
Abstract

Many research works deal with chaotic neural networks for various
fields of application. Unfortunately, up to now these networks are usually
claimed to be chaotic without any mathematical proof. The purpose of
this paper is to establish, based on a rigorous theoretical framework, an
equivalence between chaotic iterations according to Devaney and a partic-
ular class of neural networks. On the one hand we show how to build such
a network, on the other hand we provide a method to check if a neural
network is a chaotic one. Finally, the ability of classical feedforward mul-
tilayer perceptrons to learn sets of data obtained from a dynamical system
is regarded. Various Boolean functions are iterated on finite states. Itera-
tions of some of them are proven to be chaotic as it is defined by Devaney.
In that context, important differences occur in the training process, estab-
lishing with various neural networks that chaotic behaviors are far more
difficult to learn.

1

Neural Networks and Chaos: Construction,

Evaluation of Chaotic Networks,

and Prediction of Chaos with Multilayer

Feedforward Networks

Jacques M. Bahi,Jean-François Couchot,Christophe Guyeux,Michel Salomon
Computer Science Laboratory (LIFC), University of Franche-Comté,

IUT de Belfort-Montbéliard, BP 527,
90016 Belfort Cedex, France

December 24, 2011

Chaotic neural networks have received a lot of attention due
to the appealing properties of deterministic chaos (unpredictability,
sensitivity, and so on). However, such networks are often claimed
chaotic without any rigorous mathematical proof. Therefore, in this
work a theoretical framework based on the Devaney’s definition of
chaos is introduced. Starting with a relationship between discrete
iterations and Devaney’s chaos, we firstly show how to build a recur-
rent neural network that is equivalent to a chaotic map and secondly
a way to check whether an already available network is chaotic or
not. We also study different topological properties of these truly
chaotic neural networks. Finally, we show that the learning, with
neural networks having a classical feedforward structure, of chaotic
behaviors represented by data sets obtained from chaotic maps, is
far more difficult than non chaotic behaviors.

1 Introduction

Several research works have proposed or used chaotic neural networks these
last years. The complex dynamics of such networks lead to various potential
application areas: associative memories [?] and digital security tools like hash
functions [?], digital watermarking [?, ?], or cipher schemes [?]. In the for-
mer case, the background idea is to control chaotic dynamics in order to store
patterns, with the key advantage of offering a large storage capacity. For the
latter case, the use of chaotic dynamics is motivated by their unpredictability
and random-like behaviors. Indeed, investigating new concepts is crucial for the

2

computer security field, because new threats are constantly emerging. As an
illustrative example, the former standard in hash functions, namely the SHA-1
algorithm, has been recently weakened after flaws were discovered.

Chaotic neural networks have been built with different approaches. In the
context of associative memory, chaotic neurons like the nonlinear dynamic state
neuron [?] frequently constitute the nodes of the network. These neurons have
an inherent chaotic behavior, which is usually assessed through the computation
of the Lyapunov exponent. An alternative approach is to consider a well-known
neural network architecture: the MultiLayer Perceptron (MLP). These networks
are suitable to model nonlinear relationships between data, due to their universal
approximator capacity [?, ?]. Thus, this kind of networks can be trained to
model a physical phenomenon known to be chaotic such as Chua’s circuit [?].
Sometime a neural network, which is build by combining transfer functions and
initial conditions that are both chaotic, is itself claimed to be chaotic [?].

What all of these chaotic neural networks have in common is that they are
claimed to be chaotic despite a lack of any rigorous mathematical proof. The
first contribution of this paper is to fill this gap, using a theoretical framework
based on the Devaney’s definition of chaos [?]. This mathematical theory of
chaos provides both qualitative and quantitative tools to evaluate the complex
behavior of a dynamical system: ergodicity, expansivity, and so on. More pre-
cisely, in this paper, which is an extension of a previous work [?], we establish
the equivalence between chaotic iterations and a class of globally recurrent MLP.
The second contribution is a study of the converse problem, indeed we investi-
gate the ability of classical multilayer perceptrons to learn a particular family of
discrete chaotic dynamical systems. This family is defined by a Boolean vector,
an update function, and a sequence defining the component to update at each
iteration. It has been previously established that such dynamical systems are
chaotically iterated (as it is defined by Devaney) when the chosen function has
a strongly connected iterations graph. In this document, we experiment several
MLPs and try to learn some iterations of this kind. We show that non-chaotic
iterations can be learned, whereas it is far more difficult for chaotic ones. That
is to say, we have discovered at least one family of problems with a reason-
able size, such that artificial neural networks should not be applied due to their
inability to learn chaotic behaviors in this context.

The remainder of this research work is organized as follows. The next section
is devoted to the basics of Devaney’s chaos. Section 3 formally describes how
to build a neural network that operates chaotically. Section 4 is devoted to
the dual case of checking whether an existing neural network is chaotic or not.
Topological properties of chaotic neural networks are discussed in Sect. 5. The
Section 6.1 shows how to translate such iterations into an Artificial Neural
Network (ANN), in order to evaluate the capability for this latter to learn
chaotic behaviors. This ability is studied in Sect. 6.2, where various ANNs
try to learn two sets of data: the first one is obtained by chaotic iterations while
the second one results from a non-chaotic system. Prediction success rates are
given and discussed for the two sets. The paper ends with a conclusion section
where our contribution is summed up and intended future work is exposed.

3

2 Chaotic Iterations according to Devaney

In this section, the well-established notion of Devaney’s mathematical chaos is
firstly recalled. Preservation of the unpredictability of such dynamical system
when implemented on a computer is obtained by using some discrete iterations
called “asynchronous iterations”, which are thus introduced. The result estab-
lishing the link between such iterations and Devaney’s chaos is finally presented
at the end of this section.

In what follows and for any function f , fn means the composition f◦f◦. . .◦f
(n times) and an iteration of a dynamical system is the step that consists in
updating the global state xt at time t with respect to a function f s.t. xt+1 =
f(xt).

2.1 Devaney’s chaotic dynamical systems

Various domains such as physics, biology, or economy, contain systems that ex-
hibit a chaotic behavior, a well-known example is the weather. These systems
are in particular highly sensitive to initial conditions, a concept usually pre-
sented as the butterfly effect: small variations in the initial conditions possibly
lead to widely different behaviors. Theoretically speaking, a system is sensitive
if for each point x in the iteration space, one can find a point in each neigh-
borhood of x having a significantly different future evolution. Conversely, a
system seeded with the same initial conditions always has the same evolution.
In other words, chaotic systems have a deterministic behavior defined through a
physical or mathematical model and a high sensitivity to the initial conditions.
Besides mathematically this kind of unpredictability is also referred to as de-
terministic chaos. For example, many weather forecast models exist, but they
give only suitable predictions for about a week, because they are initialized with
conditions that reflect only a partial knowledge of the current weather. Even
if the differences are initially small, they are amplified in the course of time,
and thus make difficult a long-term prediction. In fact, in a chaotic system,
an approximation of the current state is a quite useless indicator for predicting
future states.

From mathematical point of view, deterministic chaos has been thoroughly
studied these last decades, with different research works that have provide vari-
ous definitions of chaos. Among these definitions, the one given by Devaney [?] is
well-established. This definition consists of three conditions: topological tran-
sitivity, density of periodic points, and sensitive point dependence on initial
conditions.

Topological transitivity is checked when, for any point, any neighborhood
of its future evolution eventually overlap with any other given region. This prop-
erty implies that a dynamical system cannot be broken into simpler subsystems.
Intuitively, its complexity does not allow any simplification.

However, chaos needs some regularity to “counteracts” the effects of transi-
tivity. In the Devaney’s formulation, a dense set of periodic points is the element
of regularity that a chaotic dynamical system has to exhibit. We recall that a

4

point x is a periodic point for f of period n ∈ N∗ if fn(x) = x. Then, the
map f is regular on the topological space (X , τ) if the set of periodic points for
f is dense in X (for any x ∈ X , we can find at least one periodic point in any of
its neighborhood). Thus, due to these two properties, two points close to each
other can behave in a completely different manner, leading to unpredictability
for the whole system.

Let us recall that f has sensitive dependence on initial conditions if
there exists δ > 0 such that, for any x ∈ X and any neighborhood V of x, there
exist y ∈ V and n > 0 such that d (fn(x), fn(y)) > δ. The value δ is called the
constant of sensitivity of f .

Finally, the dynamical system that iterates f is chaotic according to De-
vaney on (X , τ) if f is regular, topologically transitive, and has sensitive depen-
dence to its initial conditions. In what follows, iterations are said to be chaotic
(according to Devaney) when the corresponding dynamical system is chaotic,
as it is defined in the Devaney’s formulation.

2.2 Asynchronous Iterations

Let us firstly discuss about the domain of iteration. As far as we know, no
result rules that the chaotic behavior of a dynamical system that has been
theoretically proven on R remains valid on the floating-point numbers, which
is the implementation domain. Thus, to avoid loss of chaos this work presents
an alternative, that is to iterate Boolean maps: results that are theoretically
obtained in that domain are preserved in implementations.

Let us denote by Ja; bK the following interval of integers: {a, a + 1, . . . , b},
where a < b. In this section, a system under consideration iteratively modifies
a collection of n components. Each component i ∈ J1;nK takes its value xi
among the domain B = {0, 1}. A configuration of the system at discrete time t
is the vector xt = (xt1, . . . , x

t
n) ∈ Bn. The dynamics of the system is described

according to a function f : Bn → Bn such that f(x) = (f1(x), . . . , fn(x)).
Let be given a configuration x. In what follows N(i, x) = (x1, . . . , xi, . . . , xn)

is the configuration obtained by switching the i−th component of x (xi is indeed
the negation of xi). Intuitively, x and N(i, x) are neighbors. The discrete
iterations of f are represented by the oriented graph of iterations Γ(f). In such
a graph, vertices are configurations of Bn and there is an arc labeled i from x
to N(i, x) if and only if fi(x) is N(i, x).

In the sequel, the strategy S = (St)t∈N is the sequence defining which com-
ponent to update at time t and St denotes its t−th term. This iteration scheme
that only modifies one element at each iteration is usually referred as asyn-
chronous iterations. More precisely, we have for any i, 1 ≤ i ≤ n, x0 ∈ Bn

xt+1
i =

{
fi(x

t) if St = i ,
xti otherwise .

(1)

Next section shows the link between asynchronous iterations and Devaney’s
chaos.

5

2.3 On the link between asynchronous iterations and De-
vaney’s Chaos

In this subsection we recall the link we have established between asynchronous
iterations and Devaney’s chaos. The theoretical framework is fully described in
[?].

We introduce the function Ff that is defined for any given application f :
Bn → Bn by Ff : J1;nK×Bn → Bn, s.t.

Ff (s, x)j =

{
fj(x) if j = s ,
xj otherwise .

(2)

With such a notation, asynchronously obtained configurations are defined for
times
t = 0, 1, 2, . . . by: {

x0 ∈ Bn and
xt+1 = Ff (St, xt) .

(3)

Finally, iterations defined in Eq. (3) can be described by the following system:
X0 = ((St)t∈N, x0) ∈ J1;nKN ×Bn

Xk+1 = Gf (Xk)
where Gf

(
((St)t∈N, x)

)
=
(
σ((St)t∈N), Ff (S0, x)

)
,

(4)

where σ is the so-called shift function that removes the first term of the strategy
(i.e., S0). This definition allows to link asynchronous iterations with classical
iterations of a dynamical system. Note that it can be extended by considering
subsets for St.

To study topological properties of these iterations, we are then left to intro-
duce a distance d between two points (S, x) and (Š, x̌) in X = J1;nKN × Bn.
Let ∆(x, y) = 0 if x = y, and ∆(x, y) = 1 else, be a distance on B. The distance
d is defined by

d((S, x); (Š, x̌)) = de(x, x̌) + ds(S, Š) , (5)

where

de(x, x̌) =

n∑
j=1

∆(xj , x̌j) ∈ J0;nK (6)

and

ds(S, Š) =
9

2n

∞∑
t=0

|St − Št|
10t+1

∈ [0; 1] . (7)

This distance is defined to reflect the following information. Firstly, the more
two systems have different components, the larger the distance between them.
Secondly, two systems with similar components and strategies, which have the
same starting terms, must induce only a small distance. The proposed distance
fulfills these requirements: on the one hand its floor value reflects the difference
between the cells, on the other hand its fractional part measures the difference
between the strategies.

6

The relation between Γ(f) and Gf is obvious: there exists a path from x to
x′ in Γ(f) if and only if there exists a strategy s such that iterations of Gf from
the initial point (s, x) reach the configuration x′. Using this link, Guyeux [?]
has proven that,

Theorem 1 Let f : Bn → Bn. Iterations of Gf are chaotic according to De-
vaney if and only if Γ(f) is strongly connected.

Checking if a graph is strongly connected is not difficult (by the Tarjan’s
algorithm for instance). Let be given a strategy S and a function f such that
Γ(f) is strongly connected. In that case, iterations of the function Gf as defined
in Eq. (4) are chaotic according to Devaney.

Let us then define two functions f0 and f1 both in Bn → Bn that are used
all along this paper. The former is the vectorial negation, i.e., f0(x1, . . . , xn) =
(x1, . . . , xn). The latter is f1 (x1, . . . , xn) = (x1, x1, x2, . . . , xn−1). It is not hard
to check that Γ(f0) and Γ(f1) are both strongly connected, then iterations of
Gf0 and of Gf1 are chaotic according to Devaney.

With this material, we are now able to build a first chaotic neural network,
as defined in the Devaney’s formulation.

3 A chaotic neural network in the sense of De-
vaney

Let us build a multilayer perceptron neural network modeling Ff0 : J1;nK ×
Bn → Bn associated to the vectorial negation. More precisely, for all inputs
(s, x) ∈ J1;nK×Bn, the output layer will produce Ff0(s, x). It is then possible
to link the output layer and the input one, in order to model the dependence
between two successive iterations. As a result we obtain a global recurrent
neural network that behaves as follows (see Fig. 1).

• The network is initialized with the input vector
(
S0, x0

)
∈ J1;nK × Bn

and computes the output vector x1 = Ff0

(
S0, x0

)
. This last vector is

published as an output one of the chaotic neural network and is sent back
to the input layer through the feedback links.

• When the network is activated at the tth iteration, the state of the system
xt ∈ Bn received from the output layer and the initial term of the sequence
(St)t∈N (i.e., S0 ∈ J1;nK) are used to compute the new output vector.
This new vector, which represents the new state of the dynamical system,
satisfies:

xt+1 = Ff0(S0, xt) ∈ Bn . (8)

The behavior of the neural network is such that when the initial state is
x0 ∈ Bn and a sequence (St)t∈N is given as outside input, then the sequence of

successive published output vectors (xt)
t∈N∗

is exactly the one produced by the
chaotic iterations formally described in Eq. (4). It means that mathematically

7

tS , t in {0,1,2,...}

−1

−1

Output

layer

Hidden layers

1
0

2
0

2

x

x

x

x

1
+1

2
+1

x

x

t

t

t

t
1

−1−1

−1

−1−1

bias / threshold

Figure 1: A perceptron equivalent to chaotic iterations

if we use similar input vectors they both generate the same successive outputs

(xt)
t∈N∗

, and therefore that they are equivalent reformulations of the iterations
of Gf0 in X . Finally, since the proposed neural network is built to model
the behavior of Gf0 , whose iterations are chaotic according to the Devaney’s
definition of chaos, we can conclude that the network is also chaotic in this
sense.

The previous construction scheme is not restricted to function f0. It can
be extended to any function f such that Gf is a chaotic map by training the
network to model Ff : J1;nK × Bn → Bn. Due to Theorem 1, we can find
alternative functions f for f0 through a simple check of their graph of iterations
Γ(f). For example, we can build another chaotic neural network by using f1
instead of f0.

4 Checking whether a neural network is chaotic
or not

We focus now on the case where a neural network is already available, and for
which we want to know if it is chaotic. Typically, in many research papers neural
network are usually claimed to be chaotic without any convincing mathemati-
cal proof. We propose an approach to overcome this drawback for a particular
category of multilayer perceptrons defined below, and for the Devaney’s formu-
lation of chaos. In spite of this restriction, we think that this approach can be
extended to a large variety of neural networks.

We consider a multilayer perceptron of the following form: inputs are n
binary digits and one integer value, while outputs are n bits. Moreover, each
binary output is connected with a feedback connection to an input one.

8

• During initialization, the network is seeded with n bits denoted
(
x01, . . . , x

0
n

)
and an integer value S0 that belongs to J1;nK.

• At iteration t, the last output vector (xt1, . . . , x
t
n) defines the n bits used

to compute the new output one
(
xt+1
1 , . . . , xt+1

n

)
. While the remaining

input receives a new integer value St ∈ J1;nK, which is provided by the
outside world.

The topological behavior of these particular neural networks can be proven to
be chaotic through the following process. Firstly, we denote by F : J1;nK×Bn →
Bn the function that maps the value (s, (x1, . . . , xn)) ∈ J1;nK×Bn into the value
(y1, . . . , yn) ∈ Bn, where (y1, . . . , yn) is the response of the neural network after
the initialization of its input layer with (s, (x1, . . . , xn)). Secondly, we define
f : Bn → Bn such that f (x1, x2, . . . , xn) is equal to

(F (1, (x1, x2, . . . , xn)) , . . . , F (n, (x1, x2, . . . , xn))) . (9)

Thus, for any j, 1 ≤ j ≤ n, we have fj (x1, x2, . . . , xn) = F (j, (x1, x2, . . . , xn)).
If this recurrent neural network is seeded with

(
x01, . . . , x

0
n

)
and S ∈ J1;nKN,

it produces exactly the same output vectors than the chaotic iterations of Ff

with initial condition
(
S, (x01, . . . , x

0
n)
)
∈ J1;nKN × Bn. Theoretically speaking,

such iterations of Ff are thus a formal model of these kind of recurrent neural
networks. In the rest of this paper, we will call such multilayer perceptrons “CI-
MLP(f)”, which stands for “Chaotic Iterations based MultiLayer Perceptron”.

Checking if CI-MLP(f) behaves chaotically according to Devaney’s definition
of chaos is simple: we need just to verify if the associated graph of iterations
Γ(f) is strongly connected or not. As an incidental consequence, we finally
obtain an equivalence between chaotic iterations and CI-MLP(f). Therefore,
we can obviously study such multilayer perceptrons with mathematical tools
like topology to establish, for example, their convergence or, contrarily, their
unpredictable behavior. An example of such a study is given in the next section.

5 Topological properties of chaotic neural net-
works

Let us first recall two fundamental definitions from the mathematical theory of
chaos.

Definition 1 A function f is said to be expansive if ∃ε > 0, ∀x 6= y, ∃n ∈ N
such that d (fn(x), fn(y)) ≥ ε.

In other words, a small error on any initial condition is always amplified until
ε, which denotes the constant of expansivity of f .

Definition 2 A discrete dynamical system is said to be topologically mixing
if and only if, for any pair of disjoint open sets U ,V 6= ∅, we can find some n0 ∈ N
such that for any n, n ≥ n0, we have fn(U) ∩ V 6= ∅.

9

Topologically mixing means that the dynamical system evolves in time such that
any given region of its topological space might overlap with any other region.

It has been proven in Ref. [?] that chaotic iterations are expansive and
topologically mixing when f is the vectorial negation f0. Consequently, these
properties are inherited by the CI-MLP(f0) recurrent neural network previously
presented, which induce a greater unpredictability. Any difference on the ini-
tial value of the input layer is in particular magnified up to be equal to the
expansivity constant.

Let us then focus on the consequences for a neural network to be chaotic ac-
cording to Devaney’s definition. Intuitively, the topological transitivity property
implies indecomposability, which is formally defined as follows:

Definition 3 A dynamical system (X , f) is not decomposable if it is not the
union of two closed sets A,B ⊂ X such that f(A) ⊂ A, f(B) ⊂ B.

Hence, reducing the set of outputs generated by CI-MLP(f), in order to simplify
its complexity, is impossible if Γ(f) is strongly connected. Moreover, under this
hypothesis CI-MLPs(f) are strongly transitive:

Definition 4 A dynamical system (X , f) is strongly transitive if ∀x, y ∈ X ,
∀r > 0, ∃z ∈ X , d(z, x) ≤ r ⇒ ∃n ∈ N∗, fn(z) = y.

According to this definition, for all pairs of points (x, y) in the phase space,
a point z can be found in the neighborhood of x such that one of its iterates
fn(z) is y. Indeed, this result has been established during the proof of the
transitivity presented in Ref. [?]. Among other things, the strong transitivity
leads to the fact that without the knowledge of the initial input layer, all outputs
are possible. Additionally, no point of the output space can be discarded when
studying CI-MLPs: this space is intrinsically complicated and it cannot be
decomposed or simplified.

Furthermore, these recurrent neural networks exhibit the instability prop-
erty:

Definition 5 A dynamical system (X , f) is unstable if for all x ∈ X , the orbit
γx : n ∈ N 7−→ fn(x) is unstable, that means: ∃ε > 0, ∀δ > 0, ∃y ∈ X , ∃n ∈ N,
such that d(x, y) < δ and d (γx(n), γy(n)) ≥ ε.

This property, which is implied by the sensitive point dependence on initial
conditions, leads to the fact that in all neighborhoods of any point x, there are
points that can be apart by ε in the future through iterations of the CI-MLP(f).
Thus, we can claim that the behavior of these MLPs is unstable when Γ(f) is
strongly connected.

Let us now consider a compact metric space (M,d) and f : M → M a
continuous map. For each natural number n, a new metric dn is defined on M
by

dn(x, y) = max{d(f i(x), f i(y)) : 0 ≤ i < n} . (10)

Given any ε > 0 and n > 1, two points of M are ε-close with respect to this
metric if their first n iterates are ε-close.

10

Figure 2: Summary of addressed neural networks and chaos problems

This metric allows one to distinguish in a neighborhood of an orbit the points
that move away from each other during the iteration from the points that travel
together. A subset E of M is said to be (n, ε)-separated if each pair of distinct
points of E is at least ε apart in the metric dn. Denote by H(n, ε) the maximum
cardinality of an (n, ε)-separated set,

Definition 6 The topological entropy of the map f is defined by (see e.g.,
Ref. [?] or Ref. [?])

h(f) = lim
ε→0

(
lim sup
n→∞

1

n
logH(n, ε)

)
.

Then we have the following result [?],

Theorem 2 (X , d) is compact and the topological entropy of (X , Gf0) is infi-
nite.

Figure 2 is a summary of addressed neural networks and chaos problems. In
Section 3 we have explained how to construct a truly chaotic neural networks,
A for instance. Section 4 has shown how to check whether a given MLP A or
C is chaotic or not in the sense of Devaney, and how to study its topological
behavior. The last thing to investigate, when comparing neural networks and
Devaney’s chaos, is to determine whether an artificial neural network C is able
to learn or predict some chaotic behaviors of B, as it is defined in the Devaney’s
formulation (when they are not specifically constructed for this purpose). This
statement is studied in the next section.

6 Suitability of Feedforward Neural Networks
for Predicting Chaotic and Non-chaotic Be-
haviors

In the context of computer science different topic areas have an interest in chaos,
as for steganographic techniques [?, ?]. Steganography consists in embedding a

11

secret message within an ordinary one, while the secret extraction takes place
once at destination. The reverse (i.e., automatically detecting the presence
of hidden messages inside media) is called steganalysis. Among the deployed
strategies inside detectors, there are support vectors machines [?], neural net-
works [?, ?], and Markov chains [?]. Most of these detectors give quite good
results and are rather competitive when facing steganographic tools. However,
to the best of our knowledge none of the considered information hiding schemes
fulfills the Devaney definition of chaos [?]. Indeed, one can wonder whether
detectors continue to give good results when facing truly chaotic schemes. More
generally, there remains the open problem of deciding whether artificial intelli-
gence is suitable for predicting topological chaotic behaviors.

6.1 Representing Chaotic Iterations for Neural Networks

The problem of deciding whether classical feedforward ANNs are suitable to ap-
proximate topological chaotic iterations may then be reduced to evaluate such
neural networks on iterations of functions with Strongly Connected Compo-
nent (SCC) graph of iterations. To compare with non-chaotic iterations, the
experiments detailed in the following sections are carried out using both kinds
of function (chaotic and non-chaotic). Let us emphasize on the difference be-
tween this kind of neural networks and the Chaotic Iterations based multilayer
peceptron.

We are then left to compute two disjoint function sets that contain either
functions with topological chaos properties or not, depending on the strong
connectivity of their iterations graph. This can be achieved for instance by
removing a set of edges from the iteration graph Γ(f0) of the vectorial negation
function f0. One can deduce whether a function verifies the topological chaos
property or not by checking the strong connectivity of the resulting graph of
iterations.

For instance let us consider the functions f and g from B4 to B4 respectively
defined by the following lists:

[0, 0, 2, 3, 13, 13, 6, 3, 8, 9, 10, 11, 8, 13, 14, 15]

and [11, 14, 13, 14, 11, 10, 1, 8, 7, 6, 5, 4, 3, 2, 1, 0] .

In other words, the image of 0011 by g is 1110: it is obtained as the binary value
of the fourth element in the second list (namely 14). It is not hard to verify
that Γ(f) is not SCC (e.g., f(1111) is 1111) whereas Γ(g) is. The remaining
of this section shows how to translate iterations of such functions into a model
amenable to be learned by an ANN. Formally, input and output vectors are
pairs ((St)t∈N, x) and

(
σ((St)t∈N), Ff (S0, x)

)
as defined in Eq. (4).

Firstly, let us focus on how to memorize configurations. Two distinct trans-
lations are proposed. In the first case, we take one input in B per component;
in the second case, configurations are memorized as natural numbers. A coarse
attempt to memorize configuration as natural number could consist in labeling
each configuration with its translation into decimal numeral system. However,

12

such a representation induces too many changes between a configuration labeled
by a power of two and its direct previous configuration: for instance, 16 (10000)
and 15 (01111) are close in a decimal ordering, but their Hamming distance is
5. This is why Gray codes [?] have been preferred.

Secondly, let us detail how to deal with strategies. Obviously, it is not
possible to translate in a finite way an infinite strategy, even if both (St)t∈N

and σ((St)t∈N) belong to {1, . . . , n}N. Input strategies are then reduced to have
a length of size l ∈ J2, kK, where k is a parameter of the evaluation. Notice that
l is greater than or equal to 2 since we do not want the shift σ function to return
an empty strategy. Strategies are memorized as natural numbers expressed in
base n+ 1. At each iteration, either none or one component is modified (among
the n components) leading to a radix with n + 1 entries. Finally, we give an
other input, namely m ∈ J1, l− 1K, which is the number of successive iterations
that are applied starting from x. Outputs are translated with the same rules.

To address the complexity issue of the problem, let us compute the size of
the data set an ANN has to deal with. Each input vector of an input-output
pair is composed of a configuration x, an excerpt S of the strategy to iterate of
size l ∈ J2, kK, and a number m ∈ J1, l − 1K of iterations that are executed.

Firstly, there are 2n configurations x, with nl strategies of size l for each of
them. Secondly, for a given configuration there are ω = 1× n2 + 2× n3 + . . .+
(k − 1) × nk ways of writing the pair (m,S). Furthermore, it is not hard to
establish that

(n− 1)× ω = (k − 1)× nk+1 −
k∑

i=2

ni

then

ω =
(k − 1)× nk+1

n− 1
− nk+1 − n2

(n− 1)2
.

And then, finally, the number of input-output pairs for our ANNs is

2n ×
(

(k − 1)× nk+1

n− 1
− nk+1 − n2

(n− 1)2

)
.

For instance, for 4 binary components and a strategy of at most 3 terms we
obtain 2304 input-output pairs.

6.2 Experiments

To study if chaotic iterations can be predicted, we choose to train the multilayer
perceptron. As stated before, this kind of network is in particular well-known
for its universal approximation property [?, ?]. Furthermore, MLPs have been
already considered for chaotic time series prediction. For example, in [?] the
authors have shown that a feedforward MLP with two hidden layers, and trained
with Bayesian Regulation back-propagation, can learn successfully the dynamics
of Chua’s circuit.

In these experiments we consider MLPs having one hidden layer of sigmoidal
neurons and output neurons with a linear activation function. They are trained

13

using the Limited-memory Broyden-Fletcher-Goldfarb-Shanno quasi-newton al-
gorithm in combination with the Wolfe linear search. The training process is
performed until a maximum number of epochs is reached. To prevent overfit-
ting and to estimate the generalization performance we use holdout validation by
splitting the data set into learning, validation, and test subsets. These subsets
are obtained through random selection such that their respective size represents
65%, 10%, and 25% of the whole data set.

Several neural networks are trained for both iterations coding schemes. In
both cases iterations have the following layout: configurations of four compo-
nents and strategies with at most three terms. Thus, for the first coding scheme
a data set pair is composed of 6 inputs and 5 outputs, while for the second one
it is respectively 3 inputs and 2 outputs. As noticed at the end of the previous
section, this leads to data sets that consist of 2304 pairs. The networks differ in
the size of the hidden layer and the maximum number of training epochs. We
remember that to evaluate the ability of neural networks to predict a chaotic
behavior for each coding scheme, the trainings of two data sets, one of them
describing chaotic iterations, are compared.

Thereafter we give, for the different learning setups and data sets, the mean
prediction success rate obtained for each output. Such a rate represents the
percentage of input-output pairs belonging to the test subset for which the
corresponding output value was correctly predicted. These values are computed
considering 10 trainings with random subsets construction, weights and biases
initialization. Firstly, neural networks having 10 and 25 hidden neurons are
trained, with a maximum number of epochs that takes its value in {125, 250, 500}
(see Tables 1 and 2). Secondly, we refine the second coding scheme by splitting
the output vector such that each output is learned by a specific neural network
(Table 3). In this last case, we increase the size of the hidden layer up to
40 neurons and we consider larger number of epochs.

Table 1 presents the rates obtained for the first coding scheme. For the
chaotic data, it can be seen that as expected configuration prediction becomes
better when the number of hidden neurons and maximum epochs increases:
an improvement by a factor two is observed (from 36.10% for 10 neurons and
125 epochs to 70.97% for 25 neurons and 500 epochs). We also notice that the
learning of outputs (2) and (3) is more difficult. Conversely, for the non-chaotic
case the simplest training setup is enough to predict configurations. For all these
feedforward network topologies and all outputs the obtained results for the non-
chaotic case outperform the chaotic ones. Finally, the rates for the strategies
show that the different feedforward networks are unable to learn them.

For the second coding scheme (i.e., with Gray Codes) Table 2 shows that any
network learns about five times more non-chaotic configurations than chaotic
ones. As in the previous scheme, the strategies cannot be predicted. Figures 3
and 4 present the predictions given by two feedforward multilayer perceptrons
that were respectively trained to learn chaotic and non-chaotic data, using the
second coding scheme. Each figure shows for each sample of the test subset
(577 samples, representing 25% of the 2304 samples) the configuration that
should have been predicted and the one given by the multilayer perceptron.

14

Table 1: Prediction success rates for configurations expressed as boolean vectors.
Networks topology: 6 inputs, 5 outputs, and one hidden layer

Hidden neurons 10 neurons
Epochs 125 250 500

C
h
a
o
ti

c

Output (1) 90.92% 91.75% 91.82%
Output (2) 69.32% 78.46% 82.15%
Output (3) 68.47% 78.49% 82.22%
Output (4) 91.53% 92.37% 93.4%

Config. 36.10% 51.35% 56.85%
Strategy (5) 1.91% 3.38% 2.43%

N
o
n
-c

h
a
o
ti

c Output (1) 97.64% 98.10% 98.20%
Output (2) 95.15% 95.39% 95.46%
Output (3) 100% 100% 100%
Output (4) 97.47% 97.90% 97.99%

Config. 90.52% 91.59% 91.73%
Strategy (5) 3.41% 3.40% 3.47%

Hidden neurons 25 neurons
Epochs 125 250 500

C
h
a
o
ti

c

Output (1) 91.65% 92.69% 93.93%
Output (2) 72.06% 88.46% 90.5%
Output (3) 79.19% 89.83% 91.59%
Output (4) 91.61% 92.34% 93.47%

Config. 48.82% 67.80% 70.97%
Strategy (5) 2.62% 3.43% 3.78%

N
o
n
-c

h
a
o
ti

c Output (1) 97.87% 97.99% 98.03%
Output (2) 95.46% 95.84% 96.75%
Output (3) 100% 100% 100%
Output (4) 97.77% 97.82% 98.06%

Config. 91.36% 91.99% 93.03%
Strategy (5) 3.37% 3.44% 3.29%

15

 0

 5

 10

 15

 20

 0 100 200 300 400 500 600

C
o
n
fi
g

u
ra

ti
o
n
s

Samples

chaotic test subset

predicted by MLP

Figure 3: Second coding scheme - Predictions obtained for a chaotic test subset.

It can be seen that for the chaotic data the predictions are far away from the
expected configurations. Obviously, the better predictions for the non-chaotic
data reflect their regularity.

Let us now compare the two coding schemes. Firstly, the second scheme
disturbs the learning process. In fact in this scheme the configuration is always
expressed as a natural number, whereas in the first one the number of inputs
follows the increase of the Boolean vectors coding configurations. In this latter
case, the coding gives a finer information on configuration evolution.

Unfortunately, in practical applications the number of components is usu-
ally unknown. Hence, the first coding scheme cannot be used systematically.
Therefore, we provide a refinement of the second scheme: each output is learned
by a different ANN. Table 3 presents the results for this approach. In any case,
whatever the considered feedforward network topologies, the maximum epoch
number, and the kind of iterations, the configuration success rate is slightly im-
proved. Moreover, the strategies predictions rates reach almost 12%, whereas
in Table 2 they never exceed 1.5%. Despite of this improvement, a long term
prediction of chaotic iterations still appear to be an open issue.

7 Conclusion

In this paper, we have established an equivalence between chaotic iterations,
according to the Devaney’s definition of chaos, and a class of multilayer percep-
tron neural networks. Firstly, we have described how to build a neural network
that can be trained to learn a given chaotic map function. Secondly, we found a
condition that allow to check whether the iterations induced by a function are
chaotic or not, and thus if a chaotic map is obtained. Thanks to this condition

16

 0

 5

 10

 15

 20

 0 100 200 300 400 500 600

C
o
n
fi
g

u
ra

ti
o
n
s

Samples

non-chaotic test subset

predicted by MLP

Figure 4: Second coding scheme - Predictions obtained for a non-chaotic test
subset.

our approach is not limited to a particular function. In the dual case, we show
that checking if a neural network is chaotic consists in verifying a property on
an associated graph, called the graph of iterations. These results are valid for
recurrent neural networks with a particular architecture. However, we believe
that a similar work can be done for other neural network architectures. Finally,
we have discovered at least one family of problems with a reasonable size, such
that artificial neural networks should not be applied in the presence of chaos,
due to their inability to learn chaotic behaviors in this context. Such a consid-
eration is not reduced to a theoretical detail: this family of discrete iterations is
concretely implemented in a new steganographic method [?]. As steganographic
detectors embed tools like neural networks to distinguish between original and
stego contents, our studies tend to prove that such detectors might be unable
to tackle with chaos-based information hiding schemes.

In future work we intend to enlarge the comparison between the learning of
truly chaotic and non-chaotic behaviors. Other computational intelligence tools
such as support vector machines will be investigated too, to discover which tools
are the most relevant when facing a truly chaotic phenomenon. A comparison
between learning rate success and prediction quality will be realized. Concrete
consequences in biology, physics, and computer science security fields will then
be stated.

17

Table 2: Prediction success rates for configurations expressed with Gray code
Networks topology: 3 inputs, 2 outputs, and one hidden layer

Hidden neurons 10 neurons
Epochs 125 250 500

Chaotic
Config. (1) 13.29% 13.55% 13.08%

Strategy (2) 0.50% 0.52% 1.32%

Non-Chaotic
Config. (1) 77.12% 74.00% 72.60%

Strategy (2) 0.42% 0.80% 1.16%

Hidden neurons 25 neurons
Epochs 125 250 500

Chaotic
Config. (1) 12.27% 13.15% 13.05%

Strategy (2) 0.71% 0.66% 0.88%

Non-Chaotic
Config. (1) 73.60% 74.70% 75.89%

Strategy (2) 0.64% 0.97% 1.23%

18

Table 3: Prediction success rates for split outputs.
Networks topology: 3 inputs, 1 output, and one hidden layer

Epochs 125 250 500

Chaotic Output = Configuration
10 neurons 12.39% 14.06% 14.32%
25 neurons 13.00% 14.28% 14.58%
40 neurons 11.58% 13.47% 14.23%

Non chaotic Output = Configuration
10 neurons 76.01% 74.04% 78.16%
25 neurons 76.60% 72.13% 75.96%
40 neurons 76.34% 75.63% 77.50%

Chaotic/non chaotic Output = Strategy
10 neurons 0.76% 0.97% 1.21%
25 neurons 1.09% 0.73% 1.79%
40 neurons 0.90% 1.02% 2.15%

Epochs 1000 2500 5000

Chaotic Output = Configuration
10 neurons 14.51% 15.22% 15.22%
25 neurons 16.95% 17.57% 18.46%
40 neurons 17.73% 20.75% 22.62%

Non chaotic Output = Configuration
10 neurons 78.98% 80.02% 79.97%
25 neurons 79.19% 81.59% 81.53%
40 neurons 79.64% 81.37% 81.37%

Chaotic/non chaotic Output = Strategy
10 neurons 3.47% 9.98% 11.66%
25 neurons 3.92% 8.63% 10.09%
40 neurons 3.29% 7.19% 7.18%

19

