
Noname manuscript No.
(will be inserted by the editor)

Adaptation and evaluation of the Multisplitting-Newton

and Waveform Relaxation methods over distributed

volatile environments

Jean-Claude Charr · Raphaël Couturier ·

David Laiymani

Received: date / Accepted: date

Abstract This paper presents new adaptations of two methods that solve
large differential equations systems, to the grid context. The first method is
based on the Multisplitting concept and the second on the Waveform Re-
laxation concept. Their adaptations are implemented according to the asyn-
chronous iteration model which is well suited to volatile architectures that
suffer from high latency networks. Many experiments were conducted to eval-
uate and compare the accuracy and performance of both methods while solving
the advection-diffusion problem over heterogeneous, distributed and volatile
architectures. The JACEP2P-V2 middleware provided the fault tolerant asyn-
chronous environment, required for these experiments.

Keywords Distributed clusters; Fault tolerance; Multisplitting-Newton;
Waveform Relaxation;

1 Introduction

Many natural phenomenas and nuclear reactions (like climate change or nu-
clear fusion) are represented by differential equations systems. Solving these
problems allows scientists to predict numerically the consequences of such re-
actions without having to physically realize the costly experiments. Thus the
use of simulations drastically reduces the experimental cost and eliminates the
potential risks that could be encountered while actually executing the reac-
tion. However, most of the time these problems are very large and complex.
Therefore, they cannot be solved by a single regular computing unit due to
the lack of sufficient memory space or computing power. They can only be

Laboratory of computer sciences, University of Franche-Comté (LIFC)
IUT de Belfort-Montbéliard, Rue Engel Gros, BP 527, 90016 Belfort, France
Tel: +33-3-84587781
Email: {jean-claude.charr,raphael.couturier,david.laiymani}@univ-fcomte.fr



2

solved by using parallel machines which are very expensive or by using si-
multaneously many computing resources which form a distributed computing
architecture. In the distributed computing literature, we can distinguish three
types of distributed architectures:

1. Local cluster: It is composed of many computing units that are located
in the same area. They have in general similar specifications and similar
configuration and are connected via a local network with low latency and
large bandwidth.

2. Distributed clusters: They are composed of many local clusters that are
geographically distant from each others. Two computing units from distinct
clusters may have different specifications and configurations. Moreover,
the communication’s latency between two computing units from distinct
clusters is usually one hundred times higher than the latency between two
computing units in a local network.

3. Global computing: It is composed of many public unused computing units
ranging from desktops to PDAs. The main characteristics of this architec-
ture are: the high volatility of the heterogeneous computing units (because
the computing units are public and can be turned off or disconnected at
any time by their respective owners) and the high latency of communica-
tions between computing nodes (because they communicate over Internet
that is usually running over a DSL (Digital Subscriber Line) connection
speed).

Although we have pointed out explicitly that the global computing archi-
tecture is very volatile, the rest of the described architectures are not crash
free and at any moment, a computing unit can crash due to hardware or soft-
ware problems. So, it is recommended to implement a fault tolerant mechanism
while using any of the distributed architectures described above. In this paper,
we are interested in the grid environment, which encompasses the distributed
clusters and global computing architectures which suffers from the heterogene-
ity and volatility of the computing nodes, and from the high latency of the
network interconnecting them.

There are already many parallel methods that efficiently solve large and
complex differential equation systems in low latency environments like super-
computers or local clusters (for example PVODE [8]). As shown in [1], these
methods are not well adapted for high latency environments because they are
fine grained methods where communications between the various computing
units are very frequent. This high number of communications between depen-
dent subsystems reduces drastically the performance of the method in high
latency environments. The aim of this paper is to present new adaptations
of the Multisplitting-Newton [4,11] and the Waveform Relaxation [17,20,13]
methods that solve large differential equations systems, to the grid context.
Their adaptations are implemented according to the asynchronous iteration
model [2] which is well suited to volatile architectures that suffer from high la-
tency networks. Moreover, we provide a comparative study of those two coarse



3

grained methods while solving the advection-diffusion problem over large scale
volatile environments. JACEP2P-V2 [10] was used for executing these methods
over the volatile and distributed architecture. This framework is dedicated to
executing iterative asynchronous numerical methods over such architectures.
It offers a decentralized fault tolerant convergence detection mechanism, a de-
centralized backup procedure and a distributed failure detection and recovery
scheme.

The rest of this paper is organized as follows: in the state of the art section,
we briefly present the differential equations systems and the PVODE solver
which is dedicated to solving large systems of differential equations over par-
allel architectures. Then, we present the asynchronous iteration model and we
show its benefits in volatile and high latency environments. In the third sec-
tion, we present our adaptations of the Multisplitting-Newton method (MN)
and the Waveform Relaxation method (WR) to the grid context. We explain
the different steps of each method and illustrate their advantages and draw-
backs. In the experiment section, we first compare the solutions of the three
methods (PVODE, Multisplitting-Newton and Waveform Relaxation) in order
to confirm that they all compute the same solution and to check the accuracy
of each method. Then, we present JACEP2P-V2 which is a distributed, asyn-
chronous and fault tolerant platform dedicated for designing parallel iterative
asynchronous algorithms and executing them over volatile and high latency
architectures. This middleware was used for executing both methods over such
environments and comparing their performance while varying the number of
crashes, the system’s decomposition scheme and the number of sites used.
The results of the experiments are discussed at the end of the fourth section.
Finally, we end this paper with a conclusion and some perspectives.

2 State of the art

2.1 Differential Equations

As mentioned above, we are interested in solving differential equations which
arise from the simulation of physical and natural phenomena. In particular,
we focus on solving large and differential equations over grids.
There are two types of differential equations:

– Ordinary differential equation (‘ODE’) is a relation that contains func-
tions of only one independent variable, and one or more of its derivatives
with respect to that variable.
Let y be an unknown function of x.

y : R → R

An ODE of order n involving y has the following explicit form:

F (x, y, y′, y′′, . . . , y(n−1)) = y(n)



4

where y
′

= dy/dx is the first derivative with respect to x, and y(n) =
dny/dxn is the nth derivative with respect to x.

An ODE dependent of time is called a non stationary ODE or an initial
value problem (IVP). An initial value problem of order n has the following
general form:

F (t, y, y′, y′′, . . . , y(n−1)) = y(n) y(t0) = y0

where y is a function of t, t0:initial time and y0:initial values.

– Partial differential equation (‘PDE’) is an equation involving functions
and their partial derivatives. For example, the wave equation is a PDE and
it has the following form:

∂2ψ

∂x2
+
∂2ψ

∂y2
+
∂2ψ

∂z2
=

1

v2
∂2ψ

∂t2

To solve a PDE, we can use the method of lines (“MOL”) [19] which
approximates the PDE with a large ODE. The basic idea of the MOL is to
replace the spatial (boundary value) derivatives in the PDE with algebraic
approximations. Once this is done, the spatial derivatives are no longer
stated explicitly in terms of the spatial independent variables. Thus, in
effect only the initial value variable, typically time in a physical problem,
remains. In other words, with only one remaining independent variable, we
have a system of ODEs that approximate the original PDE.

2.2 PVODE

PVODE [8] is widely used for solving large systems of ordinary differential
equations in parallel environments. It is an extension of the sequential pack-
age known as CVODE [13] which has been widely distributed and used. The
parallelization of CVODE to PVODE was accomplished through the modifi-
cation of the vector kernels, allowing them to operate on vectors that have
been distributed across processors. The message passing calls between nodes
are made through MPI [18]. Although PVODE contains many methods for
the resolution of both stiff and non-stiff initial value problems, the standard
approach to solve ODE systems is based on three steps:

– Converting the differential equations describing the system into a sequence
of non-linear algebraic equations, using the Adams-Moulton Formula [9] to
integrate non-stiff problems and the Backward Difference Formula (‘BDF’)
[15] for stiff ones.

– Transforming the non-linear algebraic equations into a sequence of linear
problems using a modified Newton method for systems converted by the
BDF method or using a functional method for the ones generated by the
Adams-Moulton integration.



5

– Solving the system of linear equations with Gaussian Elimination like meth-
ods or iterative ones.

To parallelize this method, the distributed system of linear equations is solved
with a parallel solver which requires communicating with neighbors when com-
puting boundaries’ values. Thus, as shown in [1,6], this method is fine grained.
It synchronizes at each internal step. Therefore, if the implementation of this
method is executed over an architecture that suffers from high latency com-
munications, the performance of this method is severely reduced due to the ex-
tremely penalizing and frequent synchronizations. Therefore, developing par-
allel coarse grained resolution methods is essential to solve efficiently large
differential equation systems over grids.

2.3 The Asynchronous Iteration Model

Iterative methods are easily and efficiently parallelizable. Indeed, this class of
algorithms, can be transformed effortlessly into parallel methods because most
of the time, they just exchange data a few times in each iteration. However,
common parallelizing models for iterative methods synchronize neighbors at
each iteration while exchanging data and synchronize all the nodes while com-
puting a residual value for detecting the global convergence of the parallel
iterative method. These synchronizations reduce the overall performance of
the parallel application, especially if it is executed on distributed and het-
erogeneous architectures. An alternative is to use the asynchronous iteration
model.

When using an iterative method parallelized according to the asynchronous
iteration model, each node does not have to synchronize with its computing
neighbors. Indeed, at the end of each iteration (represented by filled rectangles
in figure 1) computing nodes send their dependencies data to their neighbors
(represented by arrows in figure 1) and begin the next iteration using the
last received dependency data. They do not have to wait for the reception
of dependency messages from their neighbors like in the synchronous iter-
ation model. Thus, this relative independence eliminates idle time between
consecutive iterations. Furthermore, in this model the loss of data messages is
tolerated because no nodes wait for fresh dependency messages. They use the
last ones they received to compute the next iteration. In this way, two nodes
computing the same parallel asynchronous iterative application can execute
different iterations at the same time. For example, in figure 1, the first node
computes the sixth iteration and begins the seventh while the second node is
still executing its fifth iteration. Thus, there is absolutely no synchronization
when using the asynchronous iteration model. Thanks to this property, when
a computing unit crashes while executing a parallel iterative asynchronous
application, the rest of the computing units, executing the same application,
continue their tasks and are not affected by this crash. However, this model
cannot be applied on all iterative methods and it increases the number of
iterations required for an application to converge. In [2], it has been shown



6

that in a grid context, even with more iterations to converge, iterative parallel
methods implemented according to the asynchronous iteration model are more
efficient than the synchronous ones.

Time

Computing unit 2

Computing unit 1

Fig. 1 Two computing units executing a parallel iterative application that is implemented
according to the Asynchronous Iteration model.

3 The adaptation of the WR and the MN methods to the grid

context

The WR and the MN methods have already been used in the literature to
solve large differential equations systems. However, in this section we present
how these methods can be adapted to the grid context using the asynchronous
iteration model.

3.1 The Waveform Relaxation method with Euler

First of all, we describe the Euler method which can be used with the Wave-
form Relaxation method to solve nonlinear systems. Then, we present the cou-
pling of the Waveform Relaxation method with the Euler method and their
implementation according to the asynchronous iteration model.

3.1.1 The Euler method

The Euler method is a first order numerical sequential procedure for solving
ordinary differential equations (ODEs) with a given initial value. Consider the
ordinary differential equation:

du(t)

dt
= f(u(t), t) (1)

in which u(t) is the mesh points vector and f is a non linear function which
is defined for mesh points and discretized time. We can solve this differential
equation by approximating the left hand of the equation, using the explicit
Euler method which produces the equation:

u(t+H) = H × f(u(t), t) + u(t) (2)



7

where H is the discrete fixed time step and u(t +H) is the vector u at time
t+H.

This method can be parallelized according to the synchronous model. How-
ever, the resulting parallel method would be fined grained because each sub-
problem must exchange its boundaries’ values with its neighbors at every small
discrete step. Thus, the parallel method would not be adapted for heteroge-
neous, distributed and volatile architectures. An alternative is to couple the
Waveform Relaxation method with Euler to develop a parallel iterative algo-
rithm that solves ODEs and that is well suited to such architectures.

3.1.2 The Waveform Relaxation method coupled with Euler

In the early 1980’s, the Waveform Relaxation method was introduced by E.
Lelarasmee as an efficient parallel iterative method for solving large sparsely
coupled differential equations systems that are generated by the simulation
of integrated circuits. Since then, this method has been extended and applied
to various other application areas. With the WR approach, the system of
equations is decomposed spatially into sets of equations. Each set is solved
iteratively by using values from previous iterations: each computing unit inte-
grates its equations on the whole time interval without communicating with its
neighbors. At the end of each iteration, each task exchanges with its neighbors
its boundaries’ values which are used in the evaluation of the next iteration.
This procedure is repeated until the solution vector converges to a stable so-
lution.

The convergence of Waveform Relaxation methods is generally slow and
often the parallel execution gain is not sufficient to compensate for the slow-
ness of the convergence. However, there are different methods to accelerate
this convergence. Among them, the most used schemes are the overlapping
[16] and the windowing [21] concepts.

Overlapping: with this technique every node computes a small number of
components already allocated to its neighbors, so that each node solves addi-
tionally to its own components a percentage of the components computed by
its neighbors. This redundancy helps minimizing the error on the extremity
points that depend on the unavailable results of the neighbor’s frontier com-
ponents. Figure 2 shows how the division of the components’ vector and the
data exchanges between the nodes are changed if the overlapping concept is
applied: each node has a small percentage of its neighbors components added
to its initial components (which is illustrated by doted lines) and each node
transfers the components of index equal to l + 2 ∗ overlap for left boundary
and r− 2 ∗ overlap for right boundary, with overlap = number of components
added to the initial local components vector, r index of the right boundary and
l index of the left boundary. The benefits of this concept have been illustrated
in [7].



8

System’s components

initial components overlapping components boundaries points to send

Processor 4Processor 3Processor 2Processor1

Without overlapping

With overlapping

l l+2*

overlap
r−2*

overlap

r

Fig. 2 The decomposition of the system with/without overlapping. The doted lines simulate
the overlapping and the arrows simulate the data exchanges between nodes.

Windowing: usually, using the Waveform Relaxation method, we inte-
grate the ODE on the whole time interval at each iteration. This procedure
slows down the convergence rate of the method because in contrast with
PVODE, every node integrates its equations on a long time interval with-
out communicating with its neighbors, using only the given initial values. A
natural solution to this problem is to divide the time interval into windows and
iterate on each window until convergence. After each iteration on a window,
every node sends its new boundaries’ values to its neighbors. Figure 3 displays
an ODE system divided between four nodes and the time interval is divided
at least into two windows.

2nd Window

1st Window

4 DT

3 DT

2 DT

DT

convergence
Iterates until 

2nd computing unit’s
components

1st computing unit’s 3rd computing unit’s
components

4th computing unit’s
componentscomponents

Fig. 3 The system is equally split into four subsystems and the time interval is divided
into several windows where each window contains multiple steps



9

Algorithm 1 The asynchronous Waveform Relaxation-Euler algorithm
1: Split the system’s components between the computing nodes
2: Add the overlapped components to the local components
3: uLoc = array containing the local components
4: Set initial values
5: for Each window in the considered time interval do
6: Copy uLoc into olduLoc

7: repeat

8: for Each step of the current window do

9: Compute the values of the local components using the received boundaries’ values
{in our algorithm using the explicit Euler method}

10: Store the new boundaries’ values in a buffer
11: Compute the local error
12: end for

13: Backup local components every n iterations
14: Send asynchronously the stored boundaries’ values to neighbors
15: Non blocking reception of boundaries’ values from neighbors
16: Global convergence detection
17: if Not converged then

18: Copy olduLoc into uLoc

19: end if

20: until Global convergence
21: end for

Although both concepts are efficient in accelerating the convergence rate
of the WR method, it is very difficult to initially choose the amount of over-
lapping or the size of a window that gives the optimal results, i.e. a faster
convergence. Note that some works have attempted to create an adaptive win-
dowing, but we do not focus on this approach in this paper.

Many sequential resolution methods can be coupled with the WR method
to integrate the local subsystem on each time step independently from the
other subsystems. In [1] we used the sequential solver found in the CVODE
package and we showed that the WR method outperforms PVODE on dis-
tributed environments. However, we had some convergence problems when we
tried to solve large ODEs using a lot of computing nodes. These problems re-
sulted from the adaptative discretization scheme adopted in CVODE and the
heterogeneity of the sub-problems being solved on each node. Indeed, since the
boundaries’ values change at each window, CVODE is unable to well approx-
imate the solution vector. Therefore, in [6] we used the explicit Euler method
to solve this problem. This method proved to be efficient in terms of preci-
sion and performance in solving large differential equations when coupled with
WR. However, in [6] the WR-Euler method was synchronous, implemented in
C and used MPI for exchanging data between the computing nodes. Therefore,
it was not well adapted for the grid context (the heterogeneity and volatility of
the computing nodes, and the high latency of communications). In this paper,
this method is adapted to the grid context by implementing it according to
the asynchronous iteration model and over the JACEP2P-V2 platform.



10

Algorithm 1 illustrates the main steps of the asynchronous Waveform Re-
laxation method coupled with Euler. Once the system has been initialized,
the time interval is decomposed into windows. For each window, an iterative
procedure is applied: the window is decomposed into fixed small time steps
DT . Each computing unit integrates the system on each DT using the Euler
method. Then the new boundaries’ values are stored in a buffer. After inte-
grating the system on the whole window, the boundaries’ values, stored in the
buffer at each DT , are asynchronously exchanged between neighbors. Then,
each computing unit integrates the system again on the same time window
while using the last received dependency data. This procedure is repeated un-
til the system converges to the solution. Once the convergence is reached, in
conformity with the chosen threshold, it begins integrating the system on the
next time window. The asynchronous communications, decentralized backups
and global convergence detection mechanisms are not detailed in this algo-
rithm because they are implemented in JACEP2P-V2 which is described in
section 4.2.1. The work published in [5] proves that the convergence condi-
tions of the asynchronous iteration model are met in the Waveform Relaxation
method.

3.2 The Multisplitting-Newton method

In this section, we first of all describe the Newton method which could be
used in conjunction with the Multisplitting method to solve nonlinear sys-
tems. Then, we present the Multisplitting-Newton method which is a parallel
iterative method, compatible with the asynchronous iteration model.

3.2.1 The Newton method

To solve Equation (1), we can also use an implicit time integration method
(like implicit backward Euler) that transforms the system into:

u(t+H)− u(t)

H
= f(u(t+H), t+H), (3)

where H is a fixed time-step.

The main differences between the explicit and the implicit methods is that
the explicit methods calculate the state of a system at a later time from the
state of the system at the current time (like in Equation 2), while implicit
methods find a solution by solving an equation involving both the current
state of the system and the later one (like in Equation 3). It is clear that
implicit methods require more computation than explicit methods (solving
the equation), and they can be much harder to implement. However, implicit
methods are often used because many problems arising in real life are stiff, for
which the use of an explicit method requires impractically small time steps to



11

keep the error in the result bounded. For such problems, to achieve a given ac-
curacy, it takes much less computational time to use an implicit method with
larger time steps. That said, whether one should use an explicit or implicit
method depends upon the problem to be solved.

The solution to the nonlinear system (3) is computed using the standard
Newton method. This approach leads to an iterative scheme, given an initial
approximation u0:

J × dk+1 = −F (uk) (4)

where J is the Jacobian matrix of F (uk) (the Jacobian matrix is the matrix of

all first-order partial derivatives of a vector-valued function with Jij =
∂Fi(u)
∂uj

),

dk+1 = δu(t + H)k+1 = u(t + H)k+1 − u(t + H)k and F (uk) = F (u(t +
H)k, u(t), t) = u(t)+H×f(u(t+H)k, t+H)−u(t+H). For more information,
the reader can refer to [3].

Solving the equation (4) is equivalent to finding the solution of a linear
system at each iteration. One can notice that the Jacobian matrix is sparse.
In practice, the quasi-Newton method is preferred. It consists in computing
the Jacobian matrix only at the first iteration of a given time step in order
to reduce the execution time, since this part is often very time consuming.
However, the quasi-Newton may require a slightly higher number of iterations
than the Newton method to converge.
From a parallel point of view, two approaches are possible. The first one con-
sists in using a parallel sparse linear solver. In this case, a synchronization
is required at each Newton iteration and unless using an asynchronous sparse
linear solver, synchronizations are required between each iterations of the solv-
ing process. The alternative is the Multisplitting-Newton method which is
described below.

3.2.2 The Multisplitting-Newton method

The asynchronous Multisplitting-Newton method has some similarities with
block decomposition techniques. The principle is to split the initial domain
into several sub-domains in order to assign one of them to each computing unit
involved in the parallel computation. In our case, the Multisplitting-Newton
algorithm allows us to solve equation (4) in parallel.

The Multisplitting-Newton’s decomposition is illustrated in figure 4. In
fact, the Jacobian matrix is split into blocks and δu and F are decomposed
in a compatible manner and are respectively called dLoc and FLoc (because
each part is a local one assigned to a computing unit). Dependencies on the
left and the right, illustrated by parts with 0 in the figure, can be ignored
since those parts of the Jacobian are taken into account in the right hand side.
This solution has the advantage of ignoring large parts of the Jacobian matrix
which simplifies its implementation.

Algorithm 2 summarizes the main ideas of the Multisplitting-Newton algo-
rithm implemented according to the asynchronous iteration model. After the



12

0 0

0
0

−FLoc

U
LocJLoc

dLoc

U
Left

U
right

Fig. 4 the decomposition of the Jacobian matrix, vector solution and function in the
Multisplitting-Newton method.

Algorithm 2 The asynchronous Multisplitting-Newton algorithm
1: oldu = Array containing vector u at the previous iteration
2: uLoc = Array containing local components
3: -FLoc = Local part of the function used to approximate the ODE
4: JLoc = Local part of the Jacobian matrix
5: dLoc = Local part of δu, the solution of the linear system obtained with Newton
6: Initialization of variables, especially oldu and uLoc
7: for each step of the considered time interval do
8: repeat

9: Computation of the boundaries’ conditions if processor is concerned
10: Computation of the Jacobian matrix JLoc at the first iteration with -FLoc, uLoc

and oldu
11: Computation of FLoc with uLoc and oldu
12: dLoc=LinearSolver(JLoc,-FLoc)
13: uLoc=uLoc+dLoc

14: Backup uLoc every n iterations
15: Send asynchronously the boundaries’ values to neighbors
16: Non blocking reception of the boundaries’ values from neighbors
17: Global convergence detection
18: until Global convergence
19: Copy uLoc into oldu
20: end for

initialization part, the main loop is executed until the considered simulation
time is reached. For each time step, the algorithm iterates on the Newton
process to compute the solution of the ordinary differential equation. At each
iteration the computing process applies, if necessary, the boundaries’ condi-
tions. This algorithm uses the quasi-Newton method, therefore it only com-
putes the Jacobian matrix at the first iteration. Afterward, FLoc is computed
using both arrays uLoc and oldu. The following step allows the algorithm to
solve the local linear system composed of the Jacobian matrix and FLoc. The



13

solution is used to set up the value of the vector uLoc. As explained previ-
ously, the asynchronously exchanged vector between neighbors is not δu but u.
That is why, in the algorithm, the vector u at the previous iteration (oldu) is
not a local vector, since it contains values computed by some neighbors. Once
the convergence is reached, in conformity with the chosen threshold, values of
uLoc are copied into oldu at the right location in order to begin the integra-
tion on the next time step. The asynchronous communications, decentralized
backups and global convergence detection mechanisms are not detailed in this
algorithm because they are implemented in JACEP2P-V2 which is described
in section 4.2.1.

4 Experiments

To compare the precision of the WR-Euler and Multisplitting-Newton methods
to the standard PVODE and to evaluate the performance of both methods in
a grid context, we have applied these methods on the the transport problem.
This problem models the transport of pollutants in shallow seas. The main
objective of the simulation is to exhibit the long term evolution trends of the
considered ecosystem after pollution. The results of the simulation are chemi-
cal species concentrations in time and space. Transport processes of pollutants,
salinity, and so on, combined with their bio-chemical interactions can be math-
ematically formulated as a system of advection-diffusion-reaction equations. It
follows an initial boundary value problem for a nonlinear system of PDEs. A
system of 2D advection-diffusion-reaction equations has the following form:

∂c

∂t
+A (c, a) = D (c, d) +R (c, t) , (5)

where c denotes the vector of unknown species’ concentrations of length m,
and the two vectors

A (c, a) = [J (c)]× aT , (6)

D (c, d) = [J (c)]× d×∇T , (7)

define respectively the advection and diffusion processes (J (c) denotes the
Jacobian of c with respect to (x, y)). The local fluid velocities u and v of
the field a = (u, v) and the diffusion coefficients matrix d are supposed to
be known in advance. The chemical species dynamic transport is defined by
both advection and diffusion processes, whereas the term R includes inter-
species chemical reactions and emissions or absorption from sources. For more
information concerning the components and the discretization of the system
the reader can refer, for example to [3] in which a third dimension is added to
the problem, however, in this paper the 2D variant of the problem is solved.



14

4.1 Precision

Since the solvers in PVODE are implemented in the C programming language,
we have used this language to develop the solution for this problem accord-
ing to the three resolution methods. The computing processes exchanged data
using the message passing interface LAM MPI. The precision tests were con-
ducted on the laboratory’s local cluster. It is composed of 20 homogeneous
computing units. Each one is equipped with a 3.0Ghz Pentium 4 processor
and 1GB RAM. The nodes in this cluster communicate via a 1GB fast local
network. To test the pertinence of the solutions given by the Multisplitting-
Newton and the Waveform Relaxation-Euler methods and since we do not
know the exact solution of the problem, we considered the solution obtained
by PVODE as the reference solution for this problem. Then, we have evaluated
the relative difference between the solutions of each couple of methods. The
relative difference (r) is computed as follows:

r =
max(|vi − v

′

i|)

maxj=0,...,n(vj , v
′

j)
i = 0, ..., n

where v
′

and v are the two solution vectors computed by the two resolution
methods that are being compared (WR-Euler method or the Multisplitting-
Newton method or PVODE).

Table 1 presents the relative differences obtained when the solutions, given
by the different methods, are compared. We have executed the PVODEmethod
using two thresholds: For the first one (respectively second one) the required
precision was equal to 10−4 (respectively 10−10). We use the max norm to
detect the convergence of the iterative process, for a 10−10 precision the max
difference between the solution vectors of two successive iterations should be
inferior to 10−10. Thus, the method using the lower threshold should give bet-
ter results. For the WR-Euler method and the Multisplitting-Newton method,
the respective required precisions were 10−11 and 10−12. We have used differ-
ent threshold in order to have the same accuracy in the different resolution
methods. The first set of relative differences is obtained by comparing the final
solution vectors for a simulation over the time interval [0, 200s]. These exper-
iments show that the solutions obtained by the WR-Euler method and the
Multisplitting-Newton method are very close to the solution computed by the
PVODE method. Indeed, the relative difference between the three solutions is
less than 0.1%. Moreover, if we compare the solution vectors of these methods
with PVODE’s solution that is computed with high precision, we notice that
the relative difference between the three solutions is less than 0.01%. There-
fore, the solutions computed with the two coarse grained methods are more
accurate than those computed with PVODE at normal precision. So, we can
consider that they are relatively correct.

The second set of relative differences is obtained by comparing the final
solution vectors of the different methods for a simulation over the time interval



15

[0, 1000s]. We have performed these experiments to discover how much the
accuracy of the results is reduced when simulating over long time intervals.
Using the relative differences presented in table 1, we notice that the results
are 10 times less accurate than those obtained over a small time interval.
This reduction of precision is due, to the small errors (like rounding errors)
that accumulate over time. These problems are very common in the numerical
computing field, even the PVODE solver suffers from them.

Time Method WR-Euler MN PVODE PVODE
interval High precision

WR-Euler 0 4.27× 10−5 1.01× 10−4 2.32× 10−5

MN 4.27× 10−5 0 1.23× 10−4 3.89× 10−50 to 200s
PVODE 1.01× 10−4 1.23× 10−4 0 1.04× 10−4

WR-Euler 0 3.31× 10−4 2.8× 10−3 3.09× 10−4

MN 3.31× 10−4 0 2.79× 10−3 1.79× 10−40 to 1000s
PVODE 2.8× 10−3 2.79× 10−3 0 2.78× 10−3

Table 1 The relative differences obtained when comparing the solutions computed by the
different methods: Multisplitting-Newton (MN), Waveform Relaxation coupled with Euler
(WR-Euler) and PVODE.

4.2 Performance

Since we are interested in solving large differential equations in high latency,
volatile and heterogeneous environments, we have implemented the Multisplitting-
Newton method and the Waveform Relaxation method according to the asyn-
chronous iteration model. This model makes these methods more suitable to
such architectures. However, executing this type of methods over such archi-
tectures, requires having a distributed platform capable of fulfilling all the
functionalities of the asynchronous iteration model and able to resist the po-
tential crash of any computing unit. Therefore, we have used the JACEP2P-V2
framework which is presented in the next paragraph and we have implemented
the WR and MN methods in Java.

4.2.1 JACEP2P-V2

JACEP2P-V2 is a parallel, fault tolerant and multi-threaded platform capa-
ble of executing parallel, asynchronous and iterative algorithms over volatile
and heterogeneous architectures. This middleware is implemented using Sun
Microsystems’ Java programming language in order to make it platform in-
dependent and thus able to run on heterogeneous computing units. Figure 5
illustrates the architecture of JACEP2P-V2 that is composed of three groups
of entities:



16

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
����� �����

�����
�����
�����

����
����
����

����
����
����

�����
�����
�����
�����

D1

D2

D3

SN3

SN2

SN1

SP2SP1

Communicate

Super−node

Heartbeat

Spawner

DaemonD

SN

SP

Fig. 5 JACEP2P-V2’s architecture and different components.

– Super-nodes. They are represented by a big circle in figure 5. They form
a ring network and store the identifiers (IP addresses) of all the computing
nodes that are connected to the platform (and which are not executing
any application). These identifiers are stored in a data structure called
“register”.

– Spawners. When a user wants to execute a parallel application, he launches
a spawner (represented by a square in figure 5) with the required param-
eters like the number of computing nodes N necessary to execute the ap-
plication. The spawner contacts a super-node to reserve the N computing
nodes plus some extra nodes in order to transform them into spawners
for fault tolerance reasons. When the spawner receives the register from
the super-node, it transforms the extra nodes into spawners and stores the
identifiers of the rest of the computing nodes in its own register. Once
the extra nodes are transformed into spawners, they form a ring network
and they receive the register containing the identifiers of the computing
nodes. Then each spawner becomes responsible for a subgroup of comput-
ing nodes, starts the tasks on the computing nodes under its command
and sends a specific register to them. So each computing node receives a
specific register that only contains the identifiers of the computing nodes
it interacts with and that depends on the problem being solved.

– Daemons. They are the computing nodes (represented in figure 5 by a
hashed small circle if they are free and by a white small circle if they are
executing an application). Once launched, they connect to a super-node
and wait for a task to execute. Once they begin executing an application,
they form a ring network and each daemon can only communicate with the
daemons that are identified in its register.

To tackle the specificities of the asynchronous iteration model, JACEP2P-
V2 has an asynchronous message passing mechanism. At the end of each it-
eration, the daemon stores the messages that are meant to be sent to neigh-
boring nodes in a ‘Send Buffer’ and retrieves the new messages, received while



17

executing the last iteration, from the ‘Reception Buffer’. Then, it begins com-
puting the next iteration. In parallel, the ‘Sender thread’ is activated and it
asynchronously sends the messages stored in the ‘Send Buffer’ to their respec-
tive destinations. When a daemon receives a message, the ‘Reception thread’
stores it in the ‘Reception Buffer’ without affecting the computing thread. This
mechanism allows each daemon to send and receive data messages from other
daemons without any synchronization with neighbors and without stopping
the computing thread.

The fault tolerance mechanism implemented in JACEP2P-V2 is based on
the decentralized checkpointing concept for the daemons and the duplication
concept for spawners and super-nodes. Each daemon saves its state on its
neighboring daemons according to the ‘Round Robin’ strategy. The frequency
of these backups is defined by the user. On the other hand, the spawner and the
super-node are duplicated on many computing units. All three types of nodes
form ring networks where each component regularly heartbeat the next node.
If a node crashes, the next node detects the absence of heartbeat messages
and signals to the spawner that the previous node is dead. Thus, it triggers
the restoring mechanism where the task of the dead node is assigned to a new
and work free node. If the dead node is a daemon, the new node replaces the
dead one and retrieves the last backup from the backup neighbors. Then it
continues the task from that last checkpoint. Otherwise, the new node will be
a new duplication like the rest of the spawners or super-nodes.
For more details on the architecture and functionalities of JACEP2P-V2, the
reader can refer to [10].

4.2.2 Experimental results

The performance tests have been conducted on Grid’5000 [14], the French
national grid. This platform is currently composed of more than 6200 hetero-
geneous cores that are distributed over 9 sites in France. Most of those sites
have a Gigabit Ethernet Network for local machines. Links between the differ-
ent sites range from 2.5 Gbps up to 10Gbps. Two sets of experiments have been
realized. In the first one, we only used one site with homogeneous computing
units: we used the cluster Grelon located in Nancy. Each computing unit was
equipped with two dualcores Intel Xeon 5110 1.6Ghz and 2GB RAM. We used
100 nodes to solve a problem containing 16,000,000 components on the time
interval [0, 200s]. The optimal overlap values were used in these experiments.
To simulate a volatile environment, we used a shell script that randomly kills
each 60 seconds a daemon that is executing a task. Then, a new daemon is
launched on that computing unit. This new daemon is connected to the plat-
form and ready to execute a new task. Since the dead daemons are relaunched
after a failure, only few (about 5) extra daemons are reserved to ensure the
fault tolerance of the application. Some of the parameters for these experi-
ments (number of components, number of machines, number of crashes per



18

minute, etc.) were chosen randomly or by following our intuition because we
do not have the resources nor the time to test and verify each and every possi-
ble parameter. Moreover, in the asynchronous iteration model, the execution
process is not deterministic, therefore it is not easy to justify the selection of
some parameters based on the results of the experiments.

Method
Decomposition Status Multisplitting-Newton WR-Euler

without crashes 21m30s 3m24s
10× 10 with crashes 21m56s 3m32s

without crashes 12m5s 3m4s
100× 1 with crashes 12m16s 3m13s

without crashes 17m9s 4m56s
1× 100 with crashes 17m30s 5m5s

Table 2 Execution time taken with JACEP2P-V2 to integrate the system on the simulated
time interval [0,200s] using 100 computing units located on one site and while killing a
random computing node each 60 seconds.

Table 2 presents the execution times taken for solving the problem de-
scribed above using the Multisplitting-Newton method and the WR-Euler
method. Since PVODE is not fault tolerant, it cannot be used over volatile ar-
chitectures to compare its performance with other methods. However, PVODE
has already been compared to the WR method in [6] and experiments showed
that the WR method is more adapted to heterogeneous and distributed archi-
tectures than PVODE. On the other hand, since PVODE is well optimized for
low latency architectures like homogeneous local clusters, it outperforms both
asynchronous fault tolerant methods executed over a grid.

Table 2 shows the different execution times taken while varying the prob-
lem’s decomposition scheme or the volatility of the computing units. The
10× 10 decomposition means that the system has been vertically decomposed
into 10 subsystems and each subsystem is horizontally decomposed into 10
smaller subsystems. In the same way, the 100 × 1 (respectively 1 × 100) de-
composition means that the system is horizontally (respectively vertically) de-
composed into 100 subsystems. The results show that the WR-Euler method
outperforms the Multisplitting-Newton method and solves the problem in a
smaller time period. Although, the Multisplitting-Newton method can inte-
grate the system on a larger time steps than the WR-Euler method (we used
a time step equal to 10 seconds for the Multisplitting-Newton method and
equal to 0.1 second for the the WR-Euler method), the iterative Multisplitting-
Newton method requires solving a linear system at each iteration which takes
an important amount of time. In our implementation of this method, we used
the GMRES method for solving the linear system on each computing unit.
GMRES is a widely used linear solver and when experimentally compared



19

with other iterative linear solvers, it proved to be the most efficient. We used
a GMRES method implemented in the Matrix Toolkits for Java package (MTJ)
[12] which can benefits from multicores machines because it is multi-threaded.
Moreover, the Multisplitting-Newton method requires more iterations than the
WR-Euler method to converge to the solution. On the other hand, the WR-
Euler method computes directly the solution at each iteration using the Euler
formula and the implementation of the windowing concept in this method has
drastically accelerated its convergence and reduced the execution time it takes.
All these reasons made the WR-Euler method a faster resolution method than
the Multisplitting-Newton method for solving complex ODEs. However, we
can notice that if we decompose the system in just one dimension, (1× 100 or
100 × 1), the execution time taken by the Multisplitting method is consider-
ably reduced. Indeed, when the system is decomposed in one dimension rather
than two, each subsystem has two or less boundaries rather than four. Thus
it might be less dependent of data received from neighbors which allows the
system to converge in fewer iterations. In the same way, we notice that if the
system is decomposed only horizontally, it is solved faster than when decom-
posed vertically. This is related directly to the problem being solved. Indeed,
in this problem the values of the components aligned horizontally vary more
than those aligned vertically. So if the system is only decomposed vertically,
each subsystem must executes a lot of iterations to converge to the solution be-
cause the values of the boundaries components are evolving at each time step.
Moreover, we also notice that both methods resisted to the computing units’
crashes which demonstrates the benefits of the asynchronous iteration model
and the efficiency of the JACEP2P-V2 platform for detecting the crashes and
replacing the dead daemons. Finally, the effect of these crashes is negligible
since the execution times are almost unaffected. Therefore, these methods are
well adapted to volatile environments.

In the second set of tests, we used computing units located on two distant
sites in order to have a higher latency in the communications between nodes,
especially between nodes from distinct sites. Half of the computing units were
located in Nancy’s site. The architecture of the computing units on this site was
described in the previous set of experiments. The second half of the computing
units were located in Rennes’ site. We used some computing units from the
Paraquad cluster. Each one was equipped with two dualcores Intel Xeon 5148
LV 2.33Ghz and 4GB RAM. This heterogeneous architecture represents a real
distributed cluster environment. We used 100 computing units distributed over
these two sites to solve the same problem described above over the same time
interval. Moreover, the same shell script was used to simulate the volatility of
the computing units.

Table 3 presents the execution times taken for solving the problem de-
scribed above using the Multisplitting-Newton and the WR-Euler methods.
It also shows the different execution times taken while varying the problem’s
decomposition scheme or the volatility of the computing units. The results of
this set of experiments show that the WR-Euler method outperforms again



20

Method
Decomposition Status Multisplitting-Newton WR-Euler

without crashes 23m2s 3m24s
10× 10 with crashes 23m29s 3m40s

without crashes 11m33s 3m1s
100× 1 with crashes 11m51s 3m32s

without crashes 16m53s 4m44s
1× 100 with crashes 17m25s 4m57s

Table 3 Execution time taken with JACEP2P-V2 to integrate the system on the simulated
time interval [0,200s] using 100 computing units located on two distant sites and while killing
a random computing node each 60 seconds.

the Multisplitting-Newton. In fact, the results are very similar to those of the
first experiment. Since both methods are coarse gained and implemented ac-
cording to the asynchronous iteration model, they are almost immune to the
high latency of the communications and to the heterogeneity of the computing
units. Indeed, the computing units do not have to synchronize at each iter-
ation and they do not have to wait for the reception of data messages from
their neighbors to compute the next iteration. So, there is no idle times be-
tween iterations and fast computing units do not have to wait for slower ones.
Therefore, both methods are well adapted for high latency and heterogeneous
environments. It is important to point out that the connection between the
two sites has a large bandwidth and if it was smaller, we predict that the
performance of the WR-Euler method would be drastically reduced because
the data messages exchanged between neighbors when using the WR-Euler
method are a lot bigger than those in the Multisplitting-Newton method. For
example, if a subsystem has 100 boundaries components with its right-hand
side neighbor and is using the Multisplitting-Newton method to solve its local
task, each message sent by this node to its right-hand side neighbor is about
100×8 = 800Bytes (each component is a double that requires 8Bytes of stor-
age space). Usually this method requires around 60 iterations to integrate on
one time step, so the total size of the messages sent to that neighbor is around
60 × 800 = 48KBytes. On the other hand, if using the WR-Euler method
and a window is composed of 100 discrete time steps, each message is about
100 × 800 = 80kBytes. Usually this method requires around 15 iterations to
integrate on one window, so the total size of the messages sent to the right-
hand side neighbor is around 15×80000 = 1.2MBytes which is 25 times bigger
than that of the Multisplitting-Newton method.

5 Conclusion and perspectives

In this paper we have presented two coarse grained methods for solving dif-
ferential equation systems over volatile, heterogeneous and high latency ar-
chitectures. Those methods were implemented according to the asynchronous
iteration model and executed over the fault tolerant and parallel JACEP2P-V2



21

platform. We have compared the results of both methods with those of the ef-
ficient PVODE method. That comparison proved the pertinence of the results
obtained by either method. Then, two set of experiments were undertaken to
compare the performance of both methods. Those experiments showed that the
WR-Euler method solves the problem faster than the Multisplitting-Newton
method due to the absence of expensive linear solvers in the first one and to
its fast convergence rate.
In our opinion, many applications discretized with a finite difference scheme
and that are compatible with the asynchronous iteration model, should ben-
efit from this work, if they are solved in a grid context. However, we point
out that real-life simulations require optimized implementations and tuning,
with careful choice and tuning of the resolution methods which are beyond the
scope of this paper.
In future works, we plan to apply this work to various problems to confirm
this statement. Moreover, for now we compared the WR and MN methods over
distributed clusters connected with large bandwidth network, it would be in-
teresting to compare the performance of these methods over architectures with
smaller bandwidth such as the global computing architecture and to evaluate
the effect of smaller bandwidth on the performance of the WR-Euler method.

Acknowledgement. The authors wish to express their gratitude to Grid’5000
community and staff members for their support and useful advices while using
the platform. We also sincerely wish to thank the reviewers for their construc-
tive comments.

References

1. J. Bahi, J.-C. Charr, R. Couturier, and D. Laiymani. A parallel algorithm to solve large
stiff ode systems on grid systems. HETEROPAR’07, IEEE Cluster, pages 534–541,
2007.

2. J. Bahi, S. Contassot-Vivier, and R. Couturier. Parallel iterative algorithms: from
sequential to grid computing. Chapman & Hall/CRC Numerical Analysis & Scient
Comp. Series, 2007.

3. J. Bahi, R. Couturier, K. Mazouzi, and M. Salomon. Synchronous and asynchronous
solution of a 3D transport model in a grid computing environment. Elsevier Applied
Mathematical Modelling, 30(7):616–628, 2006.

4. J. Bahi, J.-C. Miellou, and K. Rhofir. Asynchronous multisplitting methods for nonlinear
fixed point problems. Springer Numerical Algorithms, 15:315–345, 1997.

5. J. M. Bahi, K. Rhofir, and J.-C. Miellou. Parallel solution of linear DAEs by mul-
tisplitting waveform relaxation methods. Linear Algebra and its Applications, 332–
334(1):181–196, August 2001.

6. Jacques Bahi, Jean-Claude Charr, Raphael Couturier, and David Laiymani. A parallel
algorithm to solve large stiff ode systems on grid systems. The International Journal
of High Performance Computing Applications, (IJHPCA), 23:140–151, 2009.

7. Kevin Burrage, Carolyn Dyke, and Bert Pohl. On the performance of parallel waveform
relaxations for differential systems. Elsevier Applied Numerical Mathematics: Transac-
tions of IMACS, 20(1–2):39–55, February 1996.

8. G. Byrne, D. George, and A. C. Hindmars. Pvode, an ode solver for parallel computers.
Sage International Journal of High Performance Computing Applications, 13(4):354–
365, 1999.



22

9. G. Byrne and A. Hindmarsh. A polyalgorithm for the numerical solution of ordinary
differential equations. ACM Trans. on Math. Soft., 1:71–96, 1975.

10. J.-C. Charr, R. Couturier, and D. Laiymani. JACEP2P-V2: A fully decentralized and
fault tolerant environment for executing parallel iterative asynchronous applications on
volatile distributed architectures. In Future Generation Computer Systems, volume In
press. Elsevier, 2010.

11. Raphaël Couturier, Christophe Denis, and Fabienne Jézéquel. GREMLINS: a large
sparse linear solver for grid environment. Parallel Computing, 34(6-8):380–391, 2008.

12. Matrix Toolkits for Java. http://www.ressim.berlios.de/.
13. M. J. Gander. A waveform relaxation algorithm with overlapping splitting for reaction

diffusion equations. Wiley Numerical Linear Algebra with Applications, 6:125–145, 1998.
14. grid’5000. http://www.grid5000.fr.
15. K. Jackson and R. Sacks-Davis. An alternative implementation of variable step-size

multistep formulas for stiff odes. ACM Trans. on Math. Soft., 6:295–318, 1980.
16. R. Jeltsch and B. Pohl. Waveform relaxation with overlapping splittings. Siam Journal

of Science Computing, 16(1), 1995.
17. E. Lelarasmee, A. Ruehli, and A. Sangiovanni-Vincentelli. The wavefrom relaxation

method for time-domain analysis of large scale integrated circuits. IEEE Trans.
Computer-Aided Design of Integrated Circuits and Systems, CAD-1:131–145, 1982.

18. MPI Forum. MPI: A message passing interface. In Proceedings of Supercomputing ’93,
pages 878–883, Portland, OR, November 1993. IEEE CS Press.

19. W. E. Schiesser. The Numerical Method of Lines. Academic Press, 1991.
20. J. White, F. Odeh, A. Ruehli, and A. S. Vincentelli. Waveform relaxation: Theory and

practice. Trans. of Soc. for Computer Simulation, 2:95–133, 1985.
21. H. Zhang. A note on windowing for the waveform relaxation. Technical report, Institute

for Computer Applications in Science and Engineering, NASA Langley Research Center
Hampton, April 94.


