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The expected lifetime of any wireless sensor network is a critical issue
since sensor nodes are powered by small batteries. The propagation of
redundant highly correlated data is costly in terms of system perfor-
mance, and results in energy depletion, network overloading, and con-
gestion. Data aggregation is regarded as an effective technique to reduce
energy consumption and prevent congestion. This paper objective is to
identify near duplicate nodes that generate similar sets of collected data
in periodic applications. We propose a new prefix filtering approach
that avoids computing similarity values for all possible pairs of sets. We
define a new filtering technique based on the quality of information. To
the best of our knowledge, the proposed algorithm is a pioneer in using
“sets similarity functions” for data aggregation in sensor networks. To
evaluate the performance of the proposed method, experiments on real
and synthetic sensor data have been conducted. The analysis and the
results show the effectiveness of our method dedicated to sensor net-
works.

Keywords: Sensor networks; data aggregation; set joins similarity; frequency fil-
tering; real data measurements;

1 INTRODUCTION

Wireless sensor networks have received enormous attention over past few
years, due to a wide range of potential applications (environmental, ecologi-
cal, military, etc). A typical sensor network is expected to consist of a large
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number of sensor nodes deployed randomly in a large scale. The main func-
tionality of a sensor node is to measure environmental values using embedded
sensors, and transmit them to a base station called “sink”. The sensed data
needs to be analyzed, which eventually serves to initiate some action. Usu-
ally, such nodes have limited power, storage, communication, and processing
capabilities, leading to an energy consumption deficiency.

This deficiency becomes important in the case of periodic applications,
where sensors monitor a given phenomenon and send notifications and mea-
surements back to the sink at each period p. A significant amount of redun-
dant data is likely delivered to the sink, particularly in case of dense net-
works, thus, wasting precious bandwidth and energy resources. For this rea-
son aggregation in sensor networks is regarded as an effective technique to
reduce energy consumption as well as preventing congestion [14] [2].

An important topic addressed by the sensor networks community over the
last several years has been in-network aggregation. The idea is that cumu-
lants, time intervals, or summaries can be computed directly within the net-
work by sensor nodes, endowed with computational power, thus avoiding the
expensive transmission of all sensor data to the sink. Previous work was stud-
ied the data aggregation as the computation of statistical means and moments,
as well as other cumulative quantities that summarize the data obtained by the
network. To some extent these concerns can be alleviated by providing tools
for filtered aggregation, where only a selected subset of nodes participate in
the aggregation, according to the values of some of their sensors, their geo-
graphic location, etc.

In this paper we are interested in exploring a new part of the filtering
aggregation problem, by focusing on identifying the similarity between sets
of data generated by neighboring nodes further to a local processing tech-
nique. One of the issues accompanying the growth of sensed data in periodic
sensor networks and the need to integrate data from different sensor nodes is
the existence of near duplicate sets of data. As sensor nodes are deployed ran-
domly, it is possible that neighboring nodes generate similar sets of data, yet
they are not bitwise identical. Our objective is to identify similarities between
near sensor nodes, and integrate their sensed data into one record while pre-
serving information integrity.

A quantitative approach in identifying two similar sets of sensed data is by
using a similarity function. Such function measures the degree of similarity
between two sets and returns a value between 0 and 1. A higher similarity
value indicates that the sets are more similar, thus we can treat pairs of sets
with high similarity values as duplicates, and send only one set to the sink
instead of sending both.

Similarity functions were used in various domains and applications in
order to identify near duplicate objects (data). For instance, for Web search
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engines [12], Web mining applications [3], detecting plagiarism [13], col-
laborative filtering in data mining [1], etc. To the best of our knowledge,
we are the first to use these functions for data aggregation in sensor net-
works. Recently, many studies have proposed new algorithms that define the
similarity between objects or records. These algorithms are classified into
three categories, inverted index based methods [19], prefix filtering meth-
ods [5], and signature based methods [20]. The most of these methods seem
to be pretty complex for wireless sensor networks usually generating large
amount of candidate pairs, all of which need to be verified by the similarity
function.

In this paper, we provide a new prefix filtering method to study the sets
similarity in sensor networks. We propose a frequency filtering technique,
which exploits the ordering of measurements according to their frequencies.
A frequency of a measure is defined by the number of occurrences of this
measure in the set. Our method is divided into two phases: the first one is done
at the nodes level, where each node compacts its measurements set according
to a link function. The second is defined at the aggregator level where the
frequency filtering technique will be applied. To evaluate our approach we
conducted extensive experimental study using synthetic and real data mea-
surements and we compare our approach to the existing ToD protocol [10,15]
for data aggregation in sensor networks. The obtained results show the effec-
tiveness of our method which significantly reduces the number of duplicate
data and outperforms existing methods in terms of data accuracy and energy
consumption.

The rest of the paper is organized as follows, Section 2 gives an overview
on related works reported on data aggregation in sensor networks. The prob-
lem statement, the similarity functions and our proposed method are pre-
sented in Section 3. Experimental results are given in Section 4. Section 5
concludes the paper with some directions to a future work.

2 PREVIOUS WORK

Data aggregation in wireless sensor networks has been well studied in recent
years [2, 4, 23, 28, 30]. It means computing and transmitting partially aggre-
gated data to the end user rather than transmitting raw data in networks to
reduce the energy consumption [22]. There are a vast amount of extant works
on in-network data aggregation in the literature.

Some of the methods reported recently are query based methods [17, 26].
A query is generated at the sink and then broadcasted through the network.
Some nodes just process the query, while others propagate it, receive partial
results, aggregate results, and send them back to the sink. Various algorithmic
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techniques have been proposed to allow efficient aggregation without increas-
ing the message size [7].

Some works, such as [6,8,16], use the clustering methods for aggregating
data packets in each cluster separately. Among these methods, the LEACH
protocol [21, 27]. LEACH operation is divided into two phases: the setup
phase and the steady state phase. In the first phase, a predetermined frac-
tion of nodes, elect themselves as cluster heads by comparing a chosen ran-
dom number with a predefined threshold. In the second phase, cluster heads,
aggregate reported data from their cluster member nodes and forward aggre-
gated data to the sink. In [16], the authors propose a self-organizing method
for aggregating data based on the architecture CODA (Cluster-based self-
Organizing Data Aggregation), based on the Kohonen Self-Organizing Map
to aggregate sensor data in cluster. In a first step before deployment, the nodes
are trained to have the ability to classify the sensor data. Thus, it increases
the quality of data and reduces data traffic as well as energy-conserving. An
adaptive data aggregation (ADA) scheme for clustered sensor networks has
been proposed in [6]. In this scheme, a time based as well as spatial aggrega-
tion degrees are introduced. They are controlled by the reporting frequency at
sensor nodes and by the aggregation ratio at cluster heads (CHs) respectively.
The function of the ADA scheme is mainly performed at sink node, with a
little function at CHs and sensor nodes.

In a tree based network as our presented work, sensor nodes are orga-
nized into a tree where data aggregation is performed at aggregators along
the tree to arrive to the sink. Tree based data aggregation approaches are
suitable for in-network data aggregation. Tan et al. [24] have proposed a
power efficient data gathering and aggregation protocol (PEDAP). PEDAP
is a minimum spanning tree based protocol with main objective to maximize
the lifetime of the network in terms of number of rounds, where each round
corresponds to aggregation of data sent from different sensor nodes to the
sink. The authors in [10, 15] have proposed Tree on DAG (ToD) for data
aggregation, a semistructured approach that uses Dynamic Forwarding on an
implicitly constructed structure composed of multiple shortest path trees to
support network scalability. The key principle behind ToD was that adjacent
nodes in a graph will have low stretch in one of these trees in ToD, thus
resulting in early aggregation of packets.

Some other methods are also reported for data aggregation in sensor net-
works. In [9], a learning automate-based data aggregation method in sensor
networks where environmental changes cannot be predicted beforehand is
provided. In the proposed method, each node in the network is equipped with
a learning automaton. These learning automate in the network collectively
learn the path of aggregation with maximum aggregation ratio for each node
by transmitting its packets toward the sink. The authors in [25] propose a
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FIGURE 1
Data aggregation scheme

Dynamic Data-Aggregation Aware Routing Protocol (DDAARP). It builds
dynamic routes, which improves the cost and quality of the final routing tree.
It also reduces the number of messages needed to set up a routing tree, maxi-
mize the number of overlapping routes, selects routes with the highest aggre-
gation rate, and performs reliable data aggregation transmission.

We are not aware of previous work that specifically addresses the set joins
similarity aggregation problem. However, we have presented some of extant
work on general in-network aggregation that we cannot hope to fully survey
here. Thus we focus on what is mostly relevant to our approach.

3 DATA AGGREGATION - OUR APPROACH

In this section we present our approach for data aggregation in sensor net-
works. We consider a tree based network, where sensed data needs to be
aggregated on the way to its final destination. Sensor nodes collect infor-
mation from the region of interest and send it to aggregators. The aggrega-
tors can either be special (more powerful) nodes or regular sensors nodes, or
mobile agents like robots that traverse the region of interest and collect the
data sets. Each aggregator then condenses the data prior to sending it on as
presented in Figure 1. Our data aggregation method works in two phases, the
first one at the nodes level, which we call local aggregation and the second
at the aggregators level. At each period p each node sends its aggregated
data set to its proper aggregator which subsequently aggregates all data sets
coming from different sensor nodes and sends them to the sink.

3.1 Local aggregation
In periodic sensor networks, we consider that each sensor node i at each slot
s takes a new measurement yis . After p − 1 slots (a period p) the node i
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forms a new set of sensed measurements Mi , and sends it to the aggregator.
Note that, a sensor node can take different kind of measures (e.g. temperature,
humidity, light, etc) making of yis a vector instead of a scalar. For the sake of
simplicity, in the rest of the paper we shall consider that yis ∈ R.

It is likely that a sensor node takes the same (or very similar) measure-
ments several times especially when s is too short. In this phase of aggrega-
tion, we are interested in identifying duplicate data measurements in order to
reduce the size of the set Mi . Therefore, to identify the similarity between
two measures, we provide the two following definitions:

Definition 1 link function. We define the link function between two mea-
surements as:

link(yis1 , yis2 ) =
{

1 if ‖yis1 − yis2‖ ≤ δ,
0 otherwise.

where δ is a threshold determined by the application. Furthermore, two
measures are similar if and only if their link function is equal to 1.

Definition 2 Measure’s frequency. The frequency of a measurement yis is
defined as the number of the subsequent occurrence of the same or similar
(according to the link function) measurements in the same set. It is repre-
sented by f (yis).

Using the notations defined above we present the local aggregation algo-
rithm which is run by the nodes themselves (see Algorithm 1). For each new
sensed measurement (at each slot), a sensor node i searches for similarities
of the new taken value. If a similar measurement is found, it deletes the new
one while incrementing the corresponding frequency by 1.

Algorithm 1 Aggregation at the nodes level.
Require: new measure yisk , set of previous measures Mi .
Ensure: searching for similarities in Mi .

1: for every measure yisl ∈ Mi do
2: if (linkis(yisk , yisl ) = 1 then
3: f (yisl ) ← f (yisl ) + 1
4: delete yisk

5: else
6: add yisk to the set Mi

7: f (yisk ) ← 1
8: end if
9: end for
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At the end of the period p, each node i possesses a local aggregated set Mi .
The second step is to send it to the aggregator which in his turn aggregates
the data sets coming from different sensor nodes.

3.2 Aggregation using similarity functions
At this level of aggregation, each aggregator has received k sets of measure-
ments and their frequencies. The idea here is identifying all pairs of sets
whose similarities are above a given threshold t . For this reason we use a
similarity function which measures the degree of similarity between the two
sets and returns a value in [0, 1]. A higher similarity value indicates that the
sets are more similar. Thus we can treat pairs of sets with high similarity
value as duplicates and reduce the size of the final data to send to the sink.

Similarity Functions

A variety of similarity functions have been used in the literature such as ham-
ming distance, overlap threshold and Jaccard similarity [1, 5, 20].

For two sets Mi and M j :

� Overlap similarity is defined as: O(Mi , M j ) = |Mi ∩ M j |� .
� Jaccard similarity is defined as: J (Mi , M j ) = |Mi ∩M j |

|Mi ∪M j | .
� Hamming distance† is defined as: H (Mi , M j ) = |(Mi − M j ) ∪ (M j −

Mi )|.

In this paper we will focus on the Jaccard similarity. It is one of the most
widely accepted function because it can support many other similarity func-
tions [20].

In our application, two given sets Mi and M j are considered similar if and
only if:

J (Mi , M j ) ≥ t

where t is a threshold given by the application itself. This equation can be
transformed as:

J (Mi , M j ) ≥ t ⇔ O(Mi , M j ) ≥ α (1)

where, α = t
1+t .(|Mi | + |M j |).

� In this paper, we do not normalize the overlap similarity to [0, 1].
† The notion of distance is a closely related concept to similarity functions.
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Jaccard Similarity for sensor networks

In order to study the similarity functions for data aggregation in sensor net-
works, we define a new function for overlapping “∩s” between two sets of
measurements as follows:

Definition 3 Overlap function. Consider two sets of measurements M1 and
M2, then we define:

M1 ∩s M2 = {(y1, y2) ∈ M1 × M2/ link(y1, y2) = 1};

For instance, we consider the following example:

Example 1. Consider 2 sets of measurements:

M1 = {y11, y12, y13, y14, y15}
M2 = {y21, y22, y23, y24, y25}

Such that:
M1 ∩s M2 = {(y12, y21), (y13, y22), (y14, y23), (y15, y24)} ⇒ |M1 ∩s M2| = 4.

To evaluate the similarity between two sets we obtain:

J (Mi , M j ) ≥ t ⇔ |Mi ∩s M j | ≥ α = t

1 + t
.(|Mi | + |M j |) (2)

Prefix filtering technique

After defining the similarity function for sensor networks, we introduce pre-
fix filtering technique that avoid computing similarity values for all possible
pairs of measurement sets. However, a naı̈ve method to compute the similar-
ity of the received data (sets) is to enumerate and compare every pair of sets.
This method is obviously prohibitively expensive for large data sets (such the
case of sensor networks), as total number of comparison is O(n2). This is
without considering the size of the sets.

In this paper we will use a prefix filtering method that allows the reduction
of the number of comparisons between sets. Several approaches to traditional
similarity join between sets are based on the prefix filtering principle [1, 5].
The intuition is that if two sets are similar, some fragments of them should
overlap with each other. An inverted index maps a given measurement m to
a list of identifiers of sets that contain mi such that link(mi , m) = 1. After
inverted indices for all measures in the set are built, we can scan each one,
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probe the indices using every measure in the set M , and obtain a set of candi-
dates; merging these candidates together gives us their actual overlap with the
current set M ; final results can be extracted by removing sets whose overlap
with M is less than � t

1+t .(|Mi | + |M j |)�(Equation 1).
The main problem of such approach is that the inverted lists of some sets

can be very long. These long inverted lists incur significant overhead for
building and accessing them. In addition, computing the actual overlap by
probing indices essentially requires memorizing all pairs of sets that share at
least one measure, a number that is often prohibitively large. To avoid this
problem we propose an approach based on prefix filtering algorithm with
defined measurement order and while taking into account their frequencies.

Our approach is based on the intuition that if two data sets are similar,
some measurements of them should overlap with each other, and especially
the ones that have higher frequencies values.

Definition 4 Ordering O. We define an ordering O which arranges the mea-
surements of a given set by the decreasing order of their frequencies.

Then we formalize this intuition by the following Lemma inspired
from [5]:

Lemma 1. Consider two sets of sensor measures Mi and M j , such that their
elements are sorted in the order of O. Let the p-pre f i x be the first p elements
of Mi . If |Mi ∩s M j | ≥ α, then the (|Mi | − α + 1)-pre f i x of Mi and the
(|M j | − α + 1)-pre f i x of M j must share at least one element.

Proof. Lemma 1 can be proven similarly to the lemma of page 6 in [5].

Our algorithm (cf 2) is then designed as follows: first we built inverted
indices on measures that only appear in the prefix of each set; then we gen-
erate for each set Mi a set of candidates that may be similar with it. This
is done by merging sets identifiers returned by probing the inverted indices
for elements in the prefix of each set; finally we verify the similarity of each
candidate and if it is higher than a given threshold we eliminate the set which
has lower cardinality.

A subtle technical issue is that the prefix of a set depends on the sizes
of the other set to be compared and thus cannot be determined before hand.
The solution is to index the longest possible prefixes for a set Mi . It can
be shown that we only need to index a prefix of length |Mi | − �t.|Mi |� + 1
for every set Mi to ensure the prefix filtering based method does not miss
any similarity result. The major benefit of this approach is to minimize the
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Algorithm 2 Aggregation at the aggregators level.
Require: R is a multi set of sets of measures, each set is sorted by the ordering O, a

Jaccard similarity threshold t
Ensure: S is a multi set of measurements sets after suppression of similar sets of R

1: S ← ∅
2: Ii ← ∅ (1 ≤ i ≤ total number of measures)
3: for each set A ∈ R do
4: X ← empty map from set id to int
5: sumCom Freq ← empty map from set id to int
6: p ← |A| − �t × |A|� + 1
7: for i ← 1 to p do
8: w ← A[i]
9: if (Iws exists such that link(w,ws) = 1) then

10: for each ((B, l), f (B[l])) ∈ Iws do
11: X [B] ← X [B] + 1
12: sumCom Freq[B] ← sumCom Freq[B] + f (B[l])
13: end for
14: Iws ← Iws ∪ {A, i}
15: else
16: create Iw

17: Iw ← Iw ∪ {A, i}
18: end if
19: end for
20: frequencyFilter(A, X , sumCom Freq)
21: end for
22: return S

number of candidates for each set. For instance let us consider the following
example:

Example 2. Consider a collection of 4 sets ordered based on O, and the
jaccard similarity threshold of t = 0.8:

M1 = {y11, y12, y13}
M2 = {y21, y22, y23, y24, y25}
M3 = {y31, y32, y33, y34, y35}
M4 = {y41, y42, y43, y44, y45}

Prefix length of each set x is calculated as |x | − �t.|x |� + 1. Elements in
the prefixes are underlined and indexed. We suppose that all the following
links are equal to 1: {link(y11, y42), link(y22, y31), link(y32, y41)}. Consider
the set M4, its candidates of similarity are the sets returned by inverted lists
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of measures y41 and y42 (from the prefixes values only). Hence M4 candidates
are M1 and M3.

Next we introduce our filter method dedicated to sensor networks and
based on measurements frequencies.

3.3 Frequency filtering
The sensor network is composed of a large number of sensor nodes which
are densely deployed and very close to each other. Neighboring sensor nodes
almost catch similar data on periodic basis. Our intuition leads us to compare
two sets of data based not only on prefix filter approach but combine it with
frequency filtering principle. The frequencies assigned to the measurements
in the first phase can be used in several ways to further reduce the candidates
set size. Let us consider the sets in example 1:

Example 3. The 2 sets are sorted based on O, and the jaccard similarity
threshold of t = 0.8 ⇒ α = 5:

M1 = {y11, y12, y13, y14, y15}
M2 = {y21, y22, y23, y24, y25}

If we refer to the equation 2, we observe that these 2 sets do not meet the
overlap constraint of |M1 ∩s M2| ≥ 5, hence M2 is not in the final result as
similar to M1. However, since they share a common element (y12, y21), in
their prefixes, the previous filtering method selects M2 as candidate of M1.

However, if we look at the frequencies of the common measurements in the
prefixes, we can observe that y21 has the highest frequency in M2 which is not
the case of y12 in M1. Furthermore, y11 is the measurement that has the high-
est frequency in M1 and it does not appear in the prefixes of M2. Therefore, if
we compute the sum of frequencies of the common elements between the two
sets and the sum of the frequencies of elements non in common we deduce
that f (y11) ≥ f (y12) then we can safely prune M2 from the set of candidates
of M1. It means that the number of measurements taken and are in the two
sets is less than the number of the rest.

Naturally to optimize the number of candidates of a given set, we use the
sum of frequencies of common elements. We are convinced that if the sum
of the frequencies of the measurements in common is greater than the sum of
the remains, the two sets have a high probability to be similar.

AHSWN-303˙V1 11
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Algorithm 3 frequencyFilter(A, X , sumCom Freq)
Require: p-A and p-B is the sets of prefixes for A and B respectively
Ensure: Candidates of A /(J (A, B) ≥ t)

1: α = t
1+t .(|A| + |B|)

2: for each B such that X [B] > 0 do
3: Candidate ← F AL SE
4: if X [B] = min(|A|, |B|) then
5: Candidate ← T RU E
6: else
7: if sumCom Freq[B] ≥ sumT ot Freq[B] − sumCom Freq[B] then
8: Candidate ← T RU E
9: end if

10: end if
11: if Candidate then
12: if (|A ∩s B| ≥ α) then
13: S ← S ∪ {A}
14: Delete B in later testing
15: end if
16: end if
17: end for

We now formally state the frequency filtering principle as:
Consider two sets of sensor measurements Mi and M j , such that their

elements are sorted according to the ordering O. Let the p-pre f i x p-M , be
the first p elements of the set M . Then, M j is candidate of Mi if:

� |p-Mi ∩s p-M j | = min(|p-Mi |, |p-M j |),
or

�
∑|p-Mi ∩s p-M j |

k=1 ( f (y jk ∈ p-M j ) ≥ ∑|p-M j −p-Mi |
k=1 ( f (y jk ∈ p-M j )

Our idea is to combine prefix filtering approaches with our frequency fil-
tering principle. Algorithm 2 describes our method to find similar sets of mea-
sures. It takes as input a collection of sets sorted according to the ordering O,
then it scans sequentially each set, selects the candidates that intersects with
its prefix (line 6) and accumulates the overlap and the sum of frequencies in
hash maps X and sumCom Freq respectively (lines 10 - 11).

Algorithm 3 is designed to apply the frequency filtering principle in order
to verify whether the actual overlap between A and candidates B in the cur-
rent candidate set, {B|X [B] > 0}, meets the frequency conditions. To be
noted that we have already accumulated in X [B] the amount of overlaps that
occur in the prefixes of A and B. After finding the candidates of a set A,
then we verify if they meet the similarity constraint by applying the Jaccard
similarity function. If it is the case we add A to the final set S which the
aggregator sends it to the sink, and we eliminate B for later testing.

AHSWN-303˙V1 12
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4 PERFORMANCE EVALUATION

To verify our suggested approach, we conducted multiple series of simu-
lations using a custom C# based simulator. The objective was to confirm
that our prefix frequency filtering technique (PFF) can successfully achieve
intended results for data aggregation in sensor networks with random distri-
bution of sensor nodes. We performed several runs of the algorithm and we
noticed experiment results for synthetic and real sensor data measurements.
We make a series of simulations on synthetic and real data measurements
to analyze the impacts of different features and thresholds defined in PFF.
In addition, we also compare our approach with the ToD protocol proposed
in [10, 15] using real sensor data.

4.1 Experiments on synthetic data measurements
We performed a variety of experiments using synthetic sensor measurements,
shown in the below diagram. As part of this experiment, we considered a net-
work formed of 150 sensor nodes. The nodes assignment to aggregators was
not uniform, for instance 25 nodes were assigned to the first aggregator, 50 to
the second one and 75 to the third. The aggregators are chosen in function of
their distance to the sink, we chose the closest to the sink. In each experimen-
tal run, every node takes randomly 24 measurements, corresponding to 24
slots and one period p. The measurements of each set were drawn uniformly
at random from real number interval of si ze = 7.5. Our data generation is
similar to the one used in [29]. After each slot, a node applies Algorithm 1
and at the end of the period p it forms its set of measurements and sends it to
its aggregator. Once the aggregator receives all the sets coming from nodes it
applies the frequency filtering technique and then sends the aggregated set of
sets to the sink. All the results presented below are the average of 25 runs.

In these simulations we tackled the algorithm performance using the fol-
lowing parameters: the number of sensor nodes assigned per aggregator, the
threshold δ, which defines the link function between two measurements, and
the threshold of the Jaccard similarity function t ; and we evaluated the fol-
lowing metrics:

� The percentage of data sent to the aggregator. After the first aggregation
stage, we calculated the percentage of the number of measurements sent
to the aggregator regarding the total number of measurements taken by the
nodes while varying the threshold δ.

� The percentage of the aggregated sets. After applying the frequency filter
by the aggregator, we noted the number of duplicate sets that are deleted
and not sent to the sink.

� Data accuracy: represents the measures loss rate. It is a evaluate of mea-
sures taken by the source nodes and did not received at the base station
(sink). It is defined also as the aggregation error.
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FIGURE 2
Percentage of total data sent to the aggregator

Local aggregation
In these series of simulations, we computed the percentage of the measure-
ments sent by the nodes to the aggregators after local aggregation. We varied
the threshold delta between 0 and 0.2‡ . The results are shown in Figure 2.

We noticed this percentage decreases when δ increases, which means that
when we stretch the similarity constraint we eliminate more similar measure-
ments. The goal of this stage is to reduce the number of measurements sent by
nodes. The experimental results show that at the minimum and for 25 nodes
we reduce the size of the initial set by 40%. Note that in this percentage we
have calculated the added values of frequency of each measure.

Aggregation using PFF
In this section we focus on data sets aggregation process which can be per-
formed at an aggregator node aiming to reduce the amount of data traveling
towards the sink.

Percentage of Aggregated Sets: Figure 3, Figure 4 and Figure 5 show
the percentage of similar sets which are not sent to the sink with varying
similarity and link thresholds from 0.8 to 1 and from 0 to 0.2 respectively.

Several observations are eminent: a) The percentage of deleted sets (not
sent) grows and the algorithm generates more candidate pairs when the sim-
ilarity threshold decreases. b) The percentage of deleted sets increases when
the threshold δ decreases. c) The percentage of deleted sets increases with the
number of nodes assigned to the aggregator. Obviously, when the number of
nodes increases it is more likely to find similar measurements and sets, espe-
cially neighboring nodes. These results show clearly the effectiveness of our
suggested algorithm in finding and eliminating redundant data and data sets.
For instance, it can eliminate until 30% out of 50 sets sent to the aggregator,

‡ These values was chosen according to the interval size (an error between 0 and 5%)
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in case of δ = 0 and t = 0.8. These results are very interesting and prominent
in the field of sensor networks.

Data accuracy: Figure 6, Figure 7 and Figure 8 show the percentage of
measurements that, at the end of the aggregation process, did not arrive nei-
ther their similar values to the sink. This results represents the aggregation
error of PFF. The percentage of information loss is computed at the end of
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FIGURE 3
Percentage of deleted sets, δ = 0
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FIGURE 4
Percentage of deleted sets, δ = 0.1
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FIGURE 5
Percentage of deleted sets, δ = 0.2
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FIGURE 6
Percentage of lost measures, δ = 0
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Percentage of lost measures, δ = 0.1
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Percentage of lost measures, δ = 0.2
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every simulation run. All considered schemes are efficient since the informa-
tion integrity is somehow fully preserved. For instance, for δ = 0 and t = 1
usually all the taken measures appearing in the final set arrived to the sink.

4.2 Experiments on real data measurements
To validate the obtained results in the previous section we performed exper-
iments on real sensor data measurements. We exploited data collected from
46 sensors deployed in the Intel Berkeley Research lab. Mica2Dot sensors
with weather boards collected timestamped topology information, along with
humidity, temperature, light and voltage values once every 31 seconds. Data
was collected using the TinyDB in-network query processing system, built on
the TinyOS platform. In our experiments, we used a file that includes a log
of about 2.3 million readings collected from these sensors. Figure 9 shows
a screen capture of this file. Temperature is in degrees Celsius. Humidity is
temperature corrected relative humidity, ranging from 0-100%. Light is in
Lux. Voltage is expressed in volts [18].

In our experiments, we are interested in two sensors measurements: the
temperature and the humidity fields since the variation is more frequent than
the light and the voltage. Each node reads an average of 1600 measurements
per day and per field. The sensor readings are generated based on intervals.
According the varation of measurements, we choose to vary the threshold
delta between 0.01 and 0.07. All the results presented below are the average
of 7 days readings.

Local aggregation
At the first tier the data is filtered on periodic basis where the period is
the interval between each reading. Our experiments generate the results as

FIGURE 9
Extraction from real sensor data
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FIGURE 10
Percentage of total data sent to the aggregator

represented in Figure 10. We noted the number of the measurements sent by
the nodes to the aggregators after local aggregation. The size of the set con-
tains also the values of the frequencies of each measurements. We considered
that the size of each frequency value is equal to the size of a sensor reading.
In one day, the 46 sensor nodes collect around 8.0E + 4 measurements by
field. It is well noticed that the size of data improves strongly depending on
the threshold δ. It decreases when δ increases. We note that these results meet
the results obtained from random measurements presented above.

Aggregation using PFF technique

In this section we show the impact of our frequency filtering technique on
data aggregation in sensor networks. As before, we calculated the percentage
of aggregated sets as well as the information integrity.

Figures 11 to 13 show the percentage of number of sets not sent to the
sink depending on similarity and link thresholds that vary between 0.8 to
0.9 and between 0.01 to 0.07 respectively. For instance, we noticed that the
size of the data set sent to the aggregator is reduce by around 30% in case of
δ = 0.07 and t = 0.8.

The obtained results validated by real and synthetic data measurements,
show clearly the effectiveness of our filtering technique in finding and elimi-
nating redundancy and comparing between two sets of data.

We evaluate the impact of data accuracy by calculating the total number
of measurements in sets not sent to the sink (the aggregation error). Fig-
ures 14 to 16 show the percentage of measurements not received by the sink.
These results demonstrate clearly that our approach conserves the informa-
tion integrity. Therefore, we can consider that our approach decreases the
amount of redundant data forwarded to the sink and performs an overall loss-
less process.
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FIGURE 11
Percentage of deleted sets, δ = 0.01
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FIGURE 12
Percentage of deleted sets, δ = 0.05
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FIGURE 13
Percentage of deleted sets, δ = 0.07
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FIGURE 14
Percentage of lost measures, δ = 0.01
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Percentage of lost measures, δ = 0.05
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FIGURE 16
Percentage of lost measures, δ = 0.07

In summary, the results obtained from real data sets of sensor reading
were qualitatively similar to the one obtained from a random scheme of data
measurements.

4.3 PFF vs ToD aggregation protocols
In these expirements we compare our approach (PFF) to the ToD protocol
proposed in [10, 15]. In ToD, the network is divided into square cells, where
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each cell can contain a number of sensor nodes. Then these cells are grouped
into clusters called F-clusters (first cluster). All nodes in F-clusters send their
data to F-aggregators (cluster heads). This structure is called F-tree. A second
clustering layer (s-clusters) is built. It must interleave with F-clusters so it can
cover adjacent cells in different F-clusters. In the ToD approach, the authors
present data as events while in our simulations these data are sensor readings.
Thus, we consider every new reading as an event-like [10].

As our real data sensor network consists of 46 nodes, we use ToD in a
one dimensional Network as explained in [10] and we only divide the net-
work into two F-clusters. When a node takes a new measurement it creates a
packet containing the new measure, the node’s id and the order of the read-
ing. It searches in a waiting queue if this packet can be aggregated with an
older one or not. In our simulations, at the end of each period, each source
node using ToD protocol sends its packets to the aggregators, while the nodes
using our PFF algorithm send sets of measures. In these simulations we eval-
uated the performance of the protocols using the following parameters: the
number of sensor measurements taken by all nodes and the threshold of the
Jaccard similarity function t . The threshold δ is fixed to 0.07. The aggrega-
tion function used for the ToD protocol is the same used for PFF based on the
link function (cf section 3.1). We employed three metrics for the comparison
evaluation of PFF and ToD.

� Percentage of received measures: it represents how effective a protocol is
in aggregating data. It is the number of measures received by the sink over
the number of measures taken by all nodes.

� Data accuracy: as defined before it represents the aggregation error.
� Overall energy dissipation: it is the total energy dissipation of the entire

network. To evaluate the energy consumption of our approach we used
the same radio model as discussed in [11]. In this model, a radio dissi-
pates Eelec = 50n J/bit to run the transmitter or receiver circuitry and
βamp = 100p J/bit/m2 for the transmitter amplifier. The equations used
to calculate transmission costs and receiving costs for a k-bit message and
a distance d are: ET x (k, d) = Eelec × k + βamp × k × d2 and ERx (k) =
Eelec × k, respectively.

Percentage of received measures and data accuracy
Figures 17 and 18 show the percentage of received measures over the total
number of measures taken by all nodes for temperature and humidity fields
respectively. These experiments permit to show how well the two protocols
aggregate and reduce redundant data. PFF performs better than ToD in terms
of data aggregation because of its ability to compare sets of data instead of
single packets. In other words, PFF reduces the number of redundant data
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FIGURE 17
Received measures (Temperature)
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FIGURE 18
Received measures (Humidity)
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FIGURE 19
Data accuracy (Temperature)
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FIGURE 20
Data accuracy (Humidity)

traveling into the networks better than ToD especially when the number of
readings increases (the case of periodic networks). We also notice that the
percentage of received packets remains almost unchangeable while increas-
ing the sensor readings.

Figures 19 and 20 depict the results of the aggregation error for tempera-
ture and humidity fields respectively. This metric is an important performance
index, and the high rate of measures loss will greatly impact the use of the
data. The obtained results show that both protocols have good performances
regarding the aggregation error. As expected, when we increase the threshold
t of the similarity function we reduce the measures loss rate. For instance, we
can notice that PFF outperforms ToD in terms of data accuracy for t = 0.9.

Overall energy dissipation
The overall energy dissipation is the total energy consumption of the entire
network. Note that in these simulations we focus on the consumption induced
by communication (transmission/reception) and thus the results presented
below do not include the amount of energy consumed by data processing,
memory access, etc.
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FIGURE 21
Total energy dissipation

Figure 21 shows the results for total energy consumption obtained while
varying the total number of sensor readings. The Figure shows that the overall
energy dissipation for different protocols increases as the number of readings
increases. We notice that ToD does not consume too much, but does not scale
well as the number of readings increases. For all the values of the threshold t
tested, PFF always outperforms the ToD protocol in total energy dissipation.
This is because the packet-packet comparison used in ToD instead of data
sets in PFF generates more transmissions in the network. Furthermore, the
packet construction in ToD contains additional information required for the
aggregation which is not the case in PFF. To conclude, PFF uses a factor of
1.5 to 2.5 less overall energy than ToD as shown in Figure 21.

5 CONCLUSION AND PERSPECTIVES

Data aggregation is an important technique to save communication band-
width and increase network life time for data collection in wireless sensor
networks. In this paper we proposed a new method based on sets similar-
ity functions and prefix filtering technique for data aggregation in periodic
sensor networks. In periodic networks, nodes are likely to send multiple cor-
related data to the sink, thus causing the propagation of redundant informa-
tion throughout the network which in turn leads to both a waste of energy
resources and bandwidth, and increase in network congestion. The objective
of our aggregation approach is to reduce the number of redundant data sent
to the final user while preserving the data integrity. We have developed a new
frequency based prefix filtering technique that avoids computing similarity
values for all possible pairs of sets. We used the Jaccard similarity func-
tion to estimate the similarity between sets of data measures. It was shown
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through simulations on synthetic and real data measurements that the pro-
posed method reduces drastically the redundant sensor measures while pre-
serving information integrity. Therefore, it saves energy and improves the
overall network lifetime.

For future work, we will consider other type of filtering technique. To
optimize the number of the generated candidates, we plan to develop a new
suffix filter algorithm beside the prefix filtering approach proposed in this
paper. Our goal is to use additional filtering method that prunes erroneous
candidates that survive after applying the prefix and frequency filtering tech-
nique.

Furthermore, we wish to extend our approach to other commonly used
similarity measures, like overlap or cosine similarities and especially “Ham-
ming distance”.
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