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ABSTRACT
To optimize the delivery in lung radiation therapy, a better understanding of the tumor motion is required.

On the one hand to have a better tumor-targeting efficiency, and on the other hand to avoid as much as
possible normal tissues. The 4D-CT allows to quantify tumor motion, but due to artifacts it introduces

biases and errors in tumor localization. Despite of this disadvantage, we propose a method to simulate lung
motion based on data provided by the 4D-CT for several patients. To reduce uncertainties introduced by

the 4D-CT scan, we conveniently treated data using artificial neural networks. More precisely, our approach

consists in a data augmentation technique. The data resulting from this processing step are then used to
build a training set for another artificial neural network that learns the lung motion. To improve the learning

accuracy, we have studied the number of phases required to precisely describe the displacement of each point.

Thus, from 1118 points scattered across 5 patients and defined over 8 or 10 phases, we obtained 5800 points
of 50 phases. After training, the network is used to compute the positions of 40 points from five other patients

on 10 phases. These points allow to quantify the prediction performance. In comparison with the original

data, the ones issued from our treatment process provide a significant increase of the prediction accuracy: an
average improvement of 16% can be observed. The motion computed for several points by the neural network
that has learnt the lung one exhibits an hysteresis near the one given by the 4D-CT, with an error smaller

than 1 mm in the cranio-caudal axis.
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INTRODUCTION

The aim of radiation therapy is to provide the max-

imum radiation dose to a tumor, while delivering the

lowest dose possible to the surrounding normal tissues.

In case of lung tumors it is crucial to be able to track

them precisely, otherwise the respiratory motion will be

a major problem for the treatment process. A modality

that allows to follow the position of lung tumors is 4D-

CT imaging, nevertheless motion artifacts and other

biases can degrade the acquired data. Today, 4D-CT

has been adopted for routine clinical use; therefore, we

propose a method based on these data. Note that we

do not want to find the locations given by the 4D-CT,

since the motion artifacts would be still present, but

we rather want a smooth realistic and regular motion

simulation.

The fourth dimension in a scanner enables temporal

synchronization of respiratory acquisition. The quality

of the resulting images depends mainly on two parame-

ters: the period of the breathing for a patient, which can

greatly vary due to the stressful situation; the rotation

time of the tube that can range from 0.5 to 1 second,
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leading to kinetic blur. Usually, for each table position,

the respiratory cycle is represented in 10 uniformly dis-

tributed “phases”, each phase corresponding to an in-

stant in the cycle. These images are then combined to

produce the final scan, more precisely the different im-

ages corresponding to a same phase are concatenated

together to form a single image. Thus, several respira-

tory cycles are needed and the slices corresponding to

a 3D image at a specific phase might not belong to it.

The phase values range from 0% to 100%, where 0%

and 50% represent respectively the maximum exhala-

tion and inspiration. Furthermore, since the respiratory

cycle is periodic, 0% and 100% define the same phase.

Figure 1 shows the respiratory signal measured by

RPM system (Varian) during the acquisition of a 4D-

CT scan. The moments of data acquisition (beam on),

the variations in the breathing period, and the phases

calculated by RPM software are determined using the

RPM respiration data file. The successive upper dots

on the respiratory signal identify the 0% phases, while

the lower ones correspond to the 50% phases. The fig-

ure also describes how the image for the 50% phase is

built by concatenation of images obtained on several

respiratory periods.

Fig. 1 4D-CT imaging: reconstruction process of a 3D CT im-

age at a discrete phase (50% in this example) for a patient ac-
cording to its respiratory signal

The analysis of Fig. 1 shows that the patient’s abil-

ity to achieve reproducible respiratory signals has a

great impact on the temporal distribution of the phases.

Thus, although phases 51, 59, and 44% are close to

the target phase 50%, the corresponding amplitudes

recorded by the RPM system are very different (a gap of

more than 1.25 cm, whereas the average respiratory am-

plitude is 1.5 cm). These differences explain the kinetic

artifacts observed on the superior/inferior axis, they are

easily detected by the discontinuity in the anatomical

structures being imaged.

As an illustration, the analysis of 50 4D-CT from

different patients, presented in Ref. 19, has highlighted

the presence of artifacts around the diaphragm or heart

in 90% of the images. The impact on the measure of the

tumor has been determined by Sarker et al. 13. Indeed,

they established correlated variations of lung volume

and discontinuities in the acquired 4D respiratory sig-

nal. Furthermore, using several maximal inspirations,

they have measured for the average position of the cen-

ter of the tumor mass a standard-deviation of 1 cm for a

difference of 59.7% in lung volume. In fact, the smaller

the tumor dimensions, the larger the error on the posi-

tion of its center.

Kinetic blurs appear in the axial plane, they are

characterized by a poor definition of anatomical struc-

tures. This kind of artifacts is not negligible, since Pers-

son et al. 12 observed that, in addition to kinetic arti-

facts, blurring affects GTV (Gross Tumor Volume) de-

lineation. Indeed, the authors have shown that the vari-

ation in GTV size throughout respiratory phases results

from partial volume effects caused by kinetic blur due

to large tumor motion. Together, kinetic artifacts and

blurs lead to contouring error of the GTV, with size

differences up to 90%.

Consequently, although 4D-CT is a commonly used

modality, it leads to artifacted images because it fails

to adapt to respiratory variations (period and magni-

tude), and also requires some time to record the data.

Moreover, the spatial resolution is another limiting fac-

tor for the selection of anatomical landmarks. Hence, in

spite of the fact that 4D-CT provides a measure, we can

and we want to improve the quality and the accuracy

of the motion information for each patient. This paper

presents an original approach for real-time simulation

of lung motion using a neural network. It focuses on the

data processing method based on additional neural net-

works to improve the quality of the 4D-CT data used

to learn the motion.

To simulate the lung motion, various approaches

have already been proposed. Sarut et al. 14 and Vil-

lard 17 designed an algorithm based on continuum me-

chanics formalism. They studied the lung deformations

induced by the diaphragm and the rib-cage, and ob-

tained a subvoxel accuracy. However, as they build a

three dimensional image using a model defined by many

complex equations, their method has a high computa-

tional cost. Furthermore, some exams are required in

order to carefully measure all tissue elasticity parame-

ters. This approach can give an accurate prediction of
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the lung motion, but is not well suited for routine clin-

ical use. Boldea et al. 2,3 simulated a 4D scan during

a respiratory cycle using two scanner images: one at

the very beginning and another one at the very end of

the inspiration. Nevertheless both precision and com-

putation time are very similar to the former methods.

The approach proposed by Hostettler et al. 8, which is

based both on reference marks on patient skin and one

scan, is interesting since it permit a low-dose exposition.

Unfortunately, it provides a low accuracy: 5 to 7 mm

whatever the voxel dimensions are.

Studies also focused on the determination of the hys-

teresis of lung motion. In fact, a respiratory model that

exhibits an hysteretic behavior of lung would allow to

improve the accuracy in radiation therapy. Lung tu-

mors are also prone to hysteresis 15,18, hence this phe-

nomenon must be considered during the treatments. In

Ref. 11, a respiratory motion simulator taking into ac-

count this useful information has been built. It offers

5 degrees of freedom: tissues location at a specific phase,

the tidal volume and airflow according to the breath-

ing phase, and like the methods described previously

uses 4D-CT scans. The gap between the measured and

predicted points ranges from 0.75 to 1.55 mm.

Data augmentation techniques have already been

used in many domains. Indeed, they represent an in-

valuable tool for Bayesian statistics, particularly to

investigate posterior distribution using Markov chain

Monte Carlo methods 7. An expectation-maximization

algorithm can also benefit from data augmentation 5,20.

The relevance of increasing a limited data set in the con-

text of Artificial Neural Networks (ANN) has been also

studied in Ref. 6. In this work, we consider such an ap-

proach to effectively increase the size of the dataset and

reduce the influence of artifacts and bias introduced by

4D-CT imaging. Precisely, the initial small and noisy

dataset is used to train neural networks, from which a

larger set is then built. In this way, we obtain smoothed

data that allow to greatly improve the learning of lung

motion by another neural network.

MATERIALS AND METHODS

Dataset construction

To simulate a patient’s lung motion, we have proposed

to use an artificial neural network that learns the mo-

tion of some anatomic characteristic points during the

respiratory cycle 10. The dataset used to train the neu-

ral network through a holdout validation approach is

generated by plotting the motion of points in 10 dis-

crete and regular phases of the breathing cycle in 4D-

CT images from 5 patients (patients 0 to 4). The five

remaining patients (patients 5 to 9) are used as a test-

ing dataset. The characteristic points were determined

by a radiation therapist in non-pathogenic areas and

thus only the motion of normal tissues will be con-

sidered. This process leads to several biases and noise

in the data: on the one hand, the phase in which a

point is plotted is not always displayed by the scanner,

and on the other hand the resolution of the CT images

limits the accuracy of the plotted points. In fact, the

considered 4D-CT images were obtained using different

scanning devices and protocols, the points are marked

in a system whose resolution is 1 × 1 × 2 mm3 and

1 × 1 × 2.5 mm3. Table 1 shows the distribution of the

1518 points present in our dataset among the 10 pa-

tients. Two facts about the dataset should be noted.

Firstly, patients 4, 7, 8, and 9 data subsets come from

POPI-model developed by Vandemeulebroucke et al. 16.

Secondly, two phases are missing for patient 0: phases

10% and 80%.

Table 1 Dataset points distribution

Patient# 0 1 2 3 4

Lung vol. 4.62 2.86 5.48 2.60 5.94

Pts/Phase 21 25 24 8 38
Phases [0; 20− 70; 90] [0− 90] [0− 90] [0− 90] [0− 90]

Total 168 250 240 80 380

Patient# 5 6 7 8 9

Lung vol. 3.10 4.42 3.72 4.91 4.05

Pts/Phase 6 4 10 10 10

Phases [0− 90] [0− 90] [0− 90] [0− 90] [0− 90]
Total 60 40 100 100 100

Multilayer perceptron neural
networks

To reduce all potential sources of error and increase the

number of points in the dataset, the plotted points are

fitted using neural networks. The chosen network model

is the feedforward MultiLayer Perceptron (MLP), which

is a type of artificial neural network well-known for its

universal approximation property 4. We selected the

classical single hidden layer topology. This one is com-

posed of sigmoid-type hidden neurons, while the out-

put neurons have a linear activation function. Our net-

work has 4 inputs: the three dimensional coordinates of

a point at phase 0% and the phase number for which

its location must be predicted, and the output vector

is also a three dimensional vector. For each point, the

best network architecture is determined through an in-

cremental approach 1 (successive addition of a a neuron

into the hidden layer), according to the motion com-

plexity. Thus, we obtain for each point a regular and
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smooth description of its trajectory, which does not de-

pend on the scanner resolution and is less noisy. More-

over,we can complement the dataset with missing infor-

mation (for example, we can add the two missing phases

for patient 0) or with a finer description of motion, since

the displacement of each point can be obtained for any

phase. Thanks to this data processing, the learning set

is less noisy and more realistic, which allows to improve

the performance of the ANN learning the lung motion.

Figure 2 describes the different steps of our approach:

an appropriate data treatment through a collection of

neural networks is done, followed by the motion learn-

ing using another ANN, these steps represent the learn-

ing process, then the resulting (trained) network is only

used to predict the lung motion (normal execution).

4DCTILS

ANNs

CLS

CVS

overfitting control

calculation

Data
unknown patient

Motion

for all phases

process learning normal execution

10 phases 0% & 50% phases

...

...
processing

motion learning
ANN50 phases

Fig. 2 Schematic description of the proposed approach

(ILS = Initial Learning Set; CLS = Corrected Learning Set;

CVS = Corrected Validation Set)

The neural network developed to learn the displace-

ments of the lung is also a single hidden layer MLP. It

is composed of neurons with activation functions (hid-

den / output) identical to those of the network model

described above. The network has 8 inputs : the three

dimensional coordinates of a point at both phases 0%

and 50%, the lung volume to identify the patient, and

finally the phase number for which the neural network

must predict the point location. The network is trained

through supervised learning by feeding it with the data

resulting from the processing. More precisely, the train-

ing updates the synaptic weights and the biases of the

neurons in order to minimize the Mean Squared Error

(MSE) between the network outputs and the expected

ones defined by the data. Hence, the training process

consists in applying an optimization algorithm in order

to minimize the MSE. In this work, we have chosen the

self-scaling Limited-memory BFGS algorithm, a quasi-

Newton algorithm 9, in combination with Wolfe’s linear

search. It uses the classical backpropagation algorithm

to calculate the gradient of the error. An incremental

approach allows to fix the number of neurons in the

hidden layer 1. Five network trainings were performed

using data from 5 patients, these trainings differ from

each other by the data used as validation set for over-

fitting control (holdout validation): each time the data

from a different patient are considered. As long as the

mean squared error obtained for the validation set de-

creases the training improves the network, whereas a

long term increase means a loss of the generalization

ability.

The resulting networks usually have 8 neurons on

the hidden layer. Therefore, we decided to retain this

topology for the remainder of our study. Our method

to control overfitting consists in performing the training

1000 iterations (also called epochs) beyond the one for

which a minimum MSE is achieved for the validation

set. More precisely, 1000 iterations allow to verify that

a divergence of several millimeters is observed for the

validation set after the last minimum. After the study of

the optimal number of phases to learn the lung motion,

a comparison of different trainings will be done. This

comparison will focus on the impact of both learning

and validation sets quality: ILS and CLS will, respec-

tively, denote the Initial and Corrected Learning Set,

while IVS and CVS will represent their counterparts for

the Validation Set. Let us note that the validation set

will also be used as test set to assess the performances.

RESULTS

Once a training is completed, the network computes

the displacements of the points belonging to one pa-

tient over 100 phases. In the less favorable case, which

corresponds to patient 4, the average computation time

is 205 ms (±32) on a typical personal computer (dual-

core CPU running at 2.1 GHz). That means an almost

real-time simulation of lung motion, since less than 3 ms

are required to compute the positions of the 38 points.

Data processing

To ensure a good continuity between the adjacent simu-

lated phases 99% and 0%, the phase domain is extended

between -20% and 120%. Since the studied phenomenon

is periodic, a correspondence between the phases of this

new domain must be done. However, due to bias in some

data, particularly between phases 90% and 0%, conti-

nuity is not fully guaranteed. For example, Fig. 3(b)

shows that, according to the 4D-CT images, the point

has a trajectory that covers 5 mm between two consecu-

tive phases at the end of the exhalation. In other words,
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a large movement is observed when the displacement of

a point is theoretically very small. This gap is reduced

to less than 1.8 mm, thanks to the processing.

Figure 3 shows the noisy trajectories resulting from

4D-CT for points belonging to patients 0 (points 1

and 2; plots (a) and (b)) and 4 (point 3; plot (c)), and

the smoothed ones obtained by our processing. The tra-

jectories are given considering the z cranio-caudal axis.

As a reminder, the points of patient 0 are only defined

on 8 phases: phases 10% and 80% are missing. In par-

ticular, it can be seen that the displacement of point 1

is very noisy at phase 50%, clearly showing that data

smoothing is relevant. In all cases, the smoothing in-

duced by our processing does neither lead to a loss of

information on the movement, nor alter the informa-

tion. So, we obtain a more accurate and smoother de-

scription of the displacement of a point, which in conse-

quences improves the convergence of the artificial neural

network learning the lung motion.
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Fig. 3 Processing impact on the motion of the three different

points

Figure 3 also describes the periodic displacement of

the different points. Indeed, since phase 100% corre-

sponds to the 0% one, a point should come back to

its initial position. Note that in this figure phases 10,

20, 30, and 40% give the point position for them and

also, respectively, for phases 90, 80, 70, and 60%. Hence,

this figure shows in addition to the bias between phases

90% and 0%, the hysteresis-like motion, for both 4D-

CT and smoothed data. Consequently, the ANN learn-

ing the lung motion uses the data without any a priori

information.

Optimizing the training process

In the following results, the ones corresponding to pa-

tient 1 are not given, because of the patient charac-

teristics: the smallest lung volume and its points are

the most scattered inside the lungs. The lung motion of

patient 1 can be simulated, but we would obtain an ap-

proximative simulation because there is no similar case

known.

The results are given according to the patient con-

sidered as the validation set to control overfitting, since

we use a cross-validation process. Also, we do not give

any indication on the trainings convergence because the

training sets are quite different. We show the results

gained once the trainings are performed. Thus, they

present for the patient used as validation set the av-

erage distance between the expected positions and the

ones predicted by the ANN for all phases. To compare

the treated data with the originals, only 10 phases are

considered to compute the average error, except for pa-

tient 0 which is defined by 8 phases. This last point

explains why the errors for this patient are the smaller:

a missing phase (80%) exhibits an important gradient

of motion. Table 2 clearly highlights the impact of the

missing phases.

Table 2 is devoted to the study of the number of

phases used to describe the points motion according

to the validation patient. Several observations can be

made. First, patient 2 is characterized by a stable accu-

racy whatever the number of learnt phases, which is a

consequence of the point locations: they are localized in

a lung area with a simple motion. Secondly, conversely

patient 4 has the largest errors because it is the pa-

tient that has the biggest lung volume. In this case the

ANN extrapolates, since it predicts movements beyond

the ranges of the training dataset. However, the neural

network is able to correctly simulate the motion (with

larger errors) of each point. Thirdly, the ideal number of

phases is 50, whereas 100 phases induce a loss of gener-

alization ability reflected by the increase of the average

errors. In the following, we will retain the 50 phases

setup for the motion description.
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Table 2 Average errors (standard deviation)
in mm according to the number of phases

that defines the motion of the different points

Phases

Patient# 10 20 50 100

0 0.88 (0.83) 0.86 (0.82) 0.86 (0.82) 0.87 (0.80)
2 1.01 (0.81) 1.05 (0.87) 1.00 (0.84) 1.02 (0.83)

3 1.23 (0.80) 1.08 (0.63) 0.92 (0.68) 1.00 (0.65)

4 1.35 (0.96) 1.36 (1.01) 1.27 (0.99) 1.27 (1.00)

Similarly, table 3 shows the evolution of the average

error according to the training and validation sets for

each test patient. Considering ILS trainings and both

types of validation/test sets the noise resulting from

each patient becomes quantifiable. Note that even with-

out any data processing an artificial neural network

smoothes the noise. This first comparison shows that

the patient data are noisy, with a noise level that is

not negligible: the average distance ranges from 3% to

8%. The neural network is not able to fully reduce the

impact of the noise because we have a small learning

set due to few patients. Therefore, a data processing is

required. The last column, for each patient, in table 3

assesses the relevance of the processing on the learning

set: both bias and noise are reduced such that the neural

network converges to a smaller learning error. The es-

timated accuracy improvement between ILS/IVS and

CLS/CVS varies between 16% and 42% according to

the patient.

Table 3 Average errors (standard de-
viation) in mm obtained with the dif-

ferent learning setups (Initial / Cor-

rected - Learning / Validation Sets)

Patient# ILS/IVS ILS/CVS CLS/CVS

0 1.47 (1.28) 0.97 (0.90) 0.86 (0.82)

2 1.56 (0.92) 1.20 (0.76) 1.00 (0.84)
3 1.43 (0.96) 1.15 (0.68) 0.92 (0.68)
4 1.52 (1.08) 1.37 (1.00) 1.27 (0.99)

Simulation of the lung motion

As we can see in table 3, CLS/CVS is the optimal train-

ing setup for our neural network, so it was to retained

to learn the lung motion. The neural network used is

the one obtained with patient 2 as validation set. In this

case the 1518 points of the dataset are used as follows:

• the learning subset is composed of 4600 points

(patients 0, 1, 3, and 4; 50 phases);

• patient 2 (1200 points) defines the validation

subset;

• the remaining 400 points (patients 5 to 9;

10 phases) correspond to the test samples.

Thus, the learning, validation, and testing subsets rep-

resent, respectively, about 74%, 20%, and 6% of the

whole dataset. Let us emphasize that the learning and

validation points have been processed to improve the

network training, whereas it is not the case of the test

samples. Indeed, in normal execution the neural net-

work is supposed to deal with original 4D-CT data.

Table 4 presents the results obtained for the test pa-

tients for the initial dataset (ILS/IVS) and the ones

(CLS/CVS) issued from our treatment method. The

mean improvement of the prediction accuracy is about

16% and reaches 30% for patient 9.

Table 4 Average errors (standard de-

viation) in mm obtained for the dif-
ferent test patients (Initial / Cor-

rected - Learning / Validation Sets)

Patient# ILS/IVS CLS/CVS

5 1.15 (0.68) 1.02 (0.62)
6 1.45 (0.55) 1.25 (0.72)

7 2.30 (2.32) 2.00 (2.26)

8 1.37 (0.96) 1.16 (0.83)
9 2.18 (1.49) 1.53 (1.15)

To validate our approach, we carried out a compari-

son of the results with a linear approximation of the mo-

tion. This approximation is obtained considering that

the displacements remain constant whatever the phase,

by applying a linear regression between the maximum

exhalation and expiration phases (0% and 50%), and

thus without taking into account the hysteresis.

Obviously, the linear interpolation leads to a sym-

metrical motion between the phase ranges 0-50% and

50-100%. Figure 4 shows the motion predicted for two

distinct points issued from test subset, the first one be-

longs to patient 6 and the second to patient 8, the tra-

jectories obtained by linear regression and from 4D-CT

data are also plotted. We can notice that linear regres-

sion is not accurate enough to describe the motion. In-

deed, as highlighted by the 4D-CT the motion gradient

depends on the phase. By comparison with the linear

approximation, our approach that considers hysteresis

is more competitive, closer to the 4D-CT.
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Fig. 4 Motion simulated for two points, each belonging to a
different patient

This observation can also be made from Fig. 5, which

presents the average prediction errors for the points be-

longing to patient 8. The data from phases 0% and 50%

were not taken into account to compute the values pre-

sented in the histogram, because their errors for the lin-

ear regression are zero by construction. The positions

predicted by our neural network are, on average, the

nearest to the ones given by the 4D-CT. The lower stan-

dard deviations reflect the better fitting of the neural

network, thanks to the simulation of the hysteresis, as

suggested by Fig. 4. The error becomes favorable for the

linear regression when the point motion is constant on

0-50% or 50-100%, or even for the whole phases. In that

case, the neural network still simulates a small move-

ment and thus gives an error. For the set of points from

patient 8, the average error of the positions predicted

by the ANN is, in comparison with the 4D-CT images,

less than 2 mm (except point 2), which means lower

than the z axis image resolution.
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Fig. 5 Neural network versus linear regression: average predic-
tion errors for all points of patient 8, considering all phases

DISCUSSION

Table 1 shows great variations in the errors according to

the patient. In fact, our method is sensitive to the lung

volume, since the largest errors for patients 7, and 9 re-

sult from lung volumes distant from the ones of the pa-

tients used as learning and validation data. Obviously,

a neural network can only give suitable predictions for

unknown inputs when they are similar to some samples

used during the training step. As a consequence, pa-

tients 5, 6 and 8, which have lung volumes of the same

order than several training patients (see table 1), have

the lowest errors.

When a 4D-CT produces a point trajectory without

hysteresis (see Fig. 4(a)), the artificial neural network

simulates ones thanks to its ability to generalize from

the given patients. More generally, for both points pre-

sented in Fig. 4 the trajectories predicted by the ANN

reflect the 4D-CT ones, taking into account motion ar-

tifacts and hysteresis. The minimum position of these

points is located between phases 50% and 60%, while

we considered that phase 50% was the maximum inspi-

ration. Note that we had no a priori knowledge on the

points positions, but rather the data used to train the

network have their minimum at phase 50% or 60%.

Our method is based on 4D-CT data and we have

seen previously that these data contain artifacts. Conse-

quently, finding suitable displacements for the different

points is more difficult. Despite this, our approach uses

this tool to accurately simulate the motion of points

whatever the phase and considering hysteresis.

CONCLUSION AND FUTURE
WORK

The simulation of lung motion is a difficult challenge,

because breathing is a complex phenomenon which re-

quires to consider, in addition to hysteresis, the various

types of deformation induced by the different areas of

the lung. Our approach consists in learning the lung

motion using some patients data, so that the breathing

of the unknown patients can be accurately simulated.

Thus, once the data is pretreated to significantly re-

duce the noise resulting from the 4D-CT artifacts, we

can produce in a realistic way for normal tissues, every

deformation that belongs to our domain of definition

(currently it does not cover the whole lung, due to lack

of data). We have shown that the 4D-CT scans are noisy

and that the proposed processing allows to improve the

convergence of the neural network designed to learn the

lung motion. An average accuracy improvement of 16%

was observed. The results of our method are not limited

by any constraint posed by the 4D-CT modality (such
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as a voxel size of 1×1×2.5 mm3) or the only knowledge

of ten discrete phases with an important uncertainty.

In the future, we plan a clinical evaluation so that

we can differentiate the patients’ sex, pathologies, and

tissues in order to improve our approach for a possible

use in clinical routine practice. Indeed, our method runs

in almost real-time and thanks to a simultaneous acqui-

sition of a patient respiratory phase, we will compute

each time the tumors contours. To finalize our method,

we will also extend the domain of definition to cover

the whole lung by considering more points and more

patients.

ACKNOWLEDGEMENTS

The authors thank the LCC (Ligue Contre le Can-

cer), Région Franche-Comté and the PMA (Pays de
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C. Forest, and Yves Rémond. Real time simulation of
organ motions induced by breathing: first evalution on
patient data. In Biomedical simulation: 3rd Interna-
tional symposium, pages 9–18, 2006.

9. William W. Hsieh. Machine Learning Methods in the
Environmental Sciences - Neural Networks and Ker-
nels. Cambridge university press, 2009.

10. R. Laurent, J. Henriet, M. Salomon, M. Sauget,
F. Nguyen, R. Gschwind, and L. Makovicka. Utilisation
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