and randomness of this new PRNG

has been compared to its former version, to XORshift, and to
a generator based on logistic map. This comparison shows that
CI(XORshift, XORshift) offers a sufficient speed and level of
security for a wide range of Internet usages as cryptography
and information hiding.

In future work, we will continue to try to improve the speed
and security of this PRNG, by exploring new strategies and
iteration functions. Its chaotic behavior will be deepenedby
using the numerous tools provided by the mathematical theory
of chaos. New statistical tests will be used to compare this
PRNG to existing ones. Additionally a probabilistic study of
its security will be done. Lastly, new applications in computer
science will be proposed, especially in the Internet security
field.
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APPENDIX

The NIST Statistical Test Suite

In what follows, the objectives of the fifteen tests contained
in the NIST Statistical tests suite are recalled. A more detailed
description for those tests can be found in [14].

Frequency (Monobit) Test is to determine whether the
number of ones and zeros in a sequence are approximately
the same as would be expected for a truly random sequence.

Frequency Test within a Block is to determine whether the
frequency of ones in an M-bits block is approximately M/2,
as would be expected under an assumption of randomness (M
is the length of each block).

Runs Test is to determine whether the number of runs
of ones and zeros of various lengths is as expected for a
random sequence. In particular, this test determines whether
the oscillation between such zeros and ones is too fast or too
slow.

Test for the Longest Run of Ones in a Block is to
determine whether the length of the longest run of ones within
the tested sequence is consistent with the length of the longest
run of ones that would be expected in a random sequence.

Binary Matrix Rank Test is to check for linear dependence
among fixed length substrings of the original sequence.

Discrete Fourier Transform (Spectral) Test is to detect
periodic features (i.e., repetitive patterns that are neareach
other) in the tested sequence that would indicate a deviation
from the assumption of randomness.

Non-overlapping Template Matching Test is to detect
generators that produce too many occurrences of a given non-
periodic (aperiodic) pattern.

Overlapping Template Matching Test is the number of
occurrences of pre-specified target strings.

Maurer’s “Universal Statistical” Test is to detect whether
or not the sequence can be significantly compressed without
loss of information.

Linear Complexity Test is to determine whether or not the
sequence is complex enough to be considered random.

Serial Test is to determine whether the number of occur-
rences of the2m m-bit (m is the length in bits of each block)
overlapping patterns is approximately the same as would be
expected for a random sequence.

Approximate Entropy Test is to compare the frequency of
overlapping blocks of two consecutive/adjacent lengths (mand
m+1) against the expected result for a random sequence (m is
the length of each block).

Cumulative Sums (Cusum) Testis to determine whether
the cumulative sum of the partial sequences occurring in the
tested sequence is too large or too small relative to the expected
behavior of that cumulative sum for random sequences.

Random Excursions Testis to determine if the number of
visits to a particular state within a cycle deviates from what
one would expect for a random sequence.

Random Excursions Variant Test is to detect deviations
from the expected number of visits to various states in the
random walk.
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