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Abstract—Routing algorithms for wireless sensor networks
are often evaluated through simulations in order to measure
the lifetime of the network and the efficiency of the algorithm
regarding energy consumption. Some particular communication
models with their parameters’ set are used to implement the
simulation and are rarely identical. We exhibit two kinds of
performance sensitivity regarding simulations: the first one
concerns the communication model itself and the second one
is generated by the parameters of the communication model. We
provide a generalized model that covers very different situations
and we state the routing problem as a linear programming
problem in order to measure the absolute efficiency of the
algorithms with different models and parameter values. Our
experiments run using two routing protocols, LEACH and Flow
Augmentation, showed that different models or parameters can
lead to significantly different results and conclusions. We tried
to characterize the origin of the performance sensitivity in each
case.

I. INTRODUCTION

A wireless sensor network is a network composed of sensor
nodes communicating wirelessly. A node can get a measure
from its sensor (temperature, pressure, etc) and send it through
its wireless communication device. The node communicates
with all the nodes that are in the range of its wireless
communication device, forming a graph. A source node is a
node that generates information while a sink node is a node
that gathers information.

The main challenge in wireless sensor networks is energy
saving as the nodes generally work with a limited battery. The
major part of energy consumption comes from communica-
tions, when the nodes send and also receive messages. So the
challenge is to optimize the communication scheme in order to
save energy and hence maximize the lifetime of the network.

Routing algorithms for wireless sensor networks have been
designed to compute paths from sources to sinks while mini-
mizing energy consumption. They are often evaluated through
simulations in order to measure the lifetime of the network and
the efficiency of the algorithm regarding energy consumption.
The models and the parameters for communications are often
fixed once and for all and are rarely discussed.

We show that different models and parameters used within
the same algorithm can lead to different results and conclu-
sions. We exhibit two sources for the performance sensitivity
of routing algorithms. The first one concerns the communi-
cation model itself, especially the messages that are taken

into account in the energy consumption. The second one is
generated by the parameters of the communication model.

In section II, we analyze different communication models
and parameters of the literature. Then, in section III, we
provide a generalized model for communications that can be
reduced to cover a wide range of situations. We state the
routing problem as a linear programming problem in order
to measure the absolute efficiency of the algorithms with
different models and parameters. In section IV, we run some
experiments on two different routing algorithms, LEACH
[1], a cluster based protocol, and Flow Augmentation [2], a
shortest-path based algorithm, in different models to show the
performance sensitivity of the algorithms.

II. MODELS AND PARAMETERS FROM PREVIOUS WORKS

In this section, we analyze previous works and discuss a set
of models and a set of parameters found in the literature.

A. Communication Models

Due to wireless communications, when a node sends a
message all its neighbors may receive it, whereas only one
of them is the real recipient. We call unintended messages the
messages that are received at a node when the node is not the
real recipient. Overhearing can alter the relative efficiency of
the algorithm [3].

Many previous works state the routing problem in wireless
sensor networks as a linear programming problem. Then, they
generally propose an algorithm to find a solution as close as
possible to the optimal solution. These works differ in the
model they use.

We define three energy models for the communications, that
cover a wide range of situations regarding the MAC layer and
the requirements of applications:
• Sender-Only model: this model only considers the energy

for sending messages. It is the simplest possible model.
The energy for receiving is set to 0, for either intended
or unintended messages.

• Sender-Receiver model: this model considers the en-
ergy for sending messages and for receiving intended
messages but not the energy for receiving unintended
messages.

• Neighborhood model: this model is the most complete
as it considers the energy for sending and receiving both



types of messages, intended or unintended. We will use
this model that can easily be reduced to the previous ones.

Sankar and Liu [4] use the Sender-Only model. They give
a local-control flow algorithm with a performance guarantee
that works for static and slowly varying networks. Madan, Luo
and Lall [5] give a distributed algorithm that approximates the
linear programming problem and converges linearly. They also
use a Sender-Only model and assume the scheduling of the
messages involves no interference. Madan and Lall [6] later
give two distributed subgradient algorithms to solve the same
problem.

Chang and Tassiulas [2] consider the Sender-Receiver
model. They propose an algorithm called Flow Augmentation
(FA), based on table-driven routing, that has good performance
in this model. We have implemented this algorithm in our
experiments to make a comparison with their results but using
different models and parameters. Xue, Cui and Nahrstedt [7]
propose a non-linear utility-based optimization formulation,
and derive a fully distributed routing algorithm. They use the
same Sender-Receiver model as [2].

Park and Sahni [8] use a Sender-Only model. They prove
that the problem is NP-Hard and develop an online heuristic
for routing.

B. Parameters for Energy Consumption

The energy consumption for the sending of a message by
node i to node j involves two parts: the energy spent by node
i for transmitting, noted eTij , and the energy spent by node j
for receiving, noted eRij . Heinzelman et al. [1] provided a first
order radio model that has been widely used since then:{

eTij = λ× (eT + εampd
α
ij)

eRij = λ× eR

where λ is the number of bits in the message, eT and eR

is the energy dissipated in the circuitry, εamp is the transmit
amplifier ratio, dij is the distance between node i and node j
and α depends on the channel model (α = 2 for free space
and α = 4 for multipath). In their original publication, they
give a set of parameters for this model: eT = 50 nJ/bit, eR =
50 nJ/bit, εamp = 100 pJ/bit/m2 and α = 2.

Later, this model has been used in [2] with a different set
of parameters which differs from [1] in two ways.

First, the energy for receiving eR is set to 150nJ/bit whereas
it is set to 50nJ/bit in [1]. This implies that the energy for
receiving is always higher than the energy for sending if d <
5m. This difference is justified in [2] by the complexity of the
receiving circuitry. Santos et al [9] show that this assumption
is not always true: for example, MicaZ consumes more when
receiving (factor: 1.5) whereas Mica2 consumes more when
sending (factor: 2).

Second, the exponent α in the energy for sending has been
set to 4 instead of 2. These values are classical in the literature:
2 is used for free spaces and 4 is used in case of multipath
reflections. But in this case, the value of εamp should also have
changed, as it is expressed in pJ/bit/m2 in [1]. Heinzelman
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Fig. 1. Comparison of energy for sending eTij with different parameters
detailed in table I

TABLE I
PARAMETERS USED FOR THE FIRST ORDER RADIO MODEL IN PREVIOUS

WORKS

α εamp eT eR Ref.
(A) 4 100pJ/bit/m4 50nJ/bit 150nJ/bit [2]
(B) 2 100pJ/bit/m2 50nJ/bit 50nJ/bit [1]
(C) 2 10pJ/bit/m2 50nJ/bit 50nJ/bit [10]
(D) 4 0.0013pJ/bit/m4 50nJ/bit 50nJ/bit [10]

et al. give a mixed model in [10], using a free space model
(α = 2) for distances smaller than d0, with εfs = 10pJ/bit/m2

and a multipath model (α = 4) for distances greater than d0,
with εmp = 0.0013pJ/bit/m4.

Figure 1 shows the energy for sending with these different
parameters that are detailed in table I, relative to the distance.

III. GENERAL MODEL AND PROBLEM DEFINITION

In this section, we provide a generalized model for com-
munications that can be reduced to cover a wide range of
situations. As we change the models and parameter values
in the experiments, we need an absolute measure of the
performance of the algorithms. We can not compare the results
in different models or with different parameter values. So, we
choose to measure the performance of the routing algorithms
against the optimal solution given by the linear programming
problem that is described in this section.

A. Model of Wireless Sensor Networks

A wireless sensor network is modeled by a directed graph
G = (V,E), with V the set of vertices representing the sensor
nodes, and E the set of edges representing the link between
nodes, i.e. if i and j are two nodes in V , (i, j) ∈ E means
that i can send a message to j, or j is in the radio range of
i. The reciprocal is not necessarily true. dij is the euclidian
distance between i and j.

The set of nodes Ni that can be reached by i is called
the neighborhood of i. Ni = {j ∈ V, (i, j) ∈ E}. We also
define N

(j)+
i , respectively N

(j)−
i , the set of nodes in the

neighborhood of i that are farther, respectively closer, than
node j. So we have: N (j)+

i = {k ∈ Ni, dik ≥ dij} and
N

(j)−
i = {k ∈ Ni, dik ≤ dij}.



For the communication model, we use the Neighborhood
model which is the most general in the sensor network context.
Moreover, in order to compute the optimal solution, we
consider that a node always uses the exact necessary amount
of energy to reach its expected destination. When a message
is sent from i to j, with j the intended destination of the
message, i consumes the exact energy for sending the message
to distance dij , and all the nodes in N

(j)−
i consume some

energy for receiving this message. This is a generalization of
previous models that can be reduced to cover weaker models.

We suppose that node i has an initial amount of energy Ei.
It consumes an energy eTij for transmitting a message to node
j and eRki for receiving a message from node k, either intended
or unintended.

B. Maximum Lifetime Routing Problem

Now that we have set the model, we define the problem by
extending previous definitions ([2], [6]) in the Neighborhood
model.

We note O, respectively I , the set of source nodes, respec-
tively sink nodes, in the network.

We define the variables xij as the number of messages sent
by i where j is the intended destination of the message. Node
j will transmit the message to another node unless it is a sink
node, i.e. j ∈ I . A variable xij is defined for each edge in the
graph and is an integer variable.

We also define the variable M as the number of messages
sent by any source node. This number does not depend on the
source node as we target a uniform knowledge of the area.
We define Mj , j ∈ I , the number of messages received by the
sink node j.

The goal is to maximize M with the following constraints.
The first constraint is the conservation of messages: all the

messages received by every node should be transmitted, i.e.
the set of incoming messages should be equal to the set of
outgoing messages. For every node i that is not a sink or a
source:

∀i 6∈ O ∪ I,
∑

k,i∈Nk

xki =
∑
k∈Ni

xik (1)

In addition, for every node i that is a source, the M
messages it generates are transmitted:

∀i ∈ O,
∑

k,i∈Nk

xki +M =
∑
k∈Ni

xik (2)

In addition, for every node i that is a sink, Mi messages
are gathered.

∀i ∈ I,
∑

k,i∈Nk

xki =
∑
k∈Ni

xik +Mi (3)

Then, the second constraint is the consumed energy: a node
i can not consume more energy than its initial energy Ei. Node
i consumes energy ETi when it transmits messages:

ETi =
∑
k∈Ni

xike
T
ik (4)

Node i consumes energy ERi when it receives a message
that it must forward, and when it receives unintended messages
because it is in the range of the emitter, but it is not the
destination:

ERi =
∑

k,i∈Nk

xkie
R
ki︸ ︷︷ ︸

i is the destination

+
∑

k,i∈Nk

∑
l∈N(i)+

k \{i}

xkle
R
ki

︸ ︷︷ ︸
i is not the destination

(5)

We can combine both terms of equation (5) and we obtain:

ERi =
∑

k,i∈Nk

∑
l∈N(i)+

k

xkle
R
ki (6)

And the constraint on energy is ETi + ERi ≤ Ei:

∀i ∈ V,
∑
k∈Ni

xike
T
ik +

∑
k,i∈Nk

∑
l∈N(i)+

k

xkle
R
ki ≤ Ei (7)

Then, we must set an additional constraint on the message
delivery. Every message sent by a source should reach a sink.
If s is the number of sources:

s×M =
∑
j∈I

Mj (8)

Finally, we set the objective to the maximization of M .
The problem of maximum lifetime routing using the Neigh-

borhood model for energy consumption is NP-Hard. Trivially,
it is a generalization of the problem in the Sender-Only model
which has been proved NP-Hard by Park et al. [8].

IV. EXPERIMENTS AND ANALYSIS

In this section, we present two experimental scenarios from
previous works. First, in section IV-A, we reproduce the
experiments in [2], and especially the Flow Augmentation
algorithm. This algorithm is a heuristic for routing messages
that shows good performance in the Sender-Receiver model.
It is interesting to compare the results of these experiments
in the Neighborhood model and with different parameters.
Second, in section IV-B, we consider the well-known LEACH
protocol [1], [10] and compute the efficiency of the protocol,
compared to the optimal solution using the Neighborhood
model.

For these experiments, we have developed a simulator based
on the Boost Graph Library (BGL) for the network models
and graph algorithms, and the GNU Linear Programming
Kit (GLPK) for the resolution of integer linear programming
problems. For every experiment, we ran our simulator on
200 randomly chosen networks. When we obtained a solution
to the integer linear programming problem, we ran each
algorithm and computed the performance relatively to the
optimal solution. Generally, more than 160 networks fulfilled
the condition. Then average values and worst case values
were computed from all the values and are represented in the
following figures.
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Fig. 2. Average and worse performance of FA(1,x,x) relative to the optimal
solution in the Sender-Receiver model with eR = 150nJ/bit, α = 4 and
εamp = 100pJ/bit/m4

A. Flow Augmentation Algorithm

1) Description of the Algorithm: In this section, we remind
concisely the Flow Augmentation algorithm and the experi-
ment as it can be found in [2].

The Flow Augmentation (FA) algorithm computes the short-
est paths from every source to a sink and then routes an amount
of λ bits from sources to sinks, until a node runs out of energy.
The cost Cij of link (i, j) to compute the shortest paths is
given by (Eq. (10) in [2]):

Cij = (eTij)
x1
Ex3
i

Ex2
i

+ (eRij)
x1
Ex3
j

Ex2
j

where x1, x2, x3 are parameters of the FA algorithm, and Ei,
respectively Ej , is the residual energy on node i, respectively
j. eTij and eRij are computed with the set of parameters (A) in
table I.

The results presented in [2] with different sets of
(x1, x2, x3) show that the best configuration is x1 = 1 and
x2 = x3 = x. So we only consider this set of parameters and
compute FA(1, x, x) for 0 ≤ x < 40.

The experiment is done on a network composed of 20
nodes, randomly distributed in a square of 50m × 50m.
The connectivity model is a Unit Disk Graph [11], i.e. the
neighborhood of i is defined by all the nodes that are in the
disk of radius d = 25m around i. This model is widespread
for evaluating applications in wireless sensor networks. The
initial energy Ei of node i is 10J if i is even and 20J if i
is odd. In the experiment, there is only one source, chosen
randomly among the nodes and one sink located at (45, 45).

We consider messages with a size of λ bits. λ = 5000 in the
reference experiment which is quite big for a single message
but necessary for the comparison.

2) First Results: Figure 2 shows the normalized number of
messages, in average and worst case, in the Sender-Receiver
model with the original set of parameters. This figure can be
compared to figure 12 in [2] as it is the same experiment
with the same parameters. We observe a great similarity in the
results which validates our simulator and our implementation.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  5  10  15  20  25  30  35  40

M
e
ss

a
g

e
s

x

Average and Worst Case Performance of FA(1,x,x)

average
worst

Fig. 3. Average and worse performance of FA(1,x,x) relative to the optimal
solution in the Neighborhood model with eR = 150nJ/bit, α = 4 and εamp =
100pJ/bit/m4
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Fig. 4. Average and worse performance of FA(1,x,x) relative to the optimal
solution in the Neighborhood model with eR = 50nJ/bit, α = 2 and εamp =
100pJ/bit/m2

If we change the model to the Neighborhood model, we
have quite similar results. Figure 3 shows that even if the
average performance is roughly the same, the worst case goes
down to less than 80% of the optimal solution, for x ≥ 6. In
the Sender-Receiver, the worst case was more than 90% of the
optimal solution, for x ≥ 9.

As a conclusion for these first results, we can say that the
FA algorithm has a worse performance in the Neighborhood
model than in the Sender-Receiver model. But the difference
does not seem to be significant and the algorithm is very close
to the optimal solution in average. Only the worst case differs.

In this case the algorithm, in average, is not sensitive to the
model. This can be explained by the nature of the algorithm.
The computation of the link cost C(i, j) takes into account
the energy of both the sending and receiving nodes. So, even
if the FA algorithm does not take unintended messages into
account, it adapts to the energy that has already been spent by
previous messages every time the shortest paths are computed.

3) Change of Parameter Values: Then, we keep the Neigh-
borhood model and we change the parameters from the set
of parameters (A) to the set of parameters (B) in table I. This
implies two differences: α = 2 instead of 4 and eR = 50nJ/bit
instead of 150.



Figure 4 shows a significant difference from the previous
results. The number of messages delivered by the FA algorithm
is only 80% of the number of messages of the optimal solution
on average. The worst case is around 50% of the optimal
solution. This shows that the FA algorithm is very sensitive to
the energy parameters.

The reason for such a change in the results is in the
parameters. With the set of parameters (A), we can see on
figure 1 that the energy grows quickly with respect to the
distance. So the computation of shortest paths will give priority
to short distances and close nodes. The optimal solution has to
do the same for the same reason. So the solutions are similar
and the algorithm has a good behavior.

But with the set of parameters (B), energy spent in
communication towards a distant node is only up to three
times greater than the energy spent in communication with
a close node, within the maximum communication range of
the sensor, which is 25m. This gives more opportunities for
the computation of the optimal solution. The FA algorithm
will still give priority to short distances. This has two bad
effects. Multi-hop communication becomes more costly than
direct communication, whatever the communication model,
when the energy spent in transmission increases slowly with
the distance between the communicating nodes. Moreover,
multihop communication tends to increase the number of
unintended messages in the Neighborhood model. These bad
effects significantly reduce the lifetime of the network.

As a conclusion with this whole experiment, we conclude
that the FA algorithm and probably all routing algorithms
based on shortest paths are very sensitive to the energy
parameters. The energy model has small influence on the
results. It has an impact on the worst case, but not really on
the average case. In the next section, we exhibit an example
where the energy model has a great impact on the results.

B. LEACH Protocol

1) Description of the Protocol: In this section, we briefly
describe the LEACH protocol as it can be found in [1].

The LEACH protocol is a well-known dynamic clustering
protocol designed for wireless sensor networks [1], [10].

The protocol is divided in several rounds, and in each round,
new cluster heads are defined and new clusters are formed. A
percentage P of cluster-heads is defined before the protocol
begins. Then, a node becomes a cluster-head at round r if it
has not been a cluster head in the (r mod 1

P ) rounds before
and with a probability:

P

1− P × (r mod 1
P )

This ensures that each node becomes a cluster head every
1
P rounds. Then, each cluster-head advertises its neighbors
and each node chooses its preferred cluster-head, regarding
the strength of the received signal from the different cluster-
heads. Then, each node informs the chosen cluster-head that
it belongs to its cluster.
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Fig. 5. Average and worst performance of LEACH relative to the optimal
solution in the Sender-Receiver model

Finally, messages are sent from every node to its cluster-
head and then from the cluster-head to the sink. This scheme
can be extended to hierarchical clustering but we will only use
this simple version.

We use similar parameters as in the original experiment.
The network is composed of 50 nodes (instead of 100 in the
original experiment [1]), randomly distributed in a square of
100m × 100m, with a percentage P from 0 to 0.5 of cluster-
heads in each round. The length of messages is λ = 2000 bits.
The other parameters are eT = eR = 50nJ/bit and εamp =
100pJ/bit/m2.

As stated previously, we focus on the number of messages
that are delivered. We only take the routed messages into
account, not the messages dedicated to the protocol i.e. we
ignore the overhead of the cluster set-up phase.

2) Results: In the original experiment, the sink is located
at (50, 200), i.e. 100m far from the nearest node. We did not
succeed in reproducing this experiment as we could not solve
the integer linear programming problem in a reasonable time.
This is explained by the number of variables of the problem.
The number of variables is proportional to the number of links.
In the previous case, the number of links was limited due to
the limited range of the nodes. In this experiment, the range is
not limited so the graph is complete i.e. the number of directed
edges is n(n− 1) if n is the number of nodes.

Moreover, as the sink is far, most messages sent by the
nodes use a multi-hop path to reach the sink. The number
of possible multi-hop paths is exponential relatively to the
number of links. As the problem is NP-Hard, it seems that
these parameters are not really adapted to a possible resolution
of the optimal solution.

Therefore we placed the sink at (90, 90) so that only a few
messages need to use a multi-hop path to reach the sink, those
that are sent by the farthest nodes. This way, we can get an
optimal solution to be compared to the result given by LEACH.
We ran this experiment in the Sender-Receiver model and in
the Neighborhood model.

Figure 5 shows the number of messages using the Sender-
Receiver model in LEACH relative to the optimal solution.
We clearly see that LEACH achieves the optimal performance
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Fig. 6. Average and worst performance of LEACH relative to the optimal
solution in the Neighborhood model

in any case, for any value of the P parameter.

Figure 6 is the same experiment using the Neighborhood
model. In this case, the average number of messages is
between 80% and 90% of the optimal solution and the worst
case is around 70% of the optimal solution. This time, the
difference is very significant on many points. First, the best
case is not always the optimal solution. It can go down to 90%
of the optimal solution for P = 0.05. Second, the average case
and the worst case are far from the optimal solution whereas
the same algorithm achieved the optimal solution in any case
in the Sender-Receiver model.

These results can be explained by the clustering nature of
the algorithm. In the Sender-Receiver model, the clustering
achieves a good performance as expected by the original
results. But clustering is not well-suited to the Neighborhood
model. In this case, the optimal solution will try to minimize
the number of unintended messages whereas the clustering
algorithm does not take these messages into account. The
assumption that the energy consumption is better if the mes-
sage goes through a cluster head does not always hold in the
Neighborhood model because of the unintended messages.

We can also explain the aspect of the plot. For very small
P , most often, there are no cluster heads so the performance
is still good. There are only a few nodes that would need a
hop to improve the whole performance. When P increases
up to 0.05, which means there are 2.5 cluster heads on
average, the number of cluster heads in each round is rarely
0, and the number of unintended messages increases due to
the retransmission of the cluster head, which decreases the
performance.

Then, for P > 0.05, the number of cluster heads grows so
much that the cluster heads tend to be closer to the nodes of
their cluster. So normal nodes send fewer unintended messages
to their neighbors, and the performance increases.

We conclude from this experiment that LEACH and proba-
bly all clustering algorithms are very sensitive to the commu-
nication model.

V. CONCLUSION

We showed that the performance of routing algorithms
can be very sensitive to the communication model and the
energy parameters. We provided a generalized model that can
be reduced to take into account a wide range of situations
regarding the type of applications or the quality of the MAC
layer. We extended previous optimization problem formulation
for this new model.

We evaluated the Flow Augmentation algorithm [2] and
the LEACH protocol [1] and showed that the model or the
parameters can have a significant impact on the results. More
precisely, our analysis conclude that routing algorithms that are
based on the computation of shortest paths may be sensitive
to the energy parameters whereas routing algorithms that are
based on clustering may be sensitive to the communication
model.

These experiments could be extended to other algorithms
and protocols to confirm this analysis. It could also be in-
teresting to adapt some algorithms in order to improve their
performance in any model and for any parameters.
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