
Energy-Aware Parallel Self-recon�guration for Chains Microrobot Networks

Hicham Lakhlefa,∗, Julien Bourgeoisa, Hakim Mabeda, Seth Copen Goldsteinb

aUFC/FEMTO-ST, UMR CNRS 6174, 1 cours Leprince-Ringuet, 25201 Montbeliard, France
bSchool of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA

Abstract

MEMS microrobots are miniaturized electro-mechanical elements, made using the techniques of micro-fabrication. They
have limited energy capacity and low memory space. Self-recon�guration is required for MEMS microrobots to complete
their mission and/or to optimize their communication. In this paper, we present a self-recon�guration protocol from a
straight chain to square organization, which deals with MEMS microrobots characteristics. In the proposed protocol,
nodes do not have the map of their target positions which makes the protocol portable, standalone, and the memory
complexity is bounded by a constant. This paper improves a former solution by using parallelism in the movements of
microrobots to optimize the time and the number of movements and by making the algorithm energy-aware. So each
node is aware of the amount of energy that it will spend, which will improve the energy consumption. Our algorithm is
implemented in Meld, a declarative language, and executed in a real environment simulator called DPRSim.

Keywords: MEMS Microrobot; Distributed Algorithm; Parallel Algorithm; Self-recon�guration; Logical Topology;
Energy

1. Introduction

Micro electro mechanical system (MEMS) is a tech-
nology that enables the batch fabrication of miniature
mechanical structures, devices, and systems. MEMS are
miniaturized and low-power devices that can sense and
act. It is expected that these small devices, referred to as
MEMS nodes, will be mass-produced, making their pro-
duction cost almost negligible [1]. Their applications will
require a massive deployment of nodes, thousands or even
millions [2] which will give birth to the concept of Dis-
tributed Intelligent MEMS (DiMEMS) [3].
The size of MEMS nodes di�ers from well below one mi-
cron to few millimeters. A DiMEMS device is composed of
typically hundreds of MEMS nodes. Some DiMEMS de-
vices are composed of mobile MEMS nodes [4], some oth-
ers are partially mobile [5] whereas others are not mobile
at all [3]. Due to their small size and the batch-fabrication
process, MEMS microrobots are potentially very cheap,
particularly through their use in many areas in our life-
time [6].
One of the major challenges in developing a microrobot is
to achieve a precise movement to reach the destination po-
sition while using a very limited power supply. Many dif-
ferent solutions have been studied for example, within the
Claytronics project [4, 7, 8, 9] each microrobot can only

∗Corresponding author
Email addresses: hlakhlef@femto-st.fr(H. Lakhlef),
julien.bourgeois@femto-st.fr(J. Bourgeois), hmabed@femto-st.fr
(H. Mabed), seth@cs.cmu.edu(S. C. Goldstein)

turn around its neighbor which introduce the idea of a col-
laborative way of moving. But, even if the power requested
for moving has been lowered, it still costs a lot regarding
the communication and computation requirements. Opti-
mizing the number of movements of microrobots is there-
fore crucial in order to save energy [10].
MEMS microrobots topic is gaining an increasing atten-
tion since large-scale swarms of robots will be able to per-
form several missions and tasks in a wide range of ap-
plications such as odor localization, �re�ghting, medical
service, surveillance, search, rescue, and security[1]. The
self-recon�guration for MEMS microrobots is necessary to
do these tasks. In the literature, self-recon�guration can
be seen from two di�erent points of view. On the one hand,
it can be de�ned as a protocol, centralized or distributed,
which transforms a set of nodes to reach the optimal logi-
cal topology from a physical topology [11]. For example, if
we have a connected chain of n microrobots then the com-
plexity of message exchange if a node broadcasts a message
to others will be O(n) in the worst case. If we recon�gure
the chain to a square the complexity will be O(

√
n) in the

worst case. On the other hand, the self-recon�guration is
built from modules which are autonomously able to change
the way they are connected, thus changing the overall
shape of the logical network [8, 12]. This process is di�cult
to control, because it involves the distributed coordination
of a large number of identical modules connected in time-
varying ways. The range of exchanged information and
the amount of displacement, determine the communica-
tion and energy complexity of the distributed algorithm.
When the information exchange involves close neighbors,

Preprint submitted to Elsevier September 22, 2014

the complexity is moderate and the resulting distributed
self-recon�guration scales gracefully with network size.
An open issue is whether distributed self-recon�guration
would result in an optimal con�guration with a moderate
complexity in message, execution time, number of move-
ments and memory usage.
As said before, MEMS microrobots are low-power and low-
memory capacity devices that can sense and act. A solu-
tion of self-recon�guration should deal with MEMS mi-
crorobots characteristics. Self-recon�guration with shared
map does not scale. Because the map (prede�ned position
of the target shape) consists of P positions and each node
must have a memory capacity, at least, of P positions.
Therefore, if P is very high, the self-recon�guration will
be not feasible. In this paper, we present an energy-aware
parallel recon�guration algorithm, without prede�ned po-
sitions of the target shape, which reduces memory usage
to O(1). This algorithm ensures the networks connectivity
throughout all its execution time. This work takes place
within the Claytronics project and aims at optimizing the
logical topology of the network through rearrangement of
the physical topology as we will see in the next sections.

2. Related Works

Many terms refer to the concept of self-recon�guration.
In several works on wireless networks the term used is
self − organization. This term is also used to express the
partitioning and clustering of ad-hoc networks or wireless
networks to groups called cliques or clusters. Also, the
self-organization term can be found in protocols for sen-
sor networks to form a sphere or a polygon from a center
node [13, 14, 15]. The term redeployment is also a new
term to address self-recon�guration for sensor networks
[16, 17, 18]. For self-recon�guration with robots or micro-
robots, there are the protocols [12, 19, 20] where the de-
sired con�guration is grown from an initial seed module.
A generator uses a 3D model of the target con�guration
and outputs a set of overlapping blocks which represent
this con�guration. In the second step, this representation
is combined with a control algorithm to produce the �nal
self-recon�guration algorithm. In [21], the authors propose
map based distributed algorithm for self-recon�guration of
modular robots from arbitrary to straight chain con�gu-
ration.
A growing number of research on self-recon�guration for
microrobots have used centralized algorithms, among them
we �nd centralized self-assembly algorithms [22]. Other
approaches give each node a unique ID and a prede�ned
position in the �nal structure [23]. The drawback of these
methods is the centralized paradigm and the need for nodes
identi�cation. More distributed approaches that need the
map of the target shape in [24, 25, 26, 27]. In simula-
tion, the authors in [28, 19] have demonstrated algorithms
for self-recon�guration and directed growth of cubic units
based on gradients and cellular automata. The authors in
[29] have shown how a simulated modular robot (Proteo)

can self-con�gure into useful and emergent morphologies
when the individual modules use local sensing and local
control rules.
In [30] the authors developed a centralized algorithm for
recon�guration (with prede�ned positions of the target
chain) of an initial chain con�guration into another chain
con�guration and then from a straight chain into an ar-
bitrary goal that ful�lls certain admissibility requirements
[31]. The distributed version of this algorithm was given in
[21]. Recent work in [32] demonstrated a time complexity
of O(n) for probabilistic recon�guration of large systems of
hexagonal metamorphic robots for single-move algorithms,
in which at most one module can move in a time step.
Claytronics, is the name of a project led by Carnegie Mel-
lon University and Intel corporation. In Claytronics, mi-
crorobots called catoms (Claytronics atoms) are assem-
bled to form larger objects. The idea is to have hun-
dreds of thousands of microrobots forming objects of any
shape. Like the cells in a body or in a complex organism,
each small member of the whole is committed to doing its
own part and communication between microrobots helps
in building the �nal shape.
Many works have already been done within the Claytronics
project. In [33], the authors propose a metamodel for the
recon�guration of catoms starting from an initial con�g-
uration to achieve a desired con�guration using creation
and destruction primitives. The authors use these two
functions to simplify the movement of each catom. In [8],
the authors present a scalable distributed recon�guration
algorithm with the Hierarchical Median Decomposition,
to achieve arbitrary target con�gurations without a global
communication. Another scalable algorithm has been pre-
sented in [9]. In [7], a scalable protocol for Catoms self-
recon�guration is proposed, written with the Meld lan-
guage [4, 34] and using the creation and destruction prim-
itives. In all these works, the authors assume that all
Catoms know the correct positions composing the target
shape at the beginning of the algorithm and each node is
aware of its current position. The �rst self-recon�guration
without prede�ned positions of the target shape appears
in [35]. However, this solution is not parallelized, is not
energy-aware and takes longer to achieve the recon�gura-
tion. In this former solution, the choice of the initiator
node is simple, but this initiator is not the best one to get
a good execution time for the self-recon�guration proto-
col. Also, controlling the movements of nodes was simple
compared to this new solution because only three states
were required. Nevertheless, the solutions in [35, 37] take
longer to achieve the recon�guration protocol. Therefore,
they are time-consuming, and do not maximize the life-
time of nodes. To cope with these disadvantages, we in-
troduced the use of the parallelism in movements. Within
this new solution, and because of the parallelism in move-
ments, the control has become more complex, as new states
are required to deal with a lot of cases to handle the par-
allelism in order to make it optimal. We presented in [38]
an algorithm of recon�guration from any starting physical

2

topology to a square, this algorithm does not ensure the
connectivity of the network during the recon�guration.

3. Contributions and comparison with literature

works

In this paper, we propose a new distributed approach
for parallelized self-recon�guration of MEMS microrobots,
where the target form is built incrementally and in parallel
way (parallel movements). Each node in the current incre-
ment acts as a reference for other nodes to form the next
increment, which will belong to the �nal form. In this pa-
per each node predicts its future actions (movements), so
it can compute the energy amount that will spend before
the beginning of the algorithm. The prediction property
makes the algorithm robust, because the node can make
sure that it has correctly followed the algorithm.

We introduce a state model where each node can see
the state of its physical neighbors to achieve the self-
recon�guration for distributed MEMS microrobots, using
the states the nodes collaborate and help each other.

In the proposed algorithm, message exchanging is lim-
ited to the construction of the spanning tree and the se-
lection of the initiator node (in the middle of the initial
shape) in order to optimize the algorithm. The spanning
tree is used to ensure the connectivity of the network and
dynamically manage the nodes that can move. Contrary
to existing works, in our algorithm each node has no infor-
mation on the correct positions (prede�ned positions) of
the target shape, and movements of microrobots are fully
implemented. We propose here an e�cient distributed and
parallelized algorithm for nodes self-recon�guration. Each
node moves by rotation around their physical neighbors.
For instance, we study the case of a self-recon�guration
from a chain of microrobots to a square. The performance
of the self-organization algorithm is evaluated according to
the number of rotations and the time taken. In this paper
the MEMS network is organized initially as a chain. By
choosing a straight chain as initial shape, we aim to study
the performance of our approach in extreme case. Indeed,
the chain form represents the worst physical topology for
many distributed algorithms in terms of fault tolerance,
propagation procedures and convergence. The redeploy-
ment into a square organization allows to obtain the best
messages broadcasting complexity with O(

√
n), instead of

O(n) in the chain.
To assess the distributed algorithm performance and

the e�ect of the parallelization, we present our results of
simulations compared to the results in [35], which are not
parallelized. The simulations are made with the declara-
tive language Meld [4] and the DPRSim simulator [39].

Outline of the paper. The rest of the paper is or-
ganized as follows: Section 4 discusses the model, tools
and some de�nitions. Section 5 discuss the proposed al-
gorithm, analyzes the number of sent messages and the
number of movements, it discuss memory space required
and shows the generalization of the algorithm. Section

6 details the simulation results. Finally, section 7 sum-
marizes our conclusions and illustrates our suggestions for
future work.

4. Model, de�nitions and tools

Figure 1: A millimetric
Claytronics atom (Catom)

Figure 2: Two catoms

R

M0

P1

P2

P3

P4

P5

P6

EW

NE

SE

NW

SW

wt

y

x

O

V
M(x(t), y(t))

Figure 3: Node modeling, in each movement the node travels the
same distance

 D2

 D1
A

B

A

A

Figure 4: Traveled distance
in one movement = 2R, the
node A travels 2R in one
movement

A

B

C

D

t0
t

t

1

2

A

A

Figure 5: Message transmission, there
will be message exchange if the node
needs to know the state of a non-
neighbor node

Within Claytronics, the Catoms can have two shapes,
a sphere or a cylinder, a catom (See �gure 1 and �gure 2)
that we call in this paper, a node, is modeled as a circle
which can have at most six 2D-neighbors without overlap-
ping (See �gure 3). Each node is able to sense the direction
of its physical neighbors (east (E), west (W), north-east
(NE), south-east (SE), south-west (SW) and north-west
(NW)). In this work, the starting physical topology is a
chain of n nodes linked together. A chain corresponds to
a connected set of nodes where each node has two neigh-
bors excepting the two extremities representing only one
neighbor. We will take the example of nodes that have
neighbors in NW and SE directions and we will show after
how to generalize. A node A is in neighbor's list of node
B if A touch physically B (�gure 4). Within Claytronics,

3

communications are only possible through contact, which
means that only neighbors can have a direct communica-
tion.

Consider the connected undirected graph G = (V, E)
modeling the network, where v ∈ V , is a node that be-
longs to the network and, e ∈ E a bidirectional edge
of communication between two physical neighbors. For
each node v ∈ V , we denote the set of neighbors of v as
N(v) = {u, (u, v) ∈ E}. Each node v ∈ V knows the set
of its neighbors in G, denoted N(v). Each node regularly
updates the set of neighbors N(v) for each node v of the
graph.
We de�ne the following terminology:
Connectivity: A graph G = (V,E) is connected i� ∀v ∈ V ,
∀u ∈ V,∃Cv,u ⊆E: Cv,u = (ev,−, ..., e−,−, ..., e−,u), with
ex,y is an edge from x to y and Cv,u represents a path
from v to u.
Snap − Connectivity: let T be the total execution time
of our distributed algorithm DA and t1..., tm are the time
slots of execution of DA. There is a Snap-Connectivity
in DA with the dynamic graph Gt(Vti, Eti) the network
state at the instant ti, if ∀ti, i ∈ {1, ...,m}, Gti(Vti, Eti)
maintains the connectivity.
Spanning tree: is a tree composed of all v ∈ V without
any cycle. In the spanning tree, a node is either a child or
a parent. The leaf is a node without any children.
We call the highest number of movements the highest num-
ber of movements performed by a node belongs to the net-
work.
To calculate highest number of movements we de�ne the
following:
We say that a microrobot has done a single movement if
the distance between its former position and its new po-
sition is exactly twice the radius D1 = 2R. For example,
if the node is in a position at a distance D2 (see �gure 4)
from the former position it has done two movements.

Consider �gure 3 which represents a microrobot. The
node perimeter corresponds to an angle of 360◦ that can
be divided into six equal segments each one of 60◦. The
perimeter length of a segment with α degree is equal to
Pα = πRα/180. According to �gure 3 we prove that P1 =
P2 = P3 = P4 = P5 = P6 = πR/3 and in each round the
node travels the same distance, this also means that the
node can have without overlapping at most six neighbors.
In �gure 3, the points M0 and M represent the contact
point between the node in movement and the node around
which it moves.
The movement performed by a node can be represented
by the following Cartesian parametric equation:

x(t) = Rcos(wt)

y(t) = Rsin(wt)

wherewt ∈ [0..2π]

(1)

With wt is the angle of rotation w in a period t and x(t)
and y(t) the coordinates of the M point (see �gure 3).

The velocity vector is written:

→
V=

(
−Rsin wt
Rcos wt

)
(2)

The arc length from M to M0 is equal
∫
||
→
V ||.dt = Rwt,

with ||
→
V || is the norm of the velocity vector. So in this

paper in one round the microrobot of radius R travels Ra
with a=60◦.

In this paper, message exchange between physical neigh-
bors is carried without complexity, because the node can
see directly the state of its physical neighbor1. On the
other side, if a node to decide needs to know the state of
a nonphysical neighbor this is carried through exchange of
message since the node will wait to decide, for example in
�gure 5:

• At t0: the node A needs to know the state of B to
move to the new position, this movement is done
without message exchange.

• At t2: if A is in the new position and it needs to know
the state of D to move then D sends a message to C
informing its state to C that forwards the message
to A. So, in this case there is a message exchange
and A should wait two rounds to decide 2.

• But if at t0 or at t1 a message has been sent from
D to C, so A at t2 can have the state of D with a
simple consultation of C's state.

It is important to minimize the number of movements re-
garding the energy, the execution time and the memory
space used, therefore the number of states per node.

Lemma 4.1. 3

Let x be an integer number. It is well known that if x
is odd\even, then x2 is an odd\even number.

Proof As x is odd\even, we can write x = 2n+1\x = 2n.
Therefore, x2 = (2n+1)2\x2 = (2n)2. So, x2 = 4n+4+1 =
2(2n2+2)+1\x2 = 2(2x2); which is an odd \ even number.

Lemma 4.2. Let x be a square number (x is an integer
that is the square of an integer). If x is even, then

√
x is

an even number.

Proof We proof this lemma by induction. As x is even
and it is the square of an integer, we can write x = n2.
Therefore,

√
x =

√
n2. Let us suppose that n is odd, so

there is k with n = 2k + 1. Thus,
√
x =

√
(2k + 1)2.

So, x = 2(2k2 + 2k) + 1 which represents a contradiction,
because this value is odd and our x is even. So,

√
x is

even.

1According to the simulation tools the node can see directly the
state of its physical neighbor

2Node A has to wait for the state changing of B, �rstly D will
free C, after C will free A

3The character "\" means respectively (resp.) in lemmas and
theorems

4

Lemma 4.3. Let x be a square number (x is an integer
that is the square of an integer). If x is odd, then

√
x is

an odd number.

Proof As x is odd, there is an even integer 2h with x =
2h + 1. Therefore,

√
x =

√
2h+ 1. Notice that, there is

an integer η with
√
2h+ 1 =

√
2η+1 where h = η+

√
2η.

Therefore, the value
√
2h+ 1 = 4

√
η + 1 which is an odd

number.

Theorem 4.4. Let y be an odd\even square number (y is
an integer that is the square of an integer), then the next
odd\even square number is y + 4

√
y + 4

Proof As y is an odd\even square number, we have
√
y =

ρ, with ρ is odd\even (from lemma 4.1, lemma 4.2 and
lemma 4.3) integer number. So, as ρ is odd\even, the next
odd\even number is r = ρ+2, and because r2 = (ρ+2)2 =
ρ2 +4ρ+4 is odd\even (from lemma 4.1, lemma 4.2 and
lemma 4.3), we �nd r2 = y + 4

√
y + 4 �

Theorem 4.5. Let y be a square number (y is an integer
that is the square of an integer), then if y is odd\even the
next even\odd square number is y + 2

√
y + 1

Proof As y is an odd\even square number, from lemma
4.1, lemma 4.2 and lemma 4.3 we have

√
y = ρ, with ρ is

odd\even integer number. So, as ρ is odd\even, the next
even\odd number is r = ρ+1, and because r2 = (ρ+1)2 =
ρ2 +2ρ+1 is even\odd (from lemma 4.1, lemma 4.2 and
lemma 4.3), we �nd r2 = y + 2

√
y + 1 �

5. Proposed Protocol

5.1. Parallel Algorithm with Safe Connectivity (PASC)

As mentioned before, in this algorithm, each node can
move only around its physical neighbor. To ensure a snap-
connectivity only nodes that keep the network disconnec-
tivity can move around neighbors, for this purpose we in-
troduce the use of the tree to dynamically manage the leaf
nodes that can move.
To form the matrix of our square with

√
N ×

√
N nodes,

TxT

sub-layer1sub-layer2layer =| | +| | 4T+4=

Figure 6: Represents how
many nodes added to reach
the next square

TxT

|layer|=2T+1

Figure 7: Represents how many nodes
added in last layer to reach the last
square when n is even

we begin with an incremental process with a correct square
(for example 1x1). After, we add each time a new sub-
layer contains 3T +2 nodes, with T ×T is the last square.
After, we add another sub-layer with T + 2 nodes taking

positions at the W direction relative to nodes of the last
shape. If N is even, at the last layer we add 2T +1 nodes,
with T × T is the last square. Figures 6 and 7 show
an example. The choice of the middle node depends on
the optimality of parallelism. Let N be the network size,

and n =
⌊√

N
⌋ ⌊√

N
⌋
, if n is odd the middle node will

be mi = n+1
2 , as the case in �gure 9. If n is even the

middle node will be mi = n
2 − (

√
n
2 − 1), as the case in

�gure 8. The index of a node represents its rank into the
initial chain (starting from the top).
The middle node mi can be found by knowing the size of
the network, an end node of the chain initializes a counter
to 1 and broadcasts it, each node receives this message in-
crements the counter until it arrives to the concerned node
mi.

1

2

3

4

1 2

34

Figure 8: Represents an ex-
ample of initiator �nding
when n is even, in this ex-
ample the initiator is the
node 2

1

5

6

7

2

9

4

3

8

1 5

69

4

7

8

23

Figure 9: Represents an example of
initiator �nding when n odd, in this
example the initiator is the node 5

5.2. Description and analysis

The algorithm PASC (presented hereafter) runs in rounds.
At each round, the satis�ed predicates are chosen to run.
The distributed algorithm seeks the desired form by us-
ing an incremental process. In a completed increment, the
nodes that build it belong already to the form; these nodes
will help neighbor nodes and future neighbor nodes to get
correct positions.
The middle node of the chain declares itself as the initiator
with the predicate (1). The initiator which is the root of
the spanning tree initializes the construction of tree and
becomes a parent of itself (3). A node if it does not have
a parent becomes a child of one the neighbor parents (8)
and a node is a leaf if all its neighbors are parents (9).
Nodes that are above the initiator take the state top with
predicate (6), the other nodes that are under the initiator
take the state bottom (7). Initially, all nodes are initialized
with the state bad except the initiator (2), which takes the
states well and nper with (4) and (5). Nodes having the
state well or int are nodes already in the target shape and
cannot move, they became steady.

To make an optimal parallelism in term of numbers
of movements and a correct square, the number of nodes
having the state top to be in the same line as the initiator
must be equal to the number of nodes having state bottom
to be in the same line as the initiator if N is odd. If N is
even, another node is added to the nodes having state top.
The state nper is used to achieve this purpose.

5

Variables and Predicates:

• initiatorv(): the node v that initializes the algorithm.

• statev(X): the node v takes the state X, with:
X ∈ {well, bad, int, nper,mnper, top, bottom,¬nper,¬mnper,¬int}, v cannot take the states well and
bad in the same time.

• moveAroundstatev(u, Px): move around neighbor u that has the state state in such a way u becomes
v's neighbor in the direction x relative to v.

• parent(v, u): v is u's parent in the tree.

• isLeaf(v): v is a leaf.

Predicates checked only in the �rst round

1. initiatorv() ≡ medChain(v).
2. statev(bad) ≡ connectedv ∧ ¬initiatorv().
3. parent(v, v) ≡ initiator(v).
4. statev(well) ≡ initiatorv().
5. statev(nper) ≡ initiatorv().

Predicates checked in each round

6. statev(top) ≡ (Nse(v) = u, initiatoru()) ∨ (Nse(v) = u, stateu(top)).

7. statev(bottom) ≡ (Nnw(v) = u, initiatoru()) ∨ (Nnw(v) = u, stateu(top)).

8. parent(v, u) ≡ (parent(w, v), u 6= w) ∧ (u ∈ N(v)) ∧ (stateu(bad)) ∧ (6 ∃z ∈ N(v), parent(v, z)).

9. isLeaf(v) ≡ ((∀u ∈ N(v),¬parent(v, u)) ∧ ¬parent(v, v)).
10. statev(mnper) ≡ (((Nse(v) = u, stateu(nper)) ∨ (Ne(v) = u, stateu(nper))) ∧ initiatoru()).
11. statev(mnper) ≡ (Ne(v) = u, stateu(nper)) ∧ (¬statev(nper)) ∧ (statev(int) ∨ statev(well)).
12. statev(nper) ≡ (Ne(v) = u, stateu(mnper)) ∧ (¬statev(mnper)) ∧ (Nse(v)).

13. statev(int) ≡ ((Ne(v) = u, stateu(well))∧(Nnw(v)))∨((Nse(v) = u, stateu(well))∧(Nw(v)))∨(Ne(v) =
u1, Nse(v) = u2, stateu1(int), stateu2(int)) ∨ ((Nne(v) = u, stateu(well)) ∧ (Nnw(v))) ∨ ((Nne(v) =
u, stateu(well)) ∧ (Nw(v))).

14. statev(well) ≡ ((Ne(v) = u, stateu(int)) ∧ (Nnw(v))) ∨ ((Ne(v) = u, stateu(int)) ∧ (Nse(v))).

15. statev(well) ≡ (Nw(v) = u, stateu(well)).

16. statev(well) ≡ statev(bad) ∧ (Nse(v) = �) ∧ (Nw) ∧ (Nnw(v) = u, stateu(well)).

17. statev(well) ≡ statev(bad) ∧ (Nse(v) = �) ∧ (Nw) ∧ (Nnw(v) = u, stateu(well)) ∧ ((Ne(v) =
u1, stateu1(well))).

18. moveAroundbadv(u, Pe) ≡ canMovev() ∧ (Nse(v) = u, stateu(bad), stateu(top)).

19. moveAroundbadv(u, Pne) ≡ canMovev() ∧ (Ne(v) = u, stateu(bad), stateu(top))

20. moveAroundintv(u, Pse) ≡ canMovev() ∧ (Nsw(v) = u, stateu(int), stateu(top)) ∧ (¬stateu(nper)).
21. moveAroundwellv(u, Pse) ≡ canMovev() ∧ (Nsw(v) = u, stateu(well), stateu(top)).

22. moveAroundintv(u, Pe) ≡ canMovev() ∧ (Nse(v) = u, stateu(int), stateu(top)).

23. moveAroundwellv(u, Pe) ≡ canMovev() ∧ (Nse(v) = u, stateu(well), stateu(top)).

24. moveAroundbadv(u, Pne) ≡ canMovev() ∧ (Nnw(v) = u, stateu(bad)) ∧ stateu(bottom).

25. moveAroundbadv(u, Pe) ≡ canMovev() ∧ (Nne(v) = u, stateu(bad), stateu(bottom)).

26. moveAroundwellv(u, Pne) ≡ canMovev() ∧ (Nnw(v) = u, stateu(well), stateu(bottom)).

27. moveAroundwellv(u, Pse) ≡ canMovev() ∧ (Ne(v) = u, stateu(well), stateu(bottom), (¬stateu(nper)).
28. moveAroundwellv(u, Pe) ≡ canMovev() ∧ (Nne(v) = u, stateu(well), stateu(bottom)(¬stateu(nper)).
29. moveAroundintv(u, Pne) ≡ canMovev() ∧ (Nnw(v) = u, stateu(int), stateu(bottom)).

30. moveAroundintv(u, Pe) ≡ canMovev() ∧ (Nne(v) = u, stateu(int), stateu(bottom), (¬stateu(nper)).
31. moveAroundwellv(u, Pe) ≡ canMovev() ∧ statev(bottom) ∧ (Nne(v) =

u, stateu(well), stateu(mnper), (¬stateu(nper)).
32. canMovev() ≡ isLeaf(v) ∧ (¬statev(well)) ∧ (¬statev(int)) ∧ statev(bad).

The PASC algorithm

6

The initiator takes the state nper (5), by taking this
state the initiator and each node has this state does not al-
low its neighbor to move around it in order to join the line
of the initiator. This is done with the guard (¬statev(nper)).
The state mnper is an intermediate state used to propa-
gate the state nper to the other nodes, that will keep the
parallelism optimal, as well the node that has a neighbor
in the E direction having the state nper takes the state
mnper (11). The node that has the initiator as neigh-
bor node in the SE direction takes the state mnper (10).
The other (next) nodes that will take the state nper are
nodes having in the E direction a neighbor that has the
state mnper (12). Therefore, the node having the state
nper does not allow neighbor nodes to join the line of the
initiator, as these nodes are checking the predicates (21),
(22), (23), (26), (27), (28), (29) and (30).
The state int is an intermediate state used to add a non-
complete layer to the square shape. Thus, the nodes that
have neighbors having the state well take the state int
with predicate (13). The �rst node that changes its state
to int is the one in the line of the initiator. After, the state
int is propagated to nodes that have neighbors having the
well state. Notice that, nodes with the state well and
nodes with state int together do not form a square, it will
be a square if all nodes having the state int have in the W
direction a neighbor node, this neighbor nodes will have
has the state well. Therefore, the wave of state changing
to well begins from with predicates (15), (16) and (17).
With predicates (18) and (19) the leaf nodes having the
state top descend to the center of the chain. As well as,
leaf nodes having the state bottom mount to the center of
the chain with the predicates (24) and (25). With predi-
cate (20) / (21), leaf node v that has the bad state moves
around a node u having the states top and int/well, node
u becomes a neighbor in SE direction relative to v. With
predicate (22) / (23), leaf node v that has the bad state
moves around a node u having the states top and int/well,
node u becomes v's neighbor in the E direction. With the
predicate (26) / (27) / (28), leaf node v with bad state
moves around a node u having well and bottom states,
node u becomes v's neighbor in the NE / SE / E direc-
tion.

Theorem 5.1. If N is the network size and

n =
⌊√

N
⌋ ⌊√

N
⌋
is odd, the highest number of movements

will be ((n+ 1)/2) +N − n.

Theorem 5.2. If N is the network size and

n =
⌊√

N
⌋ ⌊√

N
⌋
is even, with N ≥ 5, the highest number

of movements will be (
√
n/2) +N − (n/2)− 1.

Example: Figure 10 shows an example with explanation,
and �gure 11 shows another example without explanation.
In �gure 10:

• At t0: with predicate (2) each node takes the state b
(bad), with (6) the node 1 which is above the initiator

(node 2) takes the state t (top), with (7) nodes (nodes
3 and 4) located under the initiator take the state B
(bottom), with (4) the initiator takes the state w
(well), and with (5) it takes state n (nper).

• To arrive at the next step t1, node 1 moves around
node 2 using the predicate (18), and node 4 moves
around node 3 using (26). The node 1 takes the state
m with (10). The node 1 cannot move around the
node 2 with (19) since the node 2 has the state n.
Node 4 moves to the new position with (24) and it
cannot get any other state in this step.

• To arrive at the next step t2, node 4 moves around
node 3 using the predicate (25). After, node 4 takes
the state i (int) with predicate (13).

• At t3, the target shape is obtained. Nodes 1 and 4
take the state i with (13).

b

b

b

b

t

B

B

w n

b b

b

b

t

B

B

m

nwb b

b b

t

B B

m

wb b

b b

t

B B

m

nw

i

i

ii

n

m

1

2

3

4

12

3

4

2

34

1

34

21

t0t1t2t3

Figure 10: Represents an example of execution of PASC with four
nodes, the initiator is node 2

5.3. The ten states minimum

In this section we prove that ten states are minimum
and optimal to obtain the algorithm convergence. Obvi-
ously, with a single state, nodes have no way to distinguish
whether they are in a good position or not and therefore
if the node should move or not. Let us suppose a vari-
ant of PASC with two states bad and well, with these two
states, we can say that the node that has well state is a
steady node and is belonging to the target shape, and the
node with bad state moves around nodes having well state,
thereby with these two states, nodes collaborate between
them to make a next layer and change the state from bad
to well. Suppose a set S of nodes having the well state
are correctly in the target shape. Depending on some con-
ditions C the set B of nodes with bad state will change
their state to well in order to make a new layer, however
as we have only two states the other nodes that are B's
neighbors have likewise these C conditions and they will
change their states to well and became steady, although
they are not even at the layer being built. So, PASC is
executed and the target shape is lost.
Two additional states are required, the state top and bottom,
these two states are indispensable to avoid deadlock in
PASC. Indeed, in PASC there are predicates (18) and (19)
executed by nodes to descend to the middle of the chain,
and others executed to rise to the middle of the chain (24)

7

b

b

b

w

B

B

t t

t

t

b

b

b

b

b

b

b

w

B

B B

B

t

t

t

t

m

n

i

i

i

i

i

i

i

i

m
n

m

m
b

b

b b

b

b

b

w

B

B

B

t
t t

t
i

i

i

in

m

m

B b

b

b

b b

bb b

w

BB B

t
t t

t

i

i

i

i
n

m

m

B b

m

n

b

w

BB

t
t

t

t

i i
n

m

m

Bw

w

1

2

3

4

5

6

7

8

9

5

4

6

3

4

t

t

t

t

B

B

B

B

b

b

b

b

b

b

b

b

w n

1

9 B b

5

9

B

b

8

7

32 bb

b

n

6

1

2

b7

2

8

b

b

b

b

b

b

b

w

B

B B

B

t

t

t

t
i

i

i

i

i

n

m

m

3

4

5

9

n

6

1

2

b78

5 n

98

7

2 4

6

3

7
s

s

s

5
1
i3

n
5 n 8

7 6
6

43

1
i

9

1
i

2 4w

w

ww

w
s

m

n
i

B9
i

8

w

s

t1t2t3t4t5t6

states:
b: bad
B: bottom
m: mnper
n:npem
w: well
i: int
s: sint
t: top

s

t9

Figure 11: Represents an example of execution of PASC with nine nodes, the initiator is the node 5

and (25), if we remove the states top and bottom from
(18), (19), (24) and (25) the nodes will remain in their po-
sition by running (18)/(25) after (25)/(18), or (19)/(24)
and (24)/(19) cyclically. Therefore, PASC will not get �n-
ished. A variant of PASC with four states bad and well
and top and bottom is impossible, the reasons are the same
used to prove the impossibility with the two states well
and bad.

The thing seen so far, is that we have to add an in-
termediate state int to separate neighboring nodes having
the state bad and nodes having well state. By adding this
state, the node that has int state can change the C con-
ditions that will be C'. Such a way, B's neighbors cannot
change their state to well with C', because they are not
forming a new correct layer.

Let us suppose a variant of PASC with six states bad,
well, top, bottom, int, and ¬int. With �ve states the dead-
lock is avoided, and the conditions to change the state to
well are managed. However, the nodes having the state
int are making a new layer adjacent to the current correct
square

√
Z ∗
√
Z, the number of nodes having int added

is 3
√
Z + 2. Therefore, as

√
Z ∗
√
Z + 3

√
Z + 2 is not

a square root (from Theorem 4.4 and Theorem 4.5), the
shape is not a square. To become a square we have to add
γ =

√
Z + 2 nodes, these nodes will be at the direction

W relative to nodes having the state int. These γ can get
the state well because the shape is a square or an interme-
diate square. With six states bad, well, top, bottom, int,
¬int, the parallelism will not be optimal and the energy
consumption will not be well balanced between nodes. To
make an optimal parallelism, PASC makes two rectangles
in parallel where the union gives a square. Also, to propa-
gate the state nper to the concerned nodes of the middle,
we have to use another state mnper, the states ¬nper and
¬mnper are used to check if the neighbor node has the
state nper and mnper respectively.

5.4. Complexity of sent messages

PASC needs only O(N)message. That is, the messages
of tree construction (O(N/2)) and the messages of middle
node �nding (O(N/2)). The most interesting action for

message exchange in the algorithm is the one activated by
state changing predicates, from the int and bad states to
well with the predicates (15), (16) and (17). It is obvious
that if node changes its state before it be sure of the good
state of other nodes that have moved before it in the cur-
rent layer, the process will completely go in the opposite
direction of the desired objective and self-recon�guration
desired. The predicates (10), (11), 12), (13), (14), (15) and
(16) ensure without exchanging of message that the node
changes its state only if all nodes that have moved before
it have changed their states. Therefore, the �rst node that
begins the construction of the new layer does not need
to wait for the message of the �rst node that began the
previous layer. This is because the node that is currently
checking the predicates (10), (11), (12), (13), (14), (15)
and (16) can have this information by simply consulting
(message) the state of its current neighbor. In other words,
the message was being sent before the node needs to know
the state of its sender, when the node needs to know it, it
will �nd the message at its physical neighbor. So we do
not need to transmit information from the node blocked
necessarily in a good position with the well state to other
nodes which are forming the new layer, which explains that
throughout the algorithm in any case we do not need to
transmit information between two non-neighboring nodes
of the new layer. This e�ciency is explained by the fact
that synchronization in state changing is not required for
nodes that are in the same layer. As consequence, PASC
needs only the messages of tree construction and the mes-
sages of middle node �nding.

5.5. PASC and Snap-Connectivity property

PASC maintains the snap-connectivity property since
it uses the tree mechanism where only the leaves can move.
Since only leaf nodes can move, moved nodes will not gen-
erate a hole between nodes connected through it. We
can divide the move impact into two categories. A �rst
case happens when no new neighbor is appearing after the
movement. In this case there is no ti when the message
cannot be sent because during the motion it was being al-
ways the neighbor of the node used it to move. The second

8

case appears when the moved node gets a new neighbor.
In this case, before it let its neighbor it becomes a neighbor
node with another node that is connected since the graph
was connected at the beginning, so there is another route
for the message of Cv,u which will not be blocked for all
ti, i ∈ {1, ..., n}.

5.6. Predicting the number of movements for each node

In this section, we present how to make the algorithm
energy-aware and robust by predicting the number of move-
ments for each node. So each node knows the amount of
energy that will consume. And, the node, by this pre-
dicting can make sure that is has correctly executed the
protocol.
To predict the number of movements for each node we
take a partitioning of nodes into 3 groups (A), (B) and
(C) if n = N , or into 3 groups, (A), (B), (C') if N > n.
As shown in �gure 12. To apply the functions of pre-
diction, each node will have a level (L), a special number,
and eventually a special index. For each group we will give
the composition of some functions to predict the number
of movements for each node. Notice that, the partition-
ing procedures are always from the top of the chain to the
bottom.

• The size of the group (A) is |(A)| = n−
√
n

2 if n is
odd. Or |(A)| = n

2 −
√
n+ 1 if n is even.

• The size of the group (B) is |(B)| =
√
n.

• The size of the group (C) is |(C)| = n−
√
n

2 , if n = N
and n is odd. Or |(C)| = n− n

2 − 1, if n = N and n
is even.

• If n > N , there will be another group(C'), its size

is |(C ′)| = n−
√
n

2 + N − n, if n is odd. Or |(C ′)| =
n
2 − 1 +N , if n is even.

5.6.1. The case n is odd

For the group (A):

• The �rst group of nodes g = 2
√
n − 3 take the �rst

level L1. The following group of nodes consisting
of g = g − 4 take the next level L2, and the next
group of g = g − 4 take the next level and so on by
subtracting each time 4 from the last g. Figure 13
shows an example.

• The node i =
(
n−2
√
n+3

2

)
is the �rst that takes the

�rst index * (called INDEX∗(i)).

• The �rst node that takes the second index # (called

INDEX#(i)) is the node i =
(
n−4
√
n+7

2

)
, the sec-

ond node that takes the index # is the node y =(
n−4
√
n+7

2

)
− k, with k = 2

√
n − 6, and the next

(A)

(B)

(C)

(C’)
n

N

1

(C’)
A

C
(C’)

Figure 12: Models the partitioning procedure to calculate the num-
ber of movements

node that takes the index # is the node y = y − k,
with k = k − 4, and the next node that takes this
index is the node y = y − k, with k = k − 4 and so
on by subtracting each time 4 from the last k and
subtracting this value from the last y.

• The �rst node that takes the third index d (called

INDEXd(i)) is the node x =
(
n−6
√
n+11
2

)
, the sec-

ond node that takes the index d is the node x =(
n−6
√
n+11
2

)
− p, with p =

(
4
√
n−2
3

)
, and the next

node that takes the index d is the node x = x − p,
with p = p − 4, and the next node that takes the
index d is x = x − p with, p = p − 4, and so on by
subtracting each time 4 from the last k and subtract-
ing this value from the last x.

• To each level (except the last level) j is associated a
number Hj and Sj .

Hj =

3
√
n− 17

2
, if j = 1.

Hj−1 − 3, otherwise.

(3)

Sj =

√
n− 3

2
, if j = 1.

Sj−1 − 1, otherwise.

(4)

9

1

2

3

4

5

6

7

8

9

10

L1

L2

11

12

13

14

15

16

17

18

19

20

21

L3

*

#

d

S1

S2

H1

H2

d

#

Figure 13: An example of partitioning into levels of nodes having
the state top and numbers associated to levels with an example of 49
nodes

28

27

26

25

24

23

22

LM

Figure 14: An example of partitioning into levels with the case n=49,
the middle nodes have a special level LM , these nodes will not move,
they will be of

√
n size

Uj,i =

Uj−1,i+1 − Sj−1, if L(i+ 1) 6= j.

Uj,i+1 −Hj−1, if INDEXd(i+ 1).

√
n− 1, if i =

(
n−
√
n

2

)
.

Uj,i+1 + 1, if i+ 1 =

(
n−
√
n

2

)
.

Uj,i+1 −
(
3
√
n− 11

2

)
, if INDEX∗(i+ 1).

Uj,i+1 + 1, if INDEX#(i+ 1).

Uj,i+1 + 2, otherwise.
(5)

With Uj,i is the number of movements of node i that
has the level j.

For the group (B):

• The
√
n nodes after the node i = n−

√
n

2 take the
middle level called LM . The nodes having this level
will not move, their number of movements is 0, (see
�gure 14).

39

40

33

34

35

36

37

38

29

30

31

32

41

42

43

44

45

46

47

48

49

L1

L2

LS

$

2

3

Figure 15: An example of partitioning into levels of nodes having
the state bottom (group (C)) and numbers associated to levels with
an example of 49 nodes

For the group (C):

• The last 7 nodes take the level LS. The �rst
(√

n+1
2

)
nodes take the �rst level L1. The next a = 2

√
n− 4

nodes take the next level L2 , and the next a = a−4
take the next level L3 and so on, �gure 15 presents
an example.

• The �rst node that takes the index $ is the node c =(
5
√
n−5
2

)
, the following node that takes the index $

is the node c = c + p, with p = (2
√
n− 7) and the

next is the node c = c+ (p− 4) and the next is the
node c = c + (p − 8) and so on, �gure 15 shows an
example.

λj =

√
n− 5

2
, ifj = 2.

λj = λj−1 − 1, otherwise.

(6)

φj =

√
n+ 5

2
, ifj = 2.

φj = φj−1 − 3, otherwise.

(7)

Zj,i =

√
n, ifLM(i− 1).

Zj,i−1 − φj , ifL(i− 1) 6= Li.

Zj,i−1 + λj , ifINDEXD(i).

Zj,i−1 + 1, if i− 1 = n− 1.

Zj,i−1 + 2, otherwise.

(8)

10

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

L0

L1

L2

L3

Q

M3

K3

K2

M2

K1

M1

M0

T

T

Q

T

Figure 16: An example of partitioning into levels of the group (A),
and numbers associated to levels with an example of n = 64 nodes

With Zj,i is the number of movements of node i that has
the level j.

For the group (C'):

We partition the group (C') to two subgroups (C ′)A,
(C ′)C . The group (C ′)A contains the �rst N − n nodes.

The following n−
√
n

2 nodes are in the group (C ′)C . In the
following: (C ′)A(i) means the node i belongs to the group
(C ′)A.

For the group (C ′)A:

νi =

{
2
√
n− (N − n), ifLM(i− 1).

νi−1 + 2, otherwise.
(9)

With νi is the number of movements of node i.
For the group (C ′)C :

The number of movements are predicted with the same
instructions (numbers, levels, and indexes) of the group
C, with this new function Zj,i.

Zj,i =

√
n+ (N − n), if(C ′)A(i− 1).

Zj,i−1 − φj , ifL(i− 1) 6= Li.

Zj,i−1 + λj , ifINDEXD(i).

Zj,i−1 + 1, if, i− 1 = n− 1.

Zj,i−1 + 2, otherwise.

(10)

5.6.2. The case n is even

For the group (A):

• The �rst
√
n− 1 nodes take the root level (L0).

• The following a = 2
√
n− 6 nodes take the �rst level

(L1).

• The following a = a − 4 nodes take following level
(L3). And the following a = a− 4 take the following
level and so on.

• The �rst node that takes the index Q (INDEXQ(i))

is the node c = n
2 −

3
√
n

2 +1, the next node that takes
the index Q is the node c = c−p with p = (2

√
n−5).

And the next node that takes the index Q is the node
c = c− p with p = p− 4 and so on.

• The �rst node that takes the index T (INDEXT (i))
is the node b = n

2 −
√
n, the next node that takes the

index T is the node b = b − e with e = (2
√
n − 5).

And the next node that takes the index T is the node
b = b − e with e = e − 4 and so on. The �gure 16
shows an example.

Kj =

3
√
n

2
− 7, ifj = 1.

Kj = Kj−1 − 3, otherwise.

(11)

Mj =

√
n

2
− 1, ifj = 0.

Mj =Mj−1 − 1, otherwise.

(12)

χj,i =

√
n− 1, if, i =

n

2
−
√
n+ 1.

χj,i+1 −Kj , ifL(i+ 1) 6= j.

χj,i+1 −Mj , if, INDEXQ(i).

χj,i+1 + 1, if, INDEXT (i).

χj,i+1 + 2, otherwise.

(13)

With χj,i is the number of movements of node i that has
the level j.

For the group (B):

• The
√
n nodes after the node i = n

2 −
√
n + 1 take

the middle level called LM . The nodes having this
level will not move, their number of movements is 0,
(see �gure 14).

For the group (C):

• The last 7 nodes take a special level LS. The �rst
w = 2

√
n − 2 nodes take the �rst level L1, and the

next w = w− 4 take the next level L2 and so on. To
each level is associated an number Bj and Oj .

• The �rst node that takes the index
H (called INDEXH(i)) is the node c = n− 10, and
the next node that takes this index is c = c− p with
p = 11, and the next node that takes the index H
is the node c = c − p with p = p + 4 and so on by
adding each time 4 to p, (see �gure 17).

11

39

40

34

35

36

37

38

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

LS

L1

L2

H

H

H

O1

O2

B3

B2

O3

B1

Figure 17: An example of partitioning into levels of nodes of the
group (C), and numbers associated to levels with an example of n =
64 nodes

Bj =

√
n

2
− 2, ifj = 1.

Bj = Bj+1 − 1, otherwise.

(14)

Oj =

3
√
n

2
− 5, ifj = 1.

Oj = Bj+1 − 3, otherwise.

(15)

ξj,i =

2, LM(i− 1).

ξj,i−1 + 1, ifi = n.

ξj,i−1 −Bj , ifINDEXH(i− 1).

ξj,i−1 −Oj , ifL(i− 1) 6= j.

ξj,i−1 + 2, otherwise.

(16)

With ξj,i is the number of movements of node i that has
the level j. For the group (C'):

We partition the group (C') to two subgroups (C ′)A,
(C ′)C . The group (C ′)A contains the �rst N − n nodes.
The following n− n

2 − 1 nodes are in the group (C ′)C .

For the group (C ′)A:

κi =

{
2
√
n+ 1− (N − n), ifLM(i− 1).

κi−1 + 2, otherwise.
(17)

For the group (C ′)C :
the number of movements are predicted with the same in-

structions (numbers, and levels, and indexes) in the group
(C), with this new function ξj,i

ξj,i =

2 + (N − n), if(C ′)A(i− 1).

ξj,i−1 + 1, ifi = n.

ξj,i−1 −Bj , ifINDEXH(i− 1).

ξj,i−1 −Oj , ifL(i− 1) 6= j.

ξj,i−1 + 2, otherwise.

(18)

5.7. Generalization of the algorithm

Presented algorithm PASC is speci�c to a chain case
where nodes form initially a straight chain oriented toward
SE-NW directions. In this section we describe how the al-
gorithm can be generalized to any kind of initial chain
with any direction as shown in �gure 18. We start by
explaining how the initiator nodes is selected whatever is
the direction of the chain. For this end, the node with
only one neighbor situated either in SW, SE or E direc-
tion is chosen as an initiator node. For the other nodes,
every node in the chain can deduce the orientation of the
chain (one of the three cases represented in �gure 18) by
analyzing the orientation of its neighbors. For example,
if a node corresponds to an extremity node (one neigh-
bor) where the direct neighbor is on the E side, the node
deduces that the straight line is oriented E-W. The same
thing is happened on the middle nodes, which uses the
orientation of their two neighbors to determine the orien-
tation of the formed chain. Generally, every node after
the detection of the chain orientation, noted D-D, runs a
variant of the PASC algorithm depending of the orienta-
tion D ∈ {W,NW,NE}. The variant of PASC algorithm,
PASCD, represents an adaptation of the original PASC
algorithm (corresponding to PASCNW) to the two other
possible orientations with changing the directions in predi-
cates. For instance, if the initial chain is oriented NE-SW,
the algorithm PASCNE is called, and the square form
is realized using moves of type moveAroundbadv(u, Pw),
moveAroundwellv(u, Pw) and moveAroundwellv(u, Pnw).
The usage of these three predicates is described in �gure
19 that presents an example with nodes having the state
bottom.

Root

Figure 18: The three possible cases of a straight chain

6. Simulation and comparison

We have done the simulation with the declarative lan-
guage Meld that uses the DPRSim simulator. In our sim-

12

u1

Root Root Root

u1 u1

moveAroundbad w(u1, P)v
moveAround (u1, P)

v
moveAround w(u1, P)

vnw

v
v

v

wellwell

Figure 19: Moves adaptation in the case of NE-SW chain: dark nodes
are nodes having the state well

ulations the radius of the node is 1 mm4. We simulated
with a laptop with processor Intel(R) Core(Tm) i5, 2.53
Ghz with 4 GB of memory. The �gures 20 and 21 repre-
sent an example of execution of PASC.

Figure 20: An instance example of execution of PASC, the nodes
white-colored are the nodes having the state top, the nodes yellow-
colored have the state bottom, the nodes blue-colored are the nodes
having the state well, the nodes green-colored have the state int, and
the nodes red-colored have the state nper. We do not show all nodes
colored with well, otherwise all nodes will have the same color.

Figure 21: An example of the �nal execution of PASC

We denote in the �gures of simulation: PASC1 for the

values odd of n =
⌊√

N
⌋ ⌊√

N
⌋
, and PASC2 for the values

even of n, with N is the network size. Figure 26 compares
also the sub-squares (we call sub-squares the intermediate
squares generated before the �nal square) generated based

4The time of one movement round depends on the size (the di-
ameter) of the microrobot, as shown in section 4.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0 100 200 300 400 500 600 700 800 900 1000

T
ic

ks

Nodes

ASC
PASC

Figure 22: Execution time

on the time with simulation on 1000 nodes. The simulation
results come to agree our theoretical results. The nodes
applied the procedure of nodes partitioning to levels and
predicted with the sequences the number of movements for
each node, at the end of the algorithm each node compares
the results of prediction (with previous functions) to the
results calculated in execution. The �gure 22 represents
the execution time in ticks by the number of nodes; this �g-
ure compares the execution time of the algorithm proposed
in this paper to the one given in [35]. Figure 23 presents
the highest number of movements found in this paper com-

pared to the one in [35]. With, g(N) = (
√
n
2)+N−(n2)−1

and f(N) = (n+1
2) +N − n, where n =

⌊√
N
⌋ ⌊√

N
⌋
.

The �gure 24 represents the overall number of movements
in the networks corresponds to

(
∑

Zi,j) + (
∑

Ui,j) (19)

or to
(
∑

χj,i) + (
∑

ξj,i) (20)

The �gure 25 represents the average of the overall
number of movements corresponds to

(
∑
Zi,j) + (

∑
Ui,j)

n
(21)

or to
(
∑
χj,i) + (

∑
ξj,i)

n
(22)

The e�ects of parallelism appear well in the curve rep-
resenting the execution time of PASC compared to the
algorithm ASC in [35], as PASC makes two rectangles in
the same time. We see that whenever the network size in-
creases the di�erence increases dramatically. We remark in
�gure 23 that the number of movements in PASC is much
lower, which will increases the probability of lifetime of
nodes, therefore, the probability that the node continues
its task (its movements). The parallelism has improved

13

 0

 200

 400

 600

 800

 1000

 0 200 400 600 800 1000

N
um

be
r

of
 m

ov
em

en
ts

Nodes

f(N)
g(N)

z(N)=N
ASC

PASC1
PASC2

Figure 23: Highest number of movements

 0

 100000

 200000

 300000

 400000

 500000

 600000

 0 200 400 600 800 1000 1200

O
ve

ra
ll

nu
m

be
r

of
 m

ov
em

en
ts

Nodes

ASC
PASC

Figure 24: Overall number of movements in the network

the overall number of movements in the network, there-
fore the average of the overall number of movements in the
network. However, PASC needs ten states per node and
the algorithm ASC in [35] needs three states per node, but
the complexity remains bounded by a constant in both so-
lutions.
We see in �gure 26 that the sub-squares are obtained early
compared to the other protocol. This is explained with the
fact that in PASC the shape construction is in parallel, so
the algorithm takes less time to build each sub-square.

7. Conclusion

In this paper, we proposed an energy-aware parallel
self-recon�guration in MEMS microrobot networks. We
have shown the self-recon�guration parallelized possibil-
ity without prede�ned positions of the target shape, and
we presented an algorithm where nodes help each other
to achieve the self-recon�guration using an incrementally
process. Our algorithm ensures the connectivity of the
network throughout the execution time of the algorithm.
Furthermore, each node needs ten states to help and col-
laborate with neighbors; the algorithm is portable and

 0

 100

 200

 300

 400

 500

 600

 0 200 400 600 800 1000 1200

av
er

ag
e

of
 th

e
ov

er
al

l n
um

be
r

of
 m

ov
em

en
ts

Nodes

ASC
PASC

Figure 25: Average of the overall number of movements in the net-
work

5x5 10x10 15x15 5x5 20x20 25x25
0

500

1000

1500

2000

2500

3000

3500

Sub−Squares

T
ic

ks

ASC
PASC

Figure 26: Sub-squares generated based on the time with simulation
on 1000 nodes

standalone because it is independent of the map of the
target shape. Therefore, it needs a constant complexity of
memory, its execution time and highest numbers of move-
ments are much better than that proposed in the previous
solutions.

However, some open problems remain. We are study-
ing the conception of an energy-e�cient algorithm when
the starting form may be any connected shape, in which we
predict the loss of these previous characteristics described
in this paper (time, number of movements, complexity of
memory and message). Another questions remain, the
derivation of a fault tolerant algorithm for faulty MEMS
nodes is to be investigated. Another problem is to study
the e�ect of self-recon�guration on the permutation rout-
ing [36], where the objective will be to optimize the path
of a node to go to the correct position where it �nds its
correct data.

14

8. ACKNOWLEDGMENTS

This work is supported by the Labex ACTION pro-
gram (contract ANR-11-LABX-01-01), ANR/RGC (con-
tracts ANR-12-IS02-0004-01 and 3-ZG1F) and ANR (con-
tract ANR-2011-BS03-005). The authors wish to express
their appreciation to the anonymous reviewers for their
constructive comments.

References

[1] S. Hollar, A. Flynn, C. Bellew, and K.S.J. Pister, Solar powered
10mg silicon robot, In MEMS, Japan, January 2003.

[2] B. Warneke, M. Last, B. Leibowitz, and K.S.J Pister,K.S.J.,
2001, Smart Dust: Communicating with a Cubic-Millimeter
Computer,Computer Magazine, pp. 44-51, 2001.

[3] J. Bourgeois, J. Cao, M. Raynal, D. Dhoutaut, B. Piranda, E.
Dedu, A. Mostefaoui, and H. Mabed. Coordination and Com-
putation in distributed intelligent MEMS. In AINA 2013, 27th
IEEE Int. Conf. on Advanced Information Networking and Ap-
plications, Spain, p 118�123, 2013.

[4] M. P. Ashley-Rollman, S. C. Goldstein, P. Lee, T. C. Mowry,
and P. Pillai, Meld: A Declarative Approach to Programming
Ensembles,In Proceedings of the IEEE International Conference
on Intelligent Robots and Systems, October, 2007.

[5] http://smartblocks.univ-fcomte.fr/.
[6] http://today.duke.edu/2008/06/microrobots.html.
[7] M. P. Ashley-Rollman, P. Lee, S. C. Goldstein, Padmanabhan

Pillai, and Jason D. Campbell, A Language for Large Ensembles
of Independently Executing Nodes,In Proc. of the International
Conference on Logic Programming,July, 2009.

[8] S. Funiak, P. Pillai, M. P. Ashley-Rollman, J. D. Campbell,
and S. C. Goldstein, Distributed Localization of Modular Robot
Ensembles, In Proceedings of Robotics: Science and Systems,
June, 2008.

[9] R. Ravichandran, G. Gordon, and S. C. Goldstein: A Scalable
Distributed Algorithm for Shape Transformation in Multi-Robot
Systems, In Proceedings of the IEEE International Conference
on Intelligent Robots and Systems IROS '07, October, 2007.

[10] M. E. Karagozler, A. Thaker, S. C. Goldstein, D. S. Ricketts,
Electrostatic Actuation and Control of Micro Robots Using a
Post-Processed High-Voltage SOI CMOS Chip, IEEE Interna-
tional Symposium on Circuits and Systems, May 2011.

[11] S. Jeon, C. Ji, Randomized Distributed Con�guration Man-
agement of Wireless Networks: Multi-layer Markov Random
Fields and Near-Optimality CoRR abs/0809.1916, 2008.

[12] K.Stoy, R.Nagpal, Self-recon�guration using Directed Growth,
7th International Symposium on Distributed Autonomous
Robotic Systems (DARs), France, June23-25, 2004.

[13] M. Mamei, A. Roli, F. Zambonelli, Emergence and Control of
Macro Spatial Structures in Perturbed Cellular Automata, and
Implications for Pervasive Computing Systems, IEEE Transac-
tions on Systems, Man, and Cybernetics, 36(5), May 2005.

[14] M. Mamei, M. Vasirani, F. Zambonelli, Experiments of Morpho-
genesis in Swarms of Simple Mobile Robots, Journal of Applied
Arti�cial Intelligence, 8(9-10):903-919, Oct. 2004.

[15] F. Zambonelli, M.P. Gleizes, M. Mamei, R. Tolksdorf, Spray
Computers: Explorations in Self-Organization, Journal of Per-
vasive and Mobile Computing, Elsevier, Vol. 1, p. 1-20, 2005.

[16] F. Kribi, P. Minet, A. Laouiti, Redeploying mobile wireless
sensor networks with virtual forces, IFIP Wireless Days, Paris,
France, December 2009.

[17] E. Juergen and L. Hermann and D. Falko and F. Hannes,
On the Feasibility of Mass-Spring-Relaxation for Simple Self-
Deployment, 8th IEEE/ACM International Conference on Dis-
tributed Computing in Sensor Systems,203-208, China,2012.

[18] R. Soua, L. Saidane, P. Minet, Sensors deployment enhance-
ment by a mobile robot in wireless sensor networks, IEEE ICN
2010, Les Menuires, France, April 2010.

[19] K. Stoy, R. Nagpal,Self-Repair Through Scale Independent Self-
Recon�guration, Proceedings of 2004 IEEE/RSJ International
Conference on Intelligent Robotsn and systems, japan, 2004.

[20] K. Kotay, D. Rus, M. Vona, and C. McGray, The Self-
recon�guring Robotic Molecule,in Proceedings of IEEE Interna-
tional Conference on Robotics and Automation, Leuven, 1998.*

[21] S. Wong and J. Walter, Deterministic Distributed Algorithm
for Self-Recon�guration of Modular Robots from Arbitrary to
Straight Chain Con�gurations, IEEE International Conference
on Robotics and Automation, Germany, May 2013

[22] D. Rus, M. Vona, Crystalline robots: Self-recon�guration with
compressible unit modules,Autonomous Robots 10(1), 107-124,
2001.

[23] P. White, V. Zykov, J. C. Bongard, H. Lipson, Three dimen-
sional stochastic recon�guration of modular robots In: Proceed-
ings of Robotics Science and Systems, pp. 161-168. MIT Press,
Cambridge , 2005

[24] C. Jones, M. J. Mataric, From local to global behavior in in-
telligent self-assembly.In: Proceedings of the 2003 IEEE Inter-
national Conference on Robotics and Automation, ICRA 2003,
vol. 1, pp. 721-726, Los Alamitos, 2003.

[25] Z. J. Butler, K. Kotay, D. Rus, K. Tomita,Generic decentralized
control for lattice-based self-recon�gurable robots, International
Journal of Robotics Research 23(9):919-937, 2004

[26] W. Shen, P. Will and A. Galstyan, Hormone-inspired self-
organization and distributed control of robotic swarms. Au-
tonomous Robots 17(1), 93-105, 2004.

[27] H. Mabed, H. Lakhlef, J. Bourgeois Fully Distributed Re-
deployement Algorithm for Multi-Robot System.In: 6th Int.
Conf. on NETwork Games, COntrol and OPtimization, Net-
GCooP'12. IEEE Computer Society, Avignon, France, 2012.

[28] K. Stoy, Using cellular automata and gradients to control
self-recon�guration, Robotics and Autonomous Systems 54(2),
135-141, 2006.

[29] H. Bojinov, A. Casal, T. Hogg, Emergent structures in mod-
ular self-recon�gurable robots, Proc. of the IEEE International
Conference on Robotics and Automation, vol. 2, pp. 1734-1741,
Los Alamitos, 2000.

[30] J. Walter, J. Welch, and N. Amato, Distributed recon�gura-
tion of metamorphic robot chains, Springer-Verlag Journal on
Distributed Computing, vol. 17, pp. 171-189, 2004.

[31] J. Walter, B. Tsai, and N. Amato, Algorithms for fast concur-
rent recon�guration of hexagonal metamorphic robots, IEEE
Transactions on Robotics, vol. 21, no. 4, pp. 621-631, 2005.

[32] T. Larkworthy and S. Ramamoorthy, An e�cient algorithm
for self-recon�guration planning in a modular robot, IEEE Intl.
Conf. Robotics and Automation, 2010, pp. 5139-5146.

[33] D. Dewey, S. S. Srinivasa, M. P. Ashley-Rollman, M. D. Rosa, P.
Pillai, T. C. Mowry, J. D. Campbell, and S. C. Goldstein, Gen-
eralizing Metamodules to Simplify Planning in Modular Robotic
Systems, In Proceedings of IEEE/RSJ 2008 International Con-
ference on Intelligent Robots and Systems, September, 2008

[34] M. D. Rosa, S. C. Goldstein, P. Lee, J. D. Campbell, and P.
Pillai, Programming Modular Robots with Locally Distributed
Predicates,In Proceedings of the IEEE International Conference
on Robotics and Automation, 2008.

[35] H. Lakhlef, H. Mabed, J. Bourgeois, Distributed and E�cient
Algorithm for Self-recon�guration of MEMS Microrobots, in
the 28th ACM Symposium On Applied Computing, Coimbra,
Portugal, March 2013.

[36] H. Lakhlef, J. F. Myoupo, Secure permutation routing protocol
in multi-hop wireess sensor networks, International Conference
on Security and Management (SAM'11), pp. 691-696, 2011.

[37] Lakhlef H, et al. An Energy and Memory-E�cient Distributed
Self-recon�guration for Modular Sensor/Robot Network, Jour-
nal of Supercomputing (2014), DOI 10.1007/s11227-014-1196-8

[38] Lakhlef H, et al. Optimization of the logical topology for mobile
MEMS networks, journal of Network and Computer Applica-
tions (2014), shttp://dx.doi.org/10.1016/j.jnca.2014.02.014

[39] The physical rendering simulator (dprsim),
http://www.pittsburgh. intel-research.net/dprweb.

15

